Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses
Abstract
1. Introduction
2. Antiviral Effects of the IFN Response
- A.
- After virus invasion, the IFN pathway is activated to play an antiviral role. IFNs are categorized into three types, type I, type II, and type III. The PRRs include Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-like receptors (RLRs). In the TLR pathway, viral ds/ss DNA/RNA is recognized by TLRs on the endosome after the virus is broken down in the endosome. Then Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) or myeloid differentiation factor-88 (MyD88) are recruited to the TLRs. TAK1 and TBK1 are activated to induce phosphorylation of IFN regulatory factor 3 (IRF3), IFN regulatory factor 7 (IRF7), and nuclear factor kappa B (NF-κB), which are recruited to the promoter region of type I IFN genes to induce their transcriptions. In the RLR pathway, the retinoic acid-inducible gene (RIG-I), melanoma differentiation-associated protein 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2) are activated after detecting viral RNA. RLR activates mitochondrial antiviral signaling protein (MAVS) through aggregation, thereby activating IRF3, IRF7, and NF-κB, finally initiating type I IFN expression. LSm14A, a sensor of viral RNA and DNA, regulates the IFN response through RIG-I. TRIM25 interacts with RIG-I to mediate the activation of RIG-I and the interaction between RIG-I and MAVS. The generated type I IFNs will bind to their specific receptors. Then the receptors rely on related Janus kinases (JAKs), such as TYK2 and JAK1 for signaling, activated JAKs phosphorylate specific tyrosine residues on the receptors, which dock with STAT1 and STAT2, make them phosphorylated, and form a stable STAT1-STAT2 heterodimer. This dimer interacts with IRF9 to form the IRF9-STAT1-STAT2 heterodimer (ISGF3), which is translocated to the nucleus to induce the transcriptions of IFN-stimulated genes (ISGs) by activating the IFN-stimulated response element (ISRE)-containing promoter. Additionally, type I IFNs and type II IFNs promote the formation of STAT1 dimer, termed IFN-γ-activated factor (GAF), which is translocated to the nucleus and binds to the gamma-activated site (GAS) to induce ISGs expression. Cytokines can bind to corresponding cell surface receptors, make JAKs phosphorylation and activate STATs, then promote the production and secretion of type II IFN. The signaling pattern of type II IFNs is similar to type I IFNs. The differences are that the IFNGR is the type II IFN receptor and IFN-γ signaling mainly activates GAF that targets GAS. Induction of type III IFNs by the RLRs pathway is similar to that of type I IFNs. The difference is that MAVS can be recruited to peroxisome and mitochondria, which is recruited to peroxisome and induces type III IFNs preferentially. Type III IFNs have a similar signaling pattern to type I IFNs, achieved by binding to their receptor complexes (FNLR1 and IL-10R2).
- B.
