Community-Wide Active Case Finding for Tuberculosis: Time to Use the Evidence We Have
Abstract
:1. Introduction
“A goal without a plan is just a wish”—Antoine de Saint-Exupéry
1.1. Evolving Tuberculosis Diagnostics and Treatments
1.2. The Contribution of “Subclinical Disease” to Community Transmission
1.3. Persistent Risk Factors for Tuberculosis Infection and Disease
1.4. The Reservoir of Latent Mycobacterium tuberculosis Infection
2. Community-Wide Active Case Finding for Tuberculosis
“If we stop testing right now, we’d have very few cases”~Donald Trump
2.1. Symptom-Agnostic Detection
2.2. Detection in Advance of Passive Case Finding
2.3. Targeted Active Case Finding Focused on “Risk Populations”
2.4. Modern Examples of Community-Wide Active Case Finding
3. Implementing What We Know
“You already have more knowledge than you use.”~François Fénelon
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hershkovitz, I.; Donoghue, H.D.; Minnikin, D.E.; Besra, G.S.; Lee, O.Y.-C.; Gernaey, A.M.; Galili, E.; Eshed, V.; Greenblatt, C.L.; Lemma, E.; et al. Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean. PLoS ONE 2008, 3, e3426. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, R.H.; Trauer, J.M.; Curnoe, D.; Tanaka, M.M. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc. Natl. Acad. Sci. USA 2016, 113, 9051–9056. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2024.
- Global Tuberculosis Programme. The END TB Strategy 2015–2035; World Health Organisation: Geneva, Switzerland, 2015.
- World Health Organization. Regional Office for Europe Tuberculosis: Fact Sheet on Sustainable Development Goals (SDGs): Health Targets; World Health Organization: Geneva, Switzerland, 2017.
- Dinkele, R.; Gessner, S.; McKerry, A.; Leonard, B.; Leukes, J.; Seldon, R.; Warner, D.F.; Wood, R. Aerosolization of Mycobacterium tuberculosis by Tidal Breathing. Am. J. Respir. Crit. Care Med. 2022, 206, 206–216. [Google Scholar] [CrossRef]
- Dinkele, R.; Gessner, S.; McKerry, A.; Leonard, B.; Seldon, R.; Koch, A.S.; Morrow, C.; Gqada, M.; Kamariza, M.; Bertozzi, C.R.; et al. Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis patient bioaerosols. PLoS Pathog. 2021, 17, e1009262. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.; Martinez, L.; Theron, G.; Wood, R.; Marais, B. Mycobacterium tuberculosis Transmission in High-Incidence Settings—New Paradigms and Insights. Pathogens 2022, 11, 1228. [Google Scholar] [CrossRef]
- WHO. Global Health Observatory Data Repository. Available online: https://apps.who.int/data/gho (accessed on 30 July 2024).
- Mangtani, P.; Abubakar, I.; Ariti, C.; Beynon, R.; Pimpin, L.; Fine, P.E.M.; Rodrigues, L.C.; Smith, P.G.; Lipman, M.; Whiting, P.F.; et al. Protection by BCG Vaccine against Tuberculosis: A Systematic Review of Randomized Controlled Trials. Clin. Infect. Dis. 2014, 58, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rakshit, S.; Adiga, V.; Dias, M.; Dwarkanath, P.; D’Souza, G.; Vyakarnam, A. A century of BCG: Impact on tuberculosis control and beyond. Immunol. Rev. 2021, 301, 98–121. [Google Scholar] [CrossRef]
- Luca, S.; Mihaescu, T. History of BCG vaccine. Maedica 2013, 8, 53–58. [Google Scholar]
- Zhuang, L.; Ye, Z.; Li, L.; Yang, L.; Gong, W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines 2023, 11, 1304. [Google Scholar] [CrossRef]
- Comstock, G.W.; Ferebee, S.H.; Hammes, L.M. A controlled trial of community-wide isoniazid prophylaxis in Alaska. Am. Rev. Respir. Dis. 1967, 95, 935–943. [Google Scholar]
- Golub, J.E.; Mohan, C.I.; Comstock, G.W.; Chaisson, R.E. Active case finding of tuberculosis: Historical perspective and future prospects. Int. J. Tuberc. Lung Dis. 2005, 9, 1183–1203. [Google Scholar] [PubMed]
- Kaplan, G.J.; Fraser, R.I.; Comstock, G.W. Tuberculosis in Alaska, 1970: The continued decline of the tuberculosis epidemic. Am. Rev. Respir. Dis. 1972, 105, 920–926. [Google Scholar] [PubMed]
- Tyler, P.J. No charge—No undressing. Community Health Tuberc. 2003, 136, 29–43. [Google Scholar]
- Wallace, J.M. Changes in the pattern of respiratory tuberculosis in an urban community following a mass radiography campaign. Tubercle 1964, 45, 7–16. [Google Scholar] [CrossRef]
