Prediction of Fan Array Performance with Polynomial and Support Vector Regression Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Available Experimental Data
- A total of 2000 m3/h 10,000 m3/h (limited by the volume flow measurement device).
- (design specification of the air handling unit).
- A total of (design specification of the fans).
2.2. Polynomial Description
2.3. Machine Learning
2.4. KPIs for Model Quality Evaluation
2.5. Performance Evaluation in the Scope of an Office Building
3. Results
3.1. Model Quality Metrics
3.2. Prediction of the Fan Performance Maps
3.3. Electric Energy Demand for the Reference Office Building
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHU | Air handling unit |
ETA | Extract air |
EXH | Exhaust air |
ODA | Outdoor air |
SUP | Supply air |
SVR | Support vector regression |
Appendix A
Appendix A.1. Polynomial Coefficients for the Developed Models
Dataset | / | / | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | |
100% | −1.79 | −3.67 × 101 | 1.99 × 103 | −2.48 × 104 | 1.41 × 105 | −1.09 × 10−1 | −9.52 × 10−3 | 1.11 × 10−4 |
1.70 × 10−1 | 3.31 | −2.94 × 101 | −5.14 × 102 | 2.33 × 103 | 2.48 × 10−1 | 4.87 × 10−3 | 5.02 × 10−5 | |
75% | 7.37 × 10−1 | 1.52 × 101 | −7.99 × 102 | 9.53 × 103 | −5.27 × 104 | 2.94 × 10−1 | 2.09 × 10−2 | −2.32 × 10−4 |
3.57 × 10−2 | 8.10 × 10−1 | −1.04 × 101 | −3.88 × 101 | 2.11 × 101 | 1.19 | −2.48 × 10−2 | 2.66 × 10−4 | |
50% | 9.27 × 10−1 | 4.87 | −3.34 × 102 | 2.23 × 102 | 8.35 × 103 | 2.26 × 10−1 | 2.06 × 10−2 | −2.41 × 10−4 |
3.26 × 10−2 | 7.74 × 10−1 | −1.01 × 101 | −3.50 × 101 | 6.16 × 101 | 1.25 | −2.45 × 10−2 | 2.53 × 10−4 |
Dataset | / | / | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | |
100% | 9.12 × 10−1 | −1.42 × 10−1 | −3.26 × 101 | −1.65 × 102 | −3.34 × 102 | 4.50 × 10−1 | 9.51 × 10−3 | −1.06 × 10−4 |
1.56 × 10−1 | 2.10 | −1.47 × 101 | −1.40 × 101 | 2.22 × 101 | 6.19 × 10−1 | −1.70 × 10−2 | 1.96 × 10−4 | |
75% | 9.23 × 10−1 | −7.18 × 10−1 | −2.08 × 101 | −2.17 × 102 | −5.29 × 102 | 4.62 × 10−1 | 8.63 × 10−3 | −9.34 × 10−5 |
1.58 × 10−1 | 2.19 | −1.54 × 101 | −1.20 × 101 | 3.33 × 101 | 5.87 × 10−1 | −1.57 × 10−2 | 1.80 × 10−4 | |
50% | 1.21 | −3.73 × 10−1 | −3.65 × 101 | −2.55 × 102 | −4.88 × 102 | 3.68 × 10−1 | 5.26 × 10−3 | −5.20 × 10−5 |
1.58 × 10−1 | 1.93 | −1.22 × 101 | −2.19 × 101 | −1.20 × 101 | 5.97 × 10−1 | −1.57 × 10−2 | 1.77 × 10−4 |
Appendix A.2. Predicted Data for Two Fan Configuration
Appendix A.3. Predicted Data for Four Fan Configuration
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Diffey, B.L. An Overview Analysis of the Time People Spend Outdoors. Br. J. Dermatol. 2011, 164, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Schiller, H.; Mai, R.; Händel, C. Chancen der Energetischen Inspektion für Gesetzgeber, Anlagenbetreiber und die Branche—Abschlussbericht zum Forschungsvorhaben; Technical Report; Forschungsinitiative Zukunft Bau: Salzburg, Austria, 2014. [Google Scholar]