- In the interferon-producing pathway, viruses can act at different nodes to inhibit the antiviral effect of interferon. NSs of Dabie bandavirus (DBV) can interact and co-localize with LSm14A to inhibit the activation of RIG-I to reduce IRF3 phosphorylation and dimerization. Rift Valley fever virus (RVFV) can induce alternative splicing of RIOK3 transcript and then attenuate IFN response. Gn protein of hantaan virus (HTNV) can translocate to mitochondria and interact with mitochondrial Tu translation elongation factor (TUFM) to recruit LC3B and degrade MAVS. NSs of heartland virus (HRTV) can interact with TBK1 to block the binding of TBK1 to IRF3, thus inhibiting type I IFN induction. NSs of Puumala virus (PUUV)/Tula virus (TULV) can inhibit downstream factor IRF3 activity and IFN-β promoter. High-dose NP, Gc, and Gn of HTNV can inhibit NF-κB activation and interferon-stimulated gene expression and NP can sequester NF-κB in the cytoplasm and inhibit the activity of NF-κB. Bunyamwera orthobunyavirus (BUNV) NSs interact with MED8 to prevent the phosphorylation of RNA polymerase II (RNAP II). La Crosse virus (LACV) NSs degrade the IIo-borne RBP1 subunits by exploiting the cellular DNA damage. GPC or Gn/Gc of PUUV can inhibit the activation of IFN-β promoter. Sandfly fever Sicilian virus (SFSV) NSs can inhibit the induction of IFN by shielding the DNA-binding domain of IRF3. RVFV NSs can interfere with the formation of the transcription factor IIH complex. SFSV NSs can directly interact with JAK1 to inhibit STAT1 phosphorylation. GPC of Sin Nombre virus (SNV) can strongly inhibit the induction of IFN-β and the downstream amplification of the JAK-STAT pathway. The L protein of the Nairobi sheep disease virus (NSDV) can inhibit the phosphorylation of STAT1 and STAT2. HRTV can directly inhibit STAT1 without the help of viral protein and its NSs can interact and colocalize with STAT2 to specifically block the nuclear translocation of STAT2. RVFV NSs can trigger degradation of PKR and SFSV NSs can bind to eIF2B and maintain eIF2B activity against translational inhibition caused by PKR. Phleboviruses can largely escape the antiviral effect of ISG20. The L protein of Crimean–Congo hemorrhagic fever virus (CCHFV) can reduce ISG15-encoded ubiquitin and the conjugation of ubiquitin-like proteins with cellular proteins. GPC of PUUV can antagonize the promoter of ISRE on ISGs.
3. Suppressing IFN Response Mechanisms of Bunyavirales
4. Potential Treatment Options for IFN Suppression
4.1. Key Targets of the IFN Pathway
4.1.1. RLR
RIG-I and MDA5
RIG-I
MDA5
4.1.2. TBK1
4.1.3. IRF3
4.1.4. Others
4.2. Targeting Viral Proteins
4.2.1. NSs
4.2.2. NP
4.2.3. GPC
4.2.4. Gn
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boshra, H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses 2022, 14, 2139. [Google Scholar] [CrossRef] [PubMed]
- Elliott, R.M.; Weber, F. Bunyaviruses and the type I interferon system. Viruses 2009, 1, 1003–1021. [Google Scholar] [CrossRef]
- Spengler, J.R.; Bente, D.A.; Bray, M.; Burt, F.; Hewson, R.; Korukluoglu, G.; Mirazimi, A.; Weber, F.; Papa, A. Second International Conference on Crimean-Congo Hemorrhagic Fever. Antivir. Res. 2018, 150, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Matthews, E.; Chauhan, L.; Piquet, A.L.; Tyler, K.L.; Pastula, D.M. An Overview of La Crosse Virus Disease. Neurohospitalist 2022, 12, 587–588. [Google Scholar] [CrossRef] [PubMed]
- Overturf, G.D. World arboviruses: The Bunyaviridae. Pediatr. Infect. Dis. J. 2009, 28, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.W.; Slayter, M.V.; Hall, W.; Peters, C.J. Pathogenesis of a phleboviral infection (Punta Toro virus) in golden Syrian hamsters. Arch. Virol. 1990, 114, 203–212. [Google Scholar] [CrossRef]
- Perrone, L.A.; Narayanan, K.; Worthy, M.; Peters, C.J. The S segment of Punta Toro virus (Bunyaviridae, Phlebovirus) is a major determinant of lethality in the Syrian hamster and codes for a type I interferon antagonist. J. Virol. 2007, 81, 884–892. [Google Scholar] [CrossRef]
- Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 1957, 147, 258–267. [Google Scholar]
- Barnas, J.L.; Albrecht, J.; Meednu, N.; Alzamareh, D.F.; Baker, C.; McDavid, A.; Looney, R.J.; Anolik, J.H. B Cell Activation and Plasma Cell Differentiation Are Promoted by IFN-λ in Systemic Lupus Erythematosus. J. Immunol. 2021, 207, 2660–2672. [Google Scholar] [CrossRef]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015, 74, 318–326. [Google Scholar] [CrossRef]
- Fink, K.; Lang, K.S.; Manjarrez-Orduno, N.; Junt, T.; Senn, B.M.; Holdener, M.; Akira, S.; Zinkernagel, R.M.; Hengartner, H. Early type I interferon-mediated signals on B cells specifically enhance antiviral humoral responses. Eur. J. Immunol. 2006, 36, 2094–2105. [Google Scholar] [CrossRef]
- Giordani, L.; Sanchez, M.; Libri, I.; Quaranta, M.G.; Mattioli, B.; Viora, M. IFN-α amplifies human naive B cell TLR-9-mediated activation and Ig production. J. Leukoc. Biol. 2009, 86, 261–271. [Google Scholar] [CrossRef]
- Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef]
- Hamana, A.; Takahashi, Y.; Uchida, T.; Nishikawa, M.; Imamura, M.; Chayama, K.; Takakura, Y. Evaluation of antiviral effect of type I, II, and III interferons on direct-acting antiviral-resistant hepatitis C virus. Antivir. Res. 2017, 146, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ni, Y.; Lempp, F.A.; Walter, L.; Mutz, P.; Bartenschlager, R.; Urban, S. Hepatitis D virus-induced interferon response and administered interferons control cell division-mediated virus spread. J. Hepatol. 2022, 77, 957–966. [Google Scholar] [CrossRef]
- Yin, Y.; Favoreel, H.W. Herpesviruses and the Type III Interferon System. Virol. Sin. 2021, 36, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Ank, N.; West, H.; Paludan, S.R. IFN-lambda: Novel antiviral cytokines. J. Interferon Cytokine Res. 2006, 26, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Aricò, E.; Belardelli, F. Interferon-α as antiviral and antitumor vaccine adjuvants: Mechanisms of action and response signature. J. Interferon Cytokine Res. 2012, 32, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, S.; Wang, M.; Cheng, A. Interferons and their receptors in birds: A comparison of gene structure, phylogenetic analysis, and cross modulation. Int. J. Mol. Sci. 2014, 15, 21045–21068. [Google Scholar] [CrossRef]
- Kotenko, S.V. IFN-λs. Curr. Opin. Immunol. 2011, 23, 583–590. [Google Scholar] [CrossRef]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Dowling, J.W.; Forero, A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. J. Immunol. 2022, 208, 247–256. [Google Scholar] [CrossRef]
- Nallar, S.C.; Kalvakolanu, D.V. Interferons, signal transduction pathways, and the central nervous system. J. Interferon Cytokine Res. 2014, 34, 559–576. [Google Scholar] [CrossRef] [PubMed]
- Durbin, R.K.; Kotenko, S.V.; Durbin, J.E. Interferon induction and function at the mucosal surface. Immunol. Rev. 2013, 255, 25–39. [Google Scholar] [CrossRef]
- Ioannidis, I.; McNally, B.; Willette, M.; Peeples, M.E.; Chaussabel, D.; Durbin, J.E.; Ramilo, O.; Mejias, A.; Flaño, E. Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J. Virol. 2012, 86, 5422–5436. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011, 34, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 2005, 17, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.; Zhou, Q.; Xu, Z.; Li, C.; Wang, S.; Mao, A.; Zhang, X.; He, W.; Shu, H.-B. LSm14A is a processing body-associated sensor of viral nucleic acids that initiates cellular antiviral response in the early phase of viral infection. Proc. Natl. Acad. Sci. USA 2012, 109, 11770–11775. [Google Scholar] [CrossRef]