- Committee of the Joint Tuberculosis Council. Review of mass radiography services. Tubercle 1964, 45, 255–266. [Google Scholar] [CrossRef]
- Lönnroth, K.; Jaramillo, E.; Williams, B.G.; Dye, C.; Raviglione, M. Drivers of tuberculosis epidemics: The role of risk factors and social determinants. Soc. Sci. Med. 2009, 68, 2240–2246. [Google Scholar] [CrossRef]
- Marks, G.B.; Horsburgh, C.R.; Fox, G.J.; Nguyen, T.A. Epidemiological approach to ending tuberculosis in high-burden countries. Lancet 2022, 400, 1750–1752. [Google Scholar] [CrossRef]
- Ginsberg, A.M.; Spigelman, M. Challenges in tuberculosis drug research and development. Nat. Med. 2007, 13, 290–294. [Google Scholar] [CrossRef]
- Marks, G.B.; Nguyen, N.V.; Nguyen, P.T.B.; Nguyen, T.-A.; Nguyen, H.B.; Tran, K.H.; Nguyen, S.V.; Luu, K.B.; Tran, D.T.T.; Vo, Q.T.N.; et al. Community-wide Screening for Tuberculosis in a High-Prevalence Setting. N. Engl. J. Med. 2019, 381, 1347–1357. [Google Scholar] [CrossRef]
- Ayles, H.; Muyoyeta, M.; Du Toit, E.; Schaap, A.; Floyd, S.; Simwinga, M.; Shanaube, K.; Chishinga, N.; Bond, V.; Dunbar, R.; et al. Effect of household and community interventions on the burden of tuberculosis in southern Africa: The ZAMSTAR community-randomised trial. Lancet 2013, 382, 1183–1194. [Google Scholar] [CrossRef]
- Ho, J.; Nguyen, P.T.B.; Nguyen, T.A.; Tran, K.H.; Van Nguyen, S.; Nguyen, N.V.; Nguyen, H.B.; Luu, K.B.; Fox, G.J.; Marks, G.B. Reassessment of the positive predictive value and specificity of Xpert MTB/RIF: A diagnostic accuracy study in the context of community-wide screening for tuberculosis. Lancet Infect. Dis. 2016, 16, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Pillay, S.; Steingart, K.R.; Davies, G.R.; Chaplin, M.; De Vos, M.; Schumacher, S.G.; Warren, R.; Theron, G. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst. Rev. 2022, 2022, CD014841. [Google Scholar] [CrossRef]
- Moussa, H.S.; Bayoumi, F.S.; Mohamed, A.M.A. Gene Xpert for Direct Detection of Mycobacterium tuberculosis in Stool Specimens from Children with Presumptive Pulmonary Tuberculosis. Ann. Clin. Lab. Sci. 2016, 46, 198–203. [Google Scholar]
- Zar, H.J.; Workman, L.; Isaacs, W.; Munro, J.; Black, F.; Eley, B.; Allen, V.; Boehme, C.C.; Zemanay, W.; Nicol, M.P. Rapid Molecular Diagnosis of Pulmonary Tuberculosis in Children Using Nasopharyngeal Specimens. Clin. Infect. Dis. 2012, 55, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, J.S.; van der Spuy, G.; Gindeh, A.; Thuong, N.T.T.; Namuganga, A.; Owolabi, O.; Mayanja-Kizza, H.; Nsereko, M.; Thwaites, G.; Winter, J. Diagnostic accuracy of the Cepheid 3-gene host response fingerstick blood test in a prospective, multi-site study: Interim results. Clin. Infect. Dis. 2022, 74, 2136–2141. [Google Scholar] [CrossRef]
- Rasool, G.; Khan, A.M.; Mohy-Ud-Din, R.; Riaz, M. Detection of Mycobacterium tuberculosis in AFB smear-negative sputum specimens through MTB culture and GeneXpert® MTB/RIF assay. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419827174. [Google Scholar] [CrossRef] [PubMed]
- Pierneef, L.; van Hooij, A.; de Jong, D.; Fat, E.M.T.K.; van Meijgaarden, K.E.; Petruccioli, E.; Vanini, V.; Roukens, A.H.E.; Goletti, D.; Corstjens, P.L.A.M.; et al. Host biomarker-based quantitative rapid tests for detection and treatment monitoring of tuberculosis and COVID-19. iScience 2023, 26, 105873. [Google Scholar] [CrossRef]
- Bulterys, M.A.; Wagner, B.; Redard-Jacot, M.; Suresh, A.; Pollock, N.R.; Moreau, E.; Denkinger, C.M.; Drain, P.K.; Broger, T. Point-Of-Care Urine LAM Tests for Tuberculosis Diagnosis: A Status Update. J. Clin. Med. 2019, 9, 111. [Google Scholar] [CrossRef]
- Hong, J.M.; Lee, H.; Menon, N.V.; Lim, C.T.; Lee, L.P.; Ong, C.W.M. Point-of-care diagnostic tests for tuberculosis disease. Sci. Transl. Med. 2022, 14, eabj4124. [Google Scholar] [CrossRef]
- Broger, T.; Marx, F.M.; Theron, G.; Marais, B.J.; Nicol, M.P.; Kerkhoff, A.D.; Nathavitharana, R.; Huerga, H.; Gupta-Wright, A.; Kohli, M.; et al. Diagnostic yield as an important metric for the evaluation of novel tuberculosis tests: Rationale and guidance for future research. Lancet Glob. Health 2024, 12, e1184–e1191. [Google Scholar] [CrossRef]