- Jones, D.A.; Eckert, C.M. Empowering Decision Makers to Avoid the Oversizing of Building Service Systems. In Proceedings of the 22nd International Conference on Engineering Design (ICED19), Delft, The Netherlands, 5–8 August 2019; pp. 1135–1144. [Google Scholar] [CrossRef]
- Merema, B.; Delwati, M.D.; Sourbron, M.; Breesch, H. Demand Controlled Ventilation (DCV) in School and Office Buildings: Lessons Learnt from Case Studies. Energy Build. 2018, 172, 349–360. [Google Scholar] [CrossRef]
- Rätz, M.; Kalliomäki, P.; Mathis, P.; Koskela, H.; Müller, D. Analyzing the Energy-Saving Potential of Demand-Controlled Ventilation in Hospitals via Dynamic Building Simulations. In Proceedings of the 16th International Conference on Indoor Air Quality and Climate (Indoor Air 2020), Seoul, Republic of Korea, 20–24 July 2020. [Google Scholar]
- Breuer, J.; Müller, T.M.; Pelz, P.F. How to Save Energy in Ventilation Systems through Distributed Fans. In Proceedings of the Fan 2022—International Conference on Fan Noise, Aerodynamics, Applications and Systems, Senlis, France, 27–29 June 2022. [Google Scholar] [CrossRef]
- Ostmann, P.; Kremer, M.; Müller, D. Efficiency Increase of Air Handling Units by Parallely Operated Fans. In Proceedings of the Ventilation 2022: 13th International Industrial Ventilation Conference for Contaminant Control, Toronto, ON, Canada, 15–18 August 2021; pp. 298–306. [Google Scholar] [CrossRef]
- Conrad, D.; Mayer, J.; Reichert, E. Optimization, Control and Design of Arbitrarily Shaped Fan Arrays. In Proceedings of the Fan 2022—International Conference on Fan Noise, Aerodynamics, Applications and Systems, Senlis, France, 27–29 June 2022. [Google Scholar] [CrossRef]
- Maier, L.; Jansen, D.; Wüllhorst, F.; Kremer, M.; Kümpel, A.; Blacha, T.; Müller, D. AixLib: An Open-Source Modelica Library for Compound Building Energy Systems from Component to District Level with Automated Quality Management. J. Build. Perform. Simul. 2023, 17, 196–219. [Google Scholar] [CrossRef]
- Wetter, M.; van Treeck, C.; Helsen, L.; Maccarini, A.; Saelens, D.; Robinson, D.; Schweiger, G. IBPSA Project 1: BIM/GIS and Modelica Framework for Building and Community Energy System Design and Operation—Ongoing Developments, Lessons Learned and Challenges. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012114. [Google Scholar] [CrossRef]
- Stein, J.; Hydemann, M.M. Development and Testing of the Characteristic Curve Fan Model. ASHRAE Trans. 2004, 110, 347–356. [Google Scholar]
- Singh, M.; Jradi, M.; Shaker, H.R. Monitoring and Evaluation of Building Ventilation System Fans Operation Using Performance Curves. Energy Built Environ. 2020, 1, 307–318. [Google Scholar] [CrossRef]
- Fu, H.; Blum, D.; Wetter, M. Fan and Pump Efficiency in Modelica Based on the Euler Number. In Proceedings of the American Modelica Conference 2022, Dallas, TX, USA, 26–28 October 2022. [Google Scholar] [CrossRef]
- Carolus, T. Ventilatoren: Aerodynamischer Entwurf, Schallvorhersage, Konstruktion, 3rd ed.; Vieweg+Teubner Verlag Imprint: Wiesbaden, Germany, 2013. [Google Scholar]
- Lasdon, L.; Fox, R.; Ratner, M. Nonlinear Optimization Using the Generalized Reduced Gradient Method. Rev. Franç. d’Autom. Inform. Rech. Opérat. Série Verte 1973, 8, 63. [Google Scholar] [CrossRef]