- Rahimi-Tesiye, M.; Zaersabet, M.; Salehiyeh, S.; Jafari, S.Z. The role of TRIM25 in the occurrence and development of cancers and inflammatory diseases. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188954. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 2009, 21, 317–337. [Google Scholar] [CrossRef]
- Radetskyy, R.; Daher, A.; Gatignol, A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine Growth Factor Rev. 2018, 40, 48–58. [Google Scholar] [CrossRef]
- Weiss, C.M.; Trobaugh, D.W.; Sun, C.; Lucas, T.M.; Diamond, M.S.; Ryman, K.D.; Klimstra, W.B. The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere 2018, 3, e00209-18. [Google Scholar] [CrossRef] [PubMed]
- Mirzalieva, O.; Juncker, M.; Schwartzenburg, J.; Desai, S. ISG15 and ISGylation in Human Diseases. Cells 2022, 11, 538. [Google Scholar] [CrossRef] [PubMed]
- Content, J. Mechanisms of induction and action of interferons. Verh. K. Acad. Geneeskd. Belg. 2009, 71, 51–71. [Google Scholar] [PubMed]
- de Weerd, N.A.; Samarajiwa, S.A.; Hertzog, P.J. Type I interferon receptors: Biochemistry and biological functions. J. Biol. Chem. 2007, 282, 20053–20057. [Google Scholar] [CrossRef]
- Müller, M.; Briscoe, J.; Laxton, C.; Guschin, D.; Ziemiecki, A.; Silvennoinen, O.; Harpur, A.G.; Barbieri, G.; Witthuhn, B.A.; Schindler, C. The protein tyrosine kinase JAK1 complements defects in interferon-α/β and -γ signal transduction. Nature 1993, 366, 129–135. [Google Scholar] [CrossRef]
- Greenlund, A.C.; Morales, M.O.; Viviano, B.L.; Yan, H.; Krolewski, J.; Schreiber, R.D. Stat recruitment by tyrosine-phosphorylated cytokine receptors: An ordered reversible affinity-driven process. Immunity 1995, 2, 677–687. [Google Scholar] [CrossRef]
- Randall, R.E.; Goodbourn, S. Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 2008, 89, 1–47. [Google Scholar] [CrossRef]
- Negishi, H.; Taniguchi, T.; Yanai, H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb. Perspect. Biol. 2018, 10, a028423. [Google Scholar] [CrossRef]
- Odendall, C.; Dixit, E.; Stavru, F.; Bierne, H.; Franz, K.M.; Durbin, A.F.; Boulant, S.; Gehrke, L.; Cossart, P.; Kagan, J.C. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat. Immunol. 2014, 15, 717–726. [Google Scholar] [CrossRef]
- Zhou, Z.; Hamming, O.J.; Ank, N.; Paludan, S.R.; Nielsen, A.L.; Hartmann, R. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J. Virol. 2007, 81, 7749–7758. [Google Scholar] [CrossRef] [PubMed]
- Kotenko, S.V.; Gallagher, G.; Baurin, V.V.; Lewis-Antes, A.; Shen, M.; Shah, N.K.; Langer, J.A.; Sheikh, F.; Dickensheets, H.; Donnelly, R.P. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003, 4, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Thuner, J.; Coutant, F. IFN-γ: An overlooked cytokine in dermatomyositis with anti-MDA5 antibodies. Autoimmun. Rev. 2023, 22, 103420. [Google Scholar] [CrossRef] [PubMed]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [PubMed]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar] [CrossRef]
- Biron, C.A.; Nguyen, K.B.; Pien, G.C.; Cousens, L.P.; Salazar-Mather, T.P. Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annu. Rev. Immunol. 1999, 17, 189–220. [Google Scholar] [CrossRef]