- Abidi, S.; Achar, J.; Neino, M.M.A.; Bang, D.; Benedetti, A.; Brode, S.; Campbell, J.R.; Casas, E.C.; Conradie, F.; Dravniece, G.; et al. Standardised shorter regimens versus individualised longer regimens for rifampin- or multidrug-resistant tuberculosis. Eur. Respir. J. 2020, 55, 1901467. [Google Scholar] [CrossRef] [PubMed]
- Nunn, A.J.; Phillips, P.P.J.; Meredith, S.K.; Chiang, C.-Y.; Conradie, F.; Dalai, D.; Van Deun, A.; Dat, P.-T.; Lan, N.; Master, I.; et al. A Trial of a Shorter Regimen for Rifampin-Resistant Tuberculosis. N. Engl. J. Med. 2019, 380, 1201–1213. [Google Scholar] [CrossRef]
- Houben, R.M.G.J.; Esmail, H.; Cobelens, F.; Williams, C.M.L.; Coussens, A.K. Tuberculosis prevalence: Beyond the tip of the iceberg. Lancet Respir. Med. 2022, 10, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.P.; Hanson, C.L. Finding the Missing Tuberculosis Patients. J. Infect. Dis. 2017, 216 (Suppl. S7), S675–S678. [Google Scholar] [CrossRef]
- Pai, M.; Dewan, P. Testing and Treating the Missing Millions with Tuberculosis. PLoS Med. 2015, 12, e1001805. [Google Scholar] [CrossRef]
- Sulis, G.; Pai, M. Missing tuberculosis patients in the private sector: Business as usual will not deliver results. Public Health Action 2017, 7, 80–81. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A. Finding the missing millions affected by tuberculosis is one thing; treating them is another. Lancet Respir. Med. 2019, 7, 741. [Google Scholar] [CrossRef]
- Murray, E.J.; Bond, V.A.; Marais, B.J.; Godfrey-Faussett, P.; Ayles, H.M.; Beyers, N. High levels of vulnerability and anticipated stigma reduce the impetus for tuberculosis diagnosis in Cape Town, South Africa. Health Policy Plan. 2013, 28, 410–418. [Google Scholar] [CrossRef]
- Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and Subclinical Tuberculosis: A Clinical Review of Early Stages and Progression of Infection. Clin. Microbiol. Rev. 2018, 31, e00021-18. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Tiemersma, E.; Nguyen, N.V.; Nguyen, H.B.; Cobelens, F. Disease Transmission by Patients with Subclinical Tuberculosis. Clin. Infect. Dis. 2023, 76, 2000–2006. [Google Scholar] [CrossRef]
- Williams, C.M.; Abdulwhhab, M.; Birring, S.S.; De Kock, E.; Garton, N.J.; Townsend, E.; Pareek, M.; Al-Taie, A.; Pan, J.; Ganatra, R.; et al. Exhaled Mycobacterium tuberculosis output and detection of subclinical disease by face-mask sampling: Prospective observational studies. Lancet Infect. Dis. 2020, 20, 607–617. [Google Scholar] [CrossRef]
- Rickman, H.M.; Cohn, S.; Lala, S.G.; Waja, Z.; Salazar-Austin, N.; Hoffmann, J.; Dooley, K.E.; Hoffmann, C.J.; Chaisson, R.E.; Martinson, N.A.; et al. Subclinical tuberculosis and adverse infant outcomes in pregnant women with HIV. Int. J. Tuberc. Lung Dis. 2020, 24, 681–685. [Google Scholar] [CrossRef]
- Frascella, B.; Richards, A.S.; Sossen, B.; Emery, J.C.; Odone, A.; Law, I.; Onozaki, I.; Esmail, H.; Houben, R.M.G.J. Subclinical Tuberculosis Disease—A Review and Analysis of Prevalence Surveys to Inform Definitions, Burden, Associations, and Screening Methodology. Clin. Infect. Dis. 2021, 73, e830–e841. [Google Scholar] [CrossRef] [PubMed]
- Kendall, E.A.; Shrestha, S.; Dowdy, D.W. The Epidemiological Importance of Subclinical Tuberculosis. A Critical Reappraisal. Am. J. Respir. Crit. Care Med. 2021, 203, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Chung, C.; Jung, S.S.; Park, H.K.; Lee, S.-S.; Lee, K.M. Clinical profiles of subclinical disease among pulmonary tuberculosis patients: A prospective cohort study in South Korea. BMC Pulm. Med. 2020, 20, 316. [Google Scholar] [CrossRef] [PubMed]
- Emery, J.C.; Dodd, P.J.; Banu, S.; Frascella, B.; Garden, F.L.; Horton, K.C.; Hossain, S.; Law, I.; van Leth, F.; Marks, G.B.; et al. Estimating the contribution of subclinical tuberculosis disease to transmission—An individual patient data analysis from prevalence surveys. eLife 2023, 12, e82469. [Google Scholar] [CrossRef]
- Horton, K.C.; McCaffrey, T.; Richards, A.S.; Schwalb, A.; Houben, M.G.J. Estimating the impact of tuberculosis pathways on transmission—What is the gap left by passive case-finding? J. Infect. Dis. 2024, jiae390. [Google Scholar] [CrossRef]