- Rätz, M.; Javadi, A.P.; Baranski, M.; Finkbeiner, K.; Müller, D. Automated Data-Driven Modeling of Building Energy Systems via Machine Learning Algorithms. Energy Build. 2019, 202, 109384. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statistical Learning Theory; A Wiley-Interscience Publication; Wiley: New York, NY, USA; Weinheim, Germany, 1998. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Smith, N.; van der Walt, S. A Better Default Colormap for Matplotlib. In Proceedings of the SciPy2015—Scientific Computing with Python, Austin, TX, USA, 6–12 July 2015; Enthought Inc.: Austin, TX, USA, 2015. [Google Scholar]
Parameter | Symbol | Value |
---|---|---|
Fan impeller diameter | 0.31 m | |
Reference density | 1.18 kg/m3 | |
Fan rotational speed | 1000–2800 min−1 | |
Reference circumferential speed | 65 m/s |
Dataset | Pressure Rise | Fan Power | ||||||
---|---|---|---|---|---|---|---|---|
MRE | ARE | MRE | ARE | |||||
Poly | SVR | Poly | SVR | Poly | SVR | Poly | SVR | |
100% | 2.32 × 10−1 | 1.30 × 10−1 | 3.80 × 10−2 | 2.80 × 10−2 | 1.08 × 10−1 | 6.90 × 10−2 | 1.49 × 10−2 | 1.37 × 10−2 |
75% | 2.16 × 10−1 | 1.30 × 10−1 | 3.67 × 10−2 | 2.75 × 10−2 | 9.73 × 10−2 | 5.51 × 10−2 | 1.52 × 10−2 | 1.50 × 10−2 |
50% | 1.85 × 10−1 | 1.36 × 10−1 | 3.60 × 10−2 | 2.99 × 10−2 | 9.67 × 10−2 | 5.49 × 10−2 | 1.48 × 10−2 | 1.27 × 10−2 |
Dataset | Pressure Rise | Fan Power | ||||||
---|---|---|---|---|---|---|---|---|
MRE | ARE | MRE | ARE | |||||
Poly | SVR | Poly | SVR | Poly | SVR | Poly | SVR | |
100% | 6.64 × 10−2 | 2.14 × 10−2 | 1.31 × 10−2 | 4.38 × 10−3 | 7.75 × 10−2 | 9.32 × 10−3 | 2.30 × 10−2 | 1.49 × 10−3 |
75% | 5.28 × 10−2 | 5.45 × 10−2 | 1.30 × 10−2 | 7.50 × 10−3 | 7.79 × 10−2 | 1.75 × 10−2 | 2.18 × 10−2 | 2.54 × 10−3 |
50% | 5.34 × 10−2 | 5.89 × 10−2 | 4.38 × 10−3 | 8.69 × 10−3 | 8.30 × 10−2 | 9.93 × 10−3 | 1.83 × 10−2 | 2.32 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the EUROTURBO. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Ostmann, P.; Rätz, M.; Kremer, M.; Müller, D. Prediction of Fan Array Performance with Polynomial and Support Vector Regression Models. Int. J. Turbomach. Propuls. Power 2024, 9, 32. https://doi.org/10.3390/ijtpp9040032
Ostmann P, Rätz M, Kremer M, Müller D. Prediction of Fan Array Performance with Polynomial and Support Vector Regression Models. International Journal of Turbomachinery, Propulsion and Power. 2024; 9(4):32. https://doi.org/10.3390/ijtpp9040032
Chicago/Turabian StyleOstmann, Philipp, Martin Rätz, Martin Kremer, and Dirk Müller. 2024. "Prediction of Fan Array Performance with Polynomial and Support Vector Regression Models" International Journal of Turbomachinery, Propulsion and Power 9, no. 4: 32. https://doi.org/10.3390/ijtpp9040032
APA StyleOstmann, P., Rätz, M., Kremer, M., & Müller, D. (2024). Prediction of Fan Array Performance with Polynomial and Support Vector Regression Models. International Journal of Turbomachinery, Propulsion and Power, 9(4), 32. https://doi.org/10.3390/ijtpp9040032