- Fenimore, J.; Young, H.A. Regulation of IFN-γ Expression. Adv. Exp. Med. Biol. 2016, 941, 1–19. [Google Scholar]
- Zundler, S.; Neurath, M.F. Interleukin-12: Functional activities and implications for disease. Cytokine Growth Factor Rev. 2015, 26, 559–568. [Google Scholar] [CrossRef]
- Santiago, F.W.; Covaleda, L.M.; Sanchez-Aparicio, M.T.; Silvas, J.A.; Diaz-Vizarreta, A.C.; Patel, J.R.; Popov, V.; Yu, X.-j.; García-Sastre, A.; Aguilar, P.V. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J. Virol. 2014, 88, 4572–4585. [Google Scholar] [CrossRef]
- Min, Y.-Q.; Ning, Y.-J.; Wang, H.; Deng, F. A RIG-I-like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. J. Biol. Chem. 2020, 295, 9691–9711. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, B.; Wang, T.; Li, A.; Wan, J.; Qu, J.; Li, C.H.; Li, D.; Liang, M. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus. Acta Virol. 2017, 61, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Igarashi, M.; Koshiba, T.; Irie, T.; Takada, A.; Ichinohe, T. Two Conserved Amino Acids within the NSs of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Are Essential for Anti-Interferon Activity. J. Virol. 2018, 92, e00706–e00718. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Sakai, M.; Shimojima, M.; Saijo, M.; Itoh, M.; Gotoh, B. Nonstructural protein of severe fever with thrombocytopenia syndrome phlebovirus targets STAT2 and not STAT1 to inhibit type I interferon-stimulated JAK-STAT signaling. Microbes Infect. 2018, 20, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Bai, M.; Qi, X.; Li, C.; Liang, M.; Li, D.; Cardona, C.J.; Xing, Z. Suppression of the IFN-α and -β Induction through Sequestering IRF7 into Viral Inclusion Bodies by Nonstructural Protein NSs in Severe Fever with Thrombocytopenia Syndrome Bunyavirus Infection. J. Immunol. 2019, 202, 841–856. [Google Scholar] [CrossRef]
- Ning, Y.-J.; Feng, K.; Min, Y.-Q.; Cao, W.-C.; Wang, M.; Deng, F.; Hu, Z.; Wang, H. Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies. J. Virol. 2015, 89, 4227–4236. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, Y.; Zhang, R.; Guan, Y.; Jiang, N.; Zheng, N.; Wu, Z. Nonstructural Protein NSs Hampers Cellular Antiviral Response through LSm14A during Severe Fever with Thrombocytopenia Syndrome Virus Infection. J. Immunol. 2021, 207, 590–601. [Google Scholar] [CrossRef]
- Min, Y.-Q.; Shi, C.; Yao, T.; Feng, K.; Mo, Q.; Deng, F.; Wang, H.; Ning, Y.-J. The Nonstructural Protein of Guertu Virus Disrupts Host Defenses by Blocking Antiviral Interferon Induction and Action. ACS Infect. Dis. 2020, 6, 857–870. [Google Scholar] [CrossRef]
- Feng, K.; Deng, F.; Hu, Z.; Wang, H.; Ning, Y.-J. Heartland virus antagonizes type I and III interferon antiviral signaling by inhibiting phosphorylation and nuclear translocation of STAT2 and STAT1. J. Biol. Chem. 2019, 294, 9503–9517. [Google Scholar] [CrossRef]
- Ning, Y.-J.; Feng, K.; Min, Y.-Q.; Deng, F.; Hu, Z.; Wang, H. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction. J. Biol. Chem. 2017, 292, 16722–16733. [Google Scholar] [CrossRef]
- Holzer, B.; Bakshi, S.; Bridgen, A.; Baron, M.D. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. PLoS ONE 2011, 6, e28594. [Google Scholar] [CrossRef]