- Richards, A.S.; Sossen, B.; Emery, J.C.; Horton, K.C.; Heinsohn, T.; Frascella, B.; Balzarini, F.; Oradini-Alacreu, A.; Häcker, B.; Odone, A.; et al. Quantifying progression and regression across the spectrum of pulmonary tuberculosis: A data synthesis study. Lancet Glob. Health 2023, 11, e684–e692. [Google Scholar] [CrossRef]
- Dowdy, D.W.; Basu, S.; Andrews, J.R. Is Passive Diagnosis Enough?: The Impact of Subclinical Disease on Diagnostic Strategies for Tuberculosis. Am. J. Respir. Crit. Care Med. 2013, 187, 543–551. [Google Scholar] [CrossRef]
- Ho, J.; Fox, G.J.; Marais, B.J. Passive case finding for tuberculosis is not enough. Int. J. Mycobacteriol. 2016, 5, 374–378. [Google Scholar] [CrossRef]
- Kranzer, K.; Afnan-Holmes, H.; Tomlin, K.; Golub, J.E.; Shapiro, A.E.; Schaap, A.; Corbett, E.L.; Lönnroth, K.; Glynn, J.R. The benefits to communities and individuals of screening for active tuberculosis disease: A systematic review [State of the art series. Case finding/screening. Number 2 in the series]. Int. J. Tuberc. Lung Dis. 2013, 17, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.; Sweeney, S.; Mudzengi, D.; Creswell, J.; Menzies, N.A.; Fox, G.J.; MacPherson, P.; Dowdy, D.W. Determining the value of TB active case-finding: Current evidence and methodological considerations. Int. J. Tuberc. Lung Dis. 2021, 25, 171–181. [Google Scholar] [CrossRef]
- Churchyard, G.J.; Houben, R.M.G.J.; Fielding, K.; Fiore-Gartland, A.L.; Esmail, H.; Grant, A.D.; Rangaka, M.X.; Behr, M.; Garcia-Basteiro, A.L.; Wong, E.B.; et al. Implications of subclinical tuberculosis for vaccine trial design and global effect. Lancet Microbe 2024, 100895. [Google Scholar] [CrossRef]
- Ragonnet, R.; Williams, B.M.; Largen, A.; Nasa, J.; Jack, T.; Langinlur, M.K.; Ko, E.; Rahevar, K.; Islam, T.; Denholm, J.T.; et al. Estimating the long-term effects of mass screening for latent and active tuberculosis in the Marshall Islands. Int. J. Epidemiol. 2022, 51, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Dean, H.D.; Fenton, K.A. Addressing Social Determinants of Health in the Prevention and Control of HIV/AIDS, Viral Hepatitis, Sexually Transmitted Infections, and Tuberculosis. Public Health Rep. 2010, 125 (Suppl. S4), 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.G.M.; Oliveira, J.F.; Bertolde, A.; Ayabina, D.; Nguyen, T.A.; Maciel, E.L.; Duarte, R.; Nguyen, B.H.; Shete, P.B.; Lienhardt, C. Introducing risk inequality metrics in tuberculosis policy development. Nat. Commun. 2019, 10, 2480. [Google Scholar] [CrossRef]
- Van Helden, P.D. The economic divide and tuberculosis: Tuberculosis is not just a medical problem, but also a problem of social inequality and poverty. EMBO Rep. 2003, 4 (Suppl. S1), S24–S28. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.K.J.; Morishita, F.; Islam, T.; Viney, K.; Ong, C.W.M.; Kato, S.; Kim, H.; Liu, Y.; Oh, K.H.; Yoshiyama, T.; et al. Tuberculosis in older adults: Challenges and best practices in the Western Pacific Region. Lancet Reg. Health-West. Pac. 2023, 36, 100770. [Google Scholar] [CrossRef]
- Marais, B.J.; Lönnroth, K.; Lawn, S.D.; Migliori, G.B.; Mwaba, P.; Glaziou, P.; Bates, M.; Colagiuri, R.; Zijenah, L.; Swaminathan, S.; et al. Tuberculosis comorbidity with communicable and non-communicable diseases: Integrating health services and control efforts. Lancet Infect. Dis. 2013, 13, 436–448. [Google Scholar] [CrossRef]
- Scandurra, G.; Degeling, C.; Douglas, P.; Dobler, C.C.; Marais, B. Tuberculosis in migrants–screening, surveillance and ethics. Pneumonia 2020, 12, 9. [Google Scholar] [CrossRef]
- Bhargava, A.; Bhargava, M.; Velayutham, B.; Thiruvengadam, K.; Watson, B.; Kulkarni, B.; Singh, M.; Dayal, R.; Pathak, R.R.; Mitra, A.; et al. The RATIONS (Reducing Activation of Tuberculosis by Improvement of Nutritional Status) study: A cluster randomised trial of nutritional support (food rations) to reduce TB incidence in household contacts of patients with microbiologically confirmed pulmonary tuberculosis in communities with a high prevalence of undernutrition, Jharkhand, India. BMJ Open 2021, 11, e047210. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Bhargava, M.; Meher, A.; Benedetti, A.; Velayutham, B.; Teja, G.S.; Watson, B.; Barik, G.; Pathak, R.R.; Prasad, R.; et al. Nutritional supplementation to prevent tuberculosis incidence in household contacts of patients with pulmonary tuberculosis in India (RATIONS): A field-based, open-label, cluster-randomised, controlled trial. Lancet 2023, 402, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Mehta, S. Food: The tuberculosis vaccine we already have. Lancet 2023, 402, 588–590. [Google Scholar] [CrossRef]
- Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent Mycobacterium tuberculosis infection. N. Engl. J. Med. 2015, 372, 2127–2135. [Google Scholar] [CrossRef]
- Andrews, J.R.; Morrow, C.; Walensky, R.P.; Wood, R. Integrating Social Contact and Environmental Data in Evaluating Tuberculosis Transmission in a South African Township. J. Infect. Dis. 2014, 210, 597–603. [Google Scholar] [CrossRef]
- Mathema, B.; Andrews, J.R.; Cohen, T.; Borgdorff, M.W.; Behr, M.; Glynn, J.R.; Rustomjee, R.; Silk, B.J.; Wood, R. Drivers of Tuberculosis Transmission. J. Infect. Dis. 2017, 216 (Suppl. S6), S644–S653. [Google Scholar] [CrossRef]
- Van Crevel, R.; Critchley, J.A. The Interaction of Diabetes and Tuberculosis: Translating Research to Policy and Practice. Trop. Med. Infect. Dis. 2021, 6, 8. [Google Scholar] [CrossRef]
- Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef] [PubMed]
- Rangaka, M.X.; Cavalcante, S.C.; Marais, B.J.; Thim, S.; Martinson, N.A.; Swaminathan, S.; Chaisson, R.E. Controlling the seedbeds of tuberculosis: Diagnosis and treatment of tuberculosis infection. Lancet 2015, 386, 2344–2353. [Google Scholar] [CrossRef]
- Horsburgh, C.R.; O’Donnell, M.; Chamblee, S.; Moreland, J.L.; Johnson, J.; Marsh, B.J.; Narita, M.; Johnson, L.S.; von Reyn, C.F. Revisiting Rates of Reactivation Tuberculosis: A Population-based Approach. Am. J. Respir. Crit. Care Med. 2010, 182, 420–425. [Google Scholar] [CrossRef]
- Cardona, P.-J. A Dynamic Reinfection Hypothesis of Latent Tuberculosis Infection. Infection 2009, 37, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Menzies, N.A.; Wolf, E.; Connors, D.; Bellerose, M.; Sbarra, A.N.; Cohen, T.; Hill, A.N.; Yaesoubi, R.; Galer, K.; White, P.J.; et al. Progression from latent infection to active disease in dynamic tuberculosis transmission models: A systematic review of the validity of modelling assumptions. Lancet Infect. Dis. 2018, 18, e228–e238. [Google Scholar] [CrossRef] [PubMed]
- Coussens, A.K.; Zaidi, S.M.A.; Allwood, B.W.; Dewan, P.K.; Gray, G.; Kohli, M.; Kredo, T.; Marais, B.J.; Marks, G.B.; Martinez, L.; et al. Classification of early tuberculosis states to guide research for improved care and prevention: An international Delphi consensus exercise. Lancet Respir. Med. 2024, 12, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mathema, B.; Hu, Y.; Zhao, Q.; Weili, J.; Xu, B. Role of casual contacts in the recent transmission of tuberculosis in settings with high disease burden. Clin. Microbiol. Infect. 2014, 20, 1140–1145. [Google Scholar] [CrossRef]
- Trauer, J.M.; Moyo, N.; Tay, E.-L.; Dale, K.; Ragonnet, R.; McBryde, E.S.; Denholm, J.T. Risk of active tuberculosis in the five years following infection…15%? Chest 2016, 149, 516–525. [Google Scholar] [CrossRef]
- Alsdurf, H.; Hill, P.C.; Matteelli, A.; Getahun, H.; Menzies, D. The cascade of care in diagnosis and treatment of latent tuberculosis infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 1269–1278. [Google Scholar] [CrossRef]
- Coleman, M.; Nguyen, T.-A.; Luu, K.B.; Hill, J.; Ragonnet, R.; Trauer, J.M.; Fox, G.J.; Marks, G.B.; Marais, B.J. Finding and treating both tuberculosis disease and latent infection during population-wide active case finding for tuberculosis elimination. Front. Med. 2023, 16, 1275140. [Google Scholar] [CrossRef]
- Dheda, K.; Perumal, T.; Moultrie, H.; Perumal, R.; Esmail, A.; Scott, A.J.; Udwadia, Z.; Chang, K.C.; Peter, J.; Pooran, A.; et al. The intersecting pandemics of tuberculosis and COVID-19: Population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir. Med. 2022, 10, 603–622. [Google Scholar] [CrossRef]
- Pai, M.; Kasaeva, T.; Swaminathan, S. COVID-19’s Devastating Effect on Tuberculosis Care—A Path to Recovery. N. Engl. J. Med. 2022, 386, 1490–1493. [Google Scholar] [CrossRef]
- Ding, C.; Hu, M.; Shangguan, Y.; Guo, W.; Wang, S.; Feng, X.; Zhang, Z.; Zhang, Y.; Xu, K. Epidemic Trends in High Tuberculosis Burden Countries during the Last Three Decades and Feasibility of Achieving the Global Targets at the Country Level. Front. Med. 2022, 9, 798465. [Google Scholar] [CrossRef]
- Silva, S.; Arinaminpathy, N.; Atun, R.; Goosby, E.; Reid, M. Economic impact of tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable Development Goals tuberculosis targets: A full-income analysis. Lancet Glob. Health 2021, 9, e1372–e1379. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, M.; Morishita, F.; Oh, K.H.; Rahevar, K.; Islam, T.A.; Yadav, S. Epidemiology of tuberculosis in the Pacific island countries and areas, 2000–2020. West. Pac. Surveill. Response 2023, 14, 28–39. [Google Scholar] [CrossRef]
- Zumla, A.; Marais, B.; McHugh, T.; Maeurer, M.; Zumla, A.; Kapata, N.; Ntoumi, F.; Chanda-Kapata, P.; Mfinanga, S.; Centis, R. COVID-19 and tuberculosis—Threats and opportunities. Int. J. Tuberc. Lung Dis. 2020, 24, 757–760. [Google Scholar] [CrossRef]
- Hussain, H.; Mori, A.T.; Khan, A.J.; Khowaja, S.; Creswell, J.; Tylleskar, T.; Robberstad, B. The cost-effectiveness of incentive-based active case finding for tuberculosis (TB) control in the private sector Karachi, Pakistan. BMC Health Serv. Res. 2019, 19, 690. [Google Scholar] [CrossRef]
- Yadav, R.P.; Nishikiori, N.; Satha, P.; Eang, M.T.; Lubell, Y. Cost-Effectiveness of a Tuberculosis Active Case Finding Program Targeting Household and Neighborhood Contacts in Cambodia. Am. J. Trop. Med. Hyg. 2014, 90, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Azman, A.S.; Golub, J.E.; Dowdy, D.W. How much is tuberculosis screening worth? Estimating the value of active case finding for tuberculosis in South Africa, China, and India. BMC Med. 2014, 12, 216. [Google Scholar] [CrossRef]
- Vo, L.N.Q.; Forse, R.J.; Codlin, A.J.; Dang, H.M.; Van Truong, V.; Nguyen, L.H.; Nguyen, H.B.; Nguyen, N.V.; Sidney-Annerstedt, K.; Lonnroth, K.; et al. Socio-protective effects of active case finding on catastrophic costs from tuberculosis in Ho Chi Minh City, Viet Nam: A longitudinal patient cost survey. BMC Health Serv. Res. 2021, 21, 1051. [Google Scholar] [CrossRef]
- Gurung, S.C.; Dixit, K.; Rai, B.; Caws, M.; Paudel, P.R.; Dhital, R.; Acharya, S.; Budhathoki, G.; Malla, D.; Levy, J.W.; et al. The role of active case finding in reducing patient incurred catastrophic costs for tuberculosis in Nepal. Infect. Dis. Poverty 2019, 8, 99. [Google Scholar] [CrossRef]
- Nguyen, T.-A.; Teo, A.K.J.; Zhao, Y.; Quelapio, M.; Hill, J.; Morishita, F.; Marais, B.J.; Marks, G.B. Population-wide active case finding as a strategy to end TB. Lancet Reg. Health-West. Pac. 2024, 46, 101047. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Tuberculosis: Ninth Report; World Health Organization: Geneva, Switzerland, 1974.
- Rieder, H. 15. What Is the Role of Case Detection by Periodic Mass Radiographic Examination in Tuberculosis Control? In Toman’s Tuberculosis: Case Detection, Treatment, and Monitoring: Questions and Answers; World Health Organization: Geneva, Switzerland, 2004; p. 72. [Google Scholar]
- Ortiz-Brizuela, E.; Menzies, D. Tuberculosis active case-finding: Looking for cases in all the right places? Lancet Public Health 2021, 6, e261–e262. [Google Scholar] [CrossRef]
- Fox, G.J.; Nhung, N.V.; Sy, D.N.; Hoa, N.L.; Anh, L.T.; Anh, N.T.; Hoa, N.B.; Dung, N.H.; Buu, T.N.; Loi, N.T. Household-contact investigation for detection of tuberculosis in Vietnam. N. Engl. J. Med. 2018, 378, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Bekken, G.K.; Ritz, C.; Selvam, S.; Jesuraj, N.; Hesseling, A.C.; Doherty, T.M.; Grewal, H.M.S.; Vaz, M.; Jenum, S. Identification of subclinical tuberculosis in household contacts using exposure scores and contact investigations. BMC Infect. Dis. 2020, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Glynn, J.R.; Guerra-Assunção, J.A.; Houben, R.M.G.J.; Sichali, L.; Mzembe, T.; Mwaungulu, L.K.; Mwaungulu, J.N.; McNerney, R.; Khan, P.; Parkhill, J.; et al. Whole Genome Sequencing Shows a Low Proportion of Tuberculosis Disease Is Attributable to Known Close Contacts in Rural Malawi. PLoS ONE 2015, 10, e0132840. [Google Scholar] [CrossRef]