- Ermler, M.E.; Yerukhim, E.; Schriewer, J.; Schattgen, S.; Traylor, Z.; Wespiser, A.R.; Caffrey, D.R.; Chen, Z.J.; King, C.H.; Gale, M.; et al. RNA helicase signaling is critical for type I interferon production and protection against Rift Valley fever virus during mucosal challenge. J. Virol. 2013, 87, 4846–4860. [Google Scholar] [CrossRef] [PubMed]
- Billecocq, A.; Spiegel, M.; Vialat, P.; Kohl, A.; Weber, F.; Bouloy, M.; Haller, O. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J. Virol. 2004, 78, 9798–9806. [Google Scholar] [CrossRef] [PubMed]
- Habjan, M.; Pichlmair, A.; Elliott, R.M.; Overby, A.K.; Glatter, T.; Gstaiger, M.; Superti-Furga, G.; Unger, H.; Weber, F. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. J. Virol. 2009, 83, 4365–4375. [Google Scholar] [CrossRef]
- Gowen, B.B.; Bailey, K.W.; Scharton, D.; Vest, Z.; Westover, J.B.; Skirpstunas, R.; Ikegami, T. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge. Antivir. Res. 2013, 98, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Le May, N.; Mansuroglu, Z.; Léger, P.; Josse, T.; Blot, G.; Billecocq, A.; Flick, R.; Jacob, Y.; Bonnefoy, E.; Bouloy, M. A SAP30 complex inhibits IFN-β expression in Rift Valley fever virus infected cells. PLoS Pathog. 2008, 4, e13. [Google Scholar] [CrossRef]
- Ikegami, T.; Narayanan, K.; Won, S.; Kamitani, W.; Peters, C.J.; Makino, S. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2α phosphorylation. PLoS Pathog. 2009, 5, e1000287. [Google Scholar] [CrossRef]
- Feng, J.; De Jesus, P.D.; Su, V.; Han, S.; Gong, D.; Wu, N.C.; Tian, Y.; Li, X.; Wu, T.-T.; Chanda, S.K.; et al. RIOK3 is an adaptor protein required for IRF3-mediated antiviral type I interferon production. J. Virol. 2014, 88, 7987–7997. [Google Scholar] [CrossRef]
- Takashima, K.; Oshiumi, H.; Takaki, H.; Matsumoto, M.; Seya, T. RIOK3-mediated phosphorylation of MDA5 interferes with its assembly and attenuates the innate immune response. Cell Rep. 2015, 11, 192–200. [Google Scholar] [CrossRef]
- Havranek, K.E.; White, L.A.; Bisom, T.C.; Lanchy, J.-M.; Lodmell, J.S. The Atypical Kinase RIOK3 Limits RVFV Propagation and Is Regulated by Alternative Splicing. Viruses 2021, 13, 367. [Google Scholar] [CrossRef]
- Barski, M.; Brennan, B.; Miller, O.K.; Potter, J.A.; Vijayakrishnan, S.; Bhella, D.; Naismith, J.H.; Elliott, R.M.; Schwarz-Linek, U. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. eLife 2017, 6, e29236. [Google Scholar] [CrossRef]
- Wuerth, J.D.; Habjan, M.; Wulle, J.; Superti-Furga, G.; Pichlmair, A.; Weber, F. NSs Protein of Sandfly Fever Sicilian Phlebovirus Counteracts Interferon (IFN) Induction by Masking the DNA-Binding Domain of IFN Regulatory Factor 3. J. Virol. 2018, 92, e01202–e01218. [Google Scholar] [CrossRef]
- Moalem, Y.; Malis, Y.; Voloshin, K.; Dukhovny, A.; Hirschberg, K.; Sklan, E.H. Sandfly Fever Viruses Attenuate the Type I Interferon Response by Targeting the Phosphorylation of JAK-STAT Components. Front. Immunol. 2022, 13, 865797. [Google Scholar] [CrossRef]
- Ito, T.; Wuerth, J.D.; Weber, F. Protection of eIF2B from inhibitory phosphorylated eIF2: A viral strategy to maintain mRNA translation during the PKR-triggered integrated stress response. J. Biol. Chem. 2023, 299, 105287. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Frias-Staheli, N.; García-Sastre, A.; Schmaljohn, C.S. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B. J. Virol. 2009, 83, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Krempel, R.L.; Schmaljohn, C.S. Inhibition of TNF-α-induced activation of NF-κB by hantavirus nucleocapsid proteins. Ann. N. Y. Acad. Sci. 2009, 1171 (Suppl. S1), E86–E93. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Bian, G.; Wang, K.; Feng, T.; Dai, J. Effects of Different Doses of Nucleocapsid Protein from Hantaan Virus A9 Strain on Regulation of Interferon Signaling. Viral Immunol. 2015, 28, 448–454. [Google Scholar] [CrossRef]