- Middelkoop, K.; Koch, A.S.; Hoosen, Z.; Bryden, W.; Call, C.; Seldon, R.; Warner, D.F.; Wood, R.; Andrews, J.R. Environmental air sampling for detection and quantification of Mycobacterium tuberculosis in clinical settings: Proof of concept. Infect. Control Hosp. Epidemiol. 2022, 44, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Sobkowiak, B.; Banda, L.; Mzembe, T.; Crampin, A.C.; Glynn, J.R.; Clark, T.G. Bayesian reconstruction of Mycobacterium tuberculosis transmission networks in a high incidence area over two decades in Malawi reveals associated risk factors and genomic variants. Microb. Genom. 2020, 6, e000361. [Google Scholar] [CrossRef]
- Tostmann, A.; Kik, S.V.; Kalisvaart, N.A.; Sebek, M.M.; Verver, S.; Boeree, M.J.; Van Soolingen, D. Tuberculosis Transmission by Patients with Smear-Negative Pulmonary Tuberculosis in a Large Cohort in The Netherlands. Clin. Infect. Dis. 2008, 47, 1135–1142. [Google Scholar] [CrossRef]
- Asadi, L.; Croxen, M.; Heffernan, C.; Dhillon, M.; Paulsen, C.; Egedahl, M.L.; Tyrrell, G.; Doroshenko, A.; Long, R. How much do smear-negative patients really contribute to tuberculosis transmissions? Re-examining an old question with new tools. EClinicalMedicine 2022, 43, 101250. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Lin, C.; Barrie, J.; Winter, C.; Armstrong, G.; Egedahl, M.L.; Doroshenko, A.; Heffernan, C.; Asadi, L.; Fisher, D.; et al. The Radiographic and Mycobacteriologic Correlates of Subclinical Pulmonary TB in Canada. Chest 2022, 162, 309–320. [Google Scholar] [CrossRef]
- Bajema, K.L.; Bassett, I.V.; Coleman, S.M.; Ross, D.; Freedberg, K.A.; Wald, A.; Drain, P.K. Subclinical tuberculosis among adults with HIV: Clinical features and outcomes in a South African cohort. BMC Infect. Dis. 2019, 19, 14. [Google Scholar] [CrossRef]
- Theron, G.; Limberis, J.; Venter, R.; Smith, L.; Pietersen, E.; Esmail, A.; Calligaro, G.; te Riele, J.; de Kock, M.; van Helden, P.; et al. Bacterial and host determinants of cough aerosol culture-positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nat. Med. 2020, 26, 1435–1443. [Google Scholar] [CrossRef]
- Kwan, A.; Daniels, B.; Saria, V.; Satyanarayana, S.; Subbaraman, R.; McDowell, A.; Bergkvist, S.; Das, R.K.; Das, V.; Das, J.; et al. Variations in the quality of tuberculosis care in urban India: A cross-sectional, standardized patient study in two cities. PLoS Med. 2018, 15, e1002653. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 2: Screening-Systematic Screening for Tuberculosis Disease; World Health Organization: Geneva, Switzerland, 2021; ISBN 92-4-002267-8.
- Lönnroth, K.; Migliori, G.B.; Abubakar, I.; D’Ambrosio, L.; De Vries, G.; Diel, R.; Douglas, P.; Falzon, D.; Gaudreau, M.-A.; Goletti, D.; et al. Towards tuberculosis elimination: An action framework for low-incidence countries. Eur. Respir. J. 2015, 45, 928–952. [Google Scholar] [CrossRef] [PubMed]
- Classen, C.N.; Warren, R.; Richardson, M.; Hauman, J.H.; Gie, R.P.; Ellis, J.H.P.; van Helden, P.D.; Beyers, N. Impact of social interactions in the community on the transmission of tuberculosis in a high incidence area. Thorax 1999, 54, 136–140. [Google Scholar] [CrossRef]
- Martinez, L.; Shen, Y.; Mupere, E.; Kizza, A.; Hill, P.C.; Whalen, C.C. Transmission of Mycobacterium tuberculosis in Households and the Community: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Middelkoop, K.; Mathema, B.; Myer, L.; Shashkina, E.; Whitelaw, A.; Kaplan, G.; Kreiswirth, B.; Wood, R.; Bekker, L.-G. Transmission of Tuberculosis in a South African Community with a High Prevalence of HIV Infection. J. Infect. Dis. 2015, 211, 53–61. [Google Scholar] [CrossRef]
- Davies, P.D. The role of DOTS in tuberculosis treatment and control. Am. J. Respir. Med. 2003, 2, 203–209. [Google Scholar] [CrossRef]
- Smart, T. The Implications of ZAMSTAR for Research and Policy. 2011. Available online: https://www.aidsmap.com/news/nov-2011/implications-zamstar-research-and-policy (accessed on 30 July 2024).
- Murray, E.J.; Dodd, P.J.; Marais, B.; Ayles, H.; Shanaube, K.; Schaap, A.; White, R.G.; Bond, V. Sociological variety and the transmission efficiency of Mycobacterium tuberculosis: A secondary analysis of qualitative and quantitative data from 15 communities in Zambia. BMJ Open 2021, 11, e047136. [Google Scholar] [CrossRef]
- Burke, R.M.; Nliwasa, M.; Feasey, H.R.A.; Chaisson, L.H.; Golub, J.E.; Naufal, F.; Shapiro, A.E.; Ruperez, M.; Telisinghe, L.; Ayles, H.; et al. Community-based active case-finding interventions for tuberculosis: A systematic review. Lancet Public Health 2021, 6, e283–e299. [Google Scholar] [CrossRef]
- Lang, E.S.; Wyer, P.C.; Haynes, R.B. Knowledge translation: Closing the evidence-to-practice gap. Ann. Emerg. Med. 2007, 49, 355–363. [Google Scholar] [CrossRef]
- Skivington, K.; Matthews, L.; Simpson, S.A.; Craig, P.; Baird, J.; Blazeby, J.M.; Boyd, K.A.; Craig, N.; French, D.P.; McIntosh, E.; et al. A new framework for developing and evaluating complex interventions: Update of Medical Research Council guidance. BMJ 2021, 374, n2061. [Google Scholar] [CrossRef]
- Taylor, M.; Medley, N.; Van Wyk, S.S.; Oliver, S. Community views on active case finding for tuberculosis in low- and middle-income countries: A qualitative evidence synthesis. Cochrane Database Syst. Rev. 2024, 2024, CD014756. [Google Scholar] [CrossRef]
- Biermann, O.; Tran, P.B.; Viney, K.; Caws, M.; Lönnroth, K.; Annerstedt, K.S. Active case-finding policy development, implementation and scale-up in high-burden countries: A mixed-methods survey with National Tuberculosis Programme managers and document review. PLoS ONE 2020, 15, e0240696. [Google Scholar] [CrossRef] [PubMed]
- Biermann, O.; Lönnroth, K.; Caws, M.; Viney, K. Factors influencing active tuberculosis case-finding policy development and implementation: A scoping review. BMJ Open 2019, 9, e031284. [Google Scholar] [CrossRef] [PubMed]
- Yuen, C.M.; Puma, D.; Millones, A.K.; Galea, J.T.; Tzelios, C.; Calderon, R.I.; Brooks, M.B.; Jimenez, J.; Contreras, C.; Nichols, T.C.; et al. Identifying barriers and facilitators to implementation of community-based tuberculosis active case finding with mobile X-ray units in Lima, Peru: A RE-AIM evaluation. BMJ Open 2021, 11, e050314. [Google Scholar] [CrossRef]
- Lestari, T.; Graham, S.; Van Den Boogard, C.; Triasih, R.; Poespoprodjo, J.R.; Ubra, R.R.; Kenangalem, E.; Mahendradhata, Y.; Anstey, N.M.; Bailie, R.S.; et al. Bridging the knowledge-practice gap in tuberculosis contact management in a high-burden setting: A mixed-methods protocol for a multicenter health system strengthening study. Implement. Sci. 2019, 14, 31. [Google Scholar] [CrossRef]
- Aia, P.; Majumdar, S.S.; Pomat, W.; Tefuarani, N.; Graham, S.M.; Dakulala, P. The SORT IT model for building operational research capacity: The experience of TB service providers in PNG. Public Health Action 2019, 9, S1–S2. [Google Scholar] [CrossRef]
- Kihara, A.; Kosgei, R.; Ogutu, O.; Gathara, D.; Karumbi, J.; Kirui, N.; Omesa, E.; Omwanwa, K.; Kilonzo, M.; Ondieki, D.; et al. The Structured Operational Research and Training Initiative (SORT IT), second workshop using the national tuberculosis routinely collected program data. EAST Afr. Med. J. 2017, 94, S1–S3. [Google Scholar]
- Guillerm, N.; Tayler-Smith, K.; Berger, S.D.; Bissell, K.; Kumar, A.M.V.; Ramsay, A.; Reid, A.J.; Zachariah, R.; Harries, A.D. Research output after participants complete a Structured Operational Research and Training (SORT IT) course. Public Health Action 2015, 5, 266–268. [Google Scholar] [CrossRef]
- Abimbola, S. Knowledge from the global South is in the global South. J. Med. Ethics 2023, 49, 337–338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coleman, M.; Lowbridge, C.; du Cros, P.; Marais, B.J. Community-Wide Active Case Finding for Tuberculosis: Time to Use the Evidence We Have. Trop. Med. Infect. Dis. 2024, 9, 214. https://doi.org/10.3390/tropicalmed9090214
Coleman M, Lowbridge C, du Cros P, Marais BJ. Community-Wide Active Case Finding for Tuberculosis: Time to Use the Evidence We Have. Tropical Medicine and Infectious Disease. 2024; 9(9):214. https://doi.org/10.3390/tropicalmed9090214
Chicago/Turabian StyleColeman, Mikaela, Chris Lowbridge, Philipp du Cros, and Ben J. Marais. 2024. "Community-Wide Active Case Finding for Tuberculosis: Time to Use the Evidence We Have" Tropical Medicine and Infectious Disease 9, no. 9: 214. https://doi.org/10.3390/tropicalmed9090214
APA StyleColeman, M., Lowbridge, C., du Cros, P., & Marais, B. J. (2024). Community-Wide Active Case Finding for Tuberculosis: Time to Use the Evidence We Have. Tropical Medicine and Infectious Disease, 9(9), 214. https://doi.org/10.3390/tropicalmed9090214