- Wang, K.; Ma, H.; Liu, H.; Ye, W.; Li, Z.; Cheng, L.; Zhang, L.; Lei, Y.; Shen, L.; Zhang, F. The Glycoprotein and Nucleocapsid Protein of Hantaviruses Manipulate Autophagy Flux to Restrain Host Innate Immune Responses. Cell Rep. 2019, 27, 2075–2091. [Google Scholar] [CrossRef]
- Gallo, G.; Caignard, G.; Badonnel, K.; Chevreux, G.; Terrier, S.; Szemiel, A.; Roman-Sosa, G.; Binder, F.; Gu, Q.; Da Silva Filipe, A.; et al. Interactions of Viral Proteins from Pathogenic and Low or Non-Pathogenic Orthohantaviruses with Human Type I Interferon Signaling. Viruses 2021, 13, 140. [Google Scholar] [CrossRef]
- Levine, J.R.; Prescott, J.; Brown, K.S.; Best, S.M.; Ebihara, H.; Feldmann, H. Antagonism of type I interferon responses by new world hantaviruses. J. Virol. 2010, 84, 11790–11801. [Google Scholar] [CrossRef]
- Jääskeläinen, K.M.; Kaukinen, P.; Minskaya, E.S.; Plyusnina, A.; Vapalahti, O.; Elliott, R.M.; Weber, F.; Vaheri, A.; Plyusnin, A. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J. Med. Virol. 2007, 79, 1527–1536. [Google Scholar] [CrossRef]
- Streitenfeld, H.; Boyd, A.; Fazakerley, J.K.; Bridgen, A.; Elliott, R.M.; Weber, F. Activation of PKR by Bunyamwera virus is independent of the viral interferon antagonist NSs. J. Virol. 2003, 77, 5507–5511. [Google Scholar] [CrossRef]
- Thomas, D.; Blakqori, G.; Wagner, V.; Banholzer, M.; Kessler, N.; Elliott, R.M.; Haller, O.; Weber, F. Inhibition of RNA polymerase II phosphorylation by a viral interferon antagonist. J. Biol. Chem. 2004, 279, 31471–31477. [Google Scholar] [CrossRef] [PubMed]
- Carlton-Smith, C.; Elliott, R.M. Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera Orthobunyavirus replication. J. Virol. 2012, 86, 11548–11557. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, P.; Ruf, M.; Blakqori, G.; Överby, A.K.; Heidemann, M.; Eick, D.; Weber, F. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II. J. Biol. Chem. 2011, 286, 3681–3692. [Google Scholar] [CrossRef] [PubMed]
- Schoen, A.; Lau, S.; Verbruggen, P.; Weber, F. Elongin C Contributes to RNA Polymerase II Degradation by the Interferon Antagonist NSs of La Crosse Orthobunyavirus. J. Virol. 2020, 94, e02134-19. [Google Scholar] [CrossRef]
- de Melo Junior, A.B.; de Souza, W.M.; Acrani, G.O.; Carvalho, V.L.; Romeiro, M.F.; Tolardo, A.L.; da Silva, S.P.; Cardoso, J.F.; Chiang, J.d.O.; da Silva Goncalves Vianez Junior, J.L.; et al. Genomic characterization and evolution of Tacaiuma orthobunyavirus (Peribunyaviridae family) isolated in Brazil. Infect. Genet. Evol. 2018, 60, 71–76. [Google Scholar] [CrossRef]
- Feng, J.; Wickenhagen, A.; Turnbull, M.L.; Rezelj, V.V.; Kreher, F.; Tilston-Lunel, N.L.; Slack, G.S.; Brennan, B.; Koudriakova, E.; Shaw, A.E.; et al. Interferon-Stimulated Gene (ISG)-Expression Screening Reveals the Specific Antibunyaviral Activity of ISG20. J. Virol. 2018, 92, e02140-17. [Google Scholar] [CrossRef]
- Deaton, M.K.; Dzimianski, J.V.; Daczkowski, C.M.; Whitney, G.K.; Mank, N.J.; Parham, M.M.; Bergeron, E.; Pegan, S.D. Biochemical and Structural Insights into the Preference of Nairoviral DeISGylases for Interferon-Stimulated Gene Product 15 Originating from Certain Species. J. Virol. 2016, 90, 8314–8327. [Google Scholar] [CrossRef]
- Campbell, J.B.; Buera, J.G. A comparison of the protective effect against Mengo virus infection in mice of interferons induced by polyI:C and Mengo virus. Can. J. Microbiol. 1971, 17, 1525–1532. [Google Scholar] [CrossRef]
- Aznar, M.A.; Planelles, L.; Perez-Olivares, M.; Molina, C.; Garasa, S.; Etxeberría, I.; Perez, G.; Rodriguez, I.; Bolaños, E.; Lopez-Casas, P.; et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J. Immunother. Cancer 2019, 7, 116. [Google Scholar] [CrossRef]
- Tong, J.; Zhu, C.; Lai, H.; Feng, C.; Zhou, D. Potent Neutralization Antibodies Induced by a Recombinant Trimeric Spike Protein Vaccine Candidate Containing PIKA Adjuvant for COVID-19. Vaccines 2021, 9, 296. [Google Scholar] [CrossRef]
- Garg, R.; Latimer, L.; Gerdts, V.; Potter, A.; van Drunen Littel-van den Hurk, S. The respiratory syncytial virus fusion protein formulated with a novel combination adjuvant induces balanced immune responses in lambs with maternal antibodies. Vaccine 2015, 33, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Squillaro, T.; Peluso, G.; Galderisi, U. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant. 2016, 25, 829–848. [Google Scholar] [CrossRef] [PubMed]
- Raicevic, G.; Najar, M.; Busser, H.; Crompot, E.; Bron, D.; Toungouz, M.; Lagneaux, L. Comparison and immunobiological characterization of retinoic acid inducible gene-I-like receptor expression in mesenchymal stromal cells. Sci. Rep. 2017, 7, 2896. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, L.; Xu, R.; Zhang, C.; Xie, Y.; Liu, K.; Li, T.; Hu, W.; Zhen, C.; Wang, F.-S. Mesenchymal stem cell therapy for severe COVID-19. Signal Transduct. Target. Ther. 2021, 6, 339. [Google Scholar] [CrossRef]
- Sleem, A.; Saleh, F. Mesenchymal stem cells in the fight against viruses: Face to face with the invisible enemy. Curr. Res. Transl. Med. 2020, 68, 105–110. [Google Scholar] [CrossRef]
- Gentile, P.; Sterodimas, A.; Pizzicannella, J.; Calabrese, C.; Garcovich, S. Research progress on Mesenchymal Stem Cells (MSCs), Adipose-Derived Mesenchymal Stem Cells (AD-MSCs), Drugs, and Vaccines in Inhibiting COVID-19 Disease. Aging Dis. 2020, 11, 1191–1201. [Google Scholar] [CrossRef]
- Rossignol, J.-F.; Abu-Zekry, M.; Hussein, A.; Santoro, M.G. Effect of nitazoxanide for treatment of severe rotavirus diarrhoea: Randomised double-blind placebo-controlled trial. Lancet 2006, 368, 124–129. [Google Scholar] [CrossRef]
- Haffizulla, J.; Hartman, A.; Hoppers, M.; Resnick, H.; Samudrala, S.; Ginocchio, C.; Bardin, M.; Rossignol, J.-F. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis. 2014, 14, 609–618. [Google Scholar] [CrossRef]
- Jasenosky, L.D.; Cadena, C.; Mire, C.E.; Borisevich, V.; Haridas, V.; Ranjbar, S.; Nambu, A.; Bavari, S.; Soloveva, V.; Sadukhan, S.; et al. The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus. iScience 2019, 19, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, J.F.; El-Gohary, Y.M. Nitazoxanide in the treatment of viral gastroenteritis: A randomized double-blind placebo-controlled clinical trial. Aliment. Pharmacol. Ther. 2006, 24, 1423–1430. [Google Scholar] [CrossRef]
- Wu, Z.; Graf, F.E.; Hirsch, H.H. Acitretin and Retinoic Acid Derivatives Inhibit BK Polyomavirus Replication in Primary Human Proximal Renal Tubular Epithelial and Urothelial Cells. J. Virol. 2021, 95, e00127-21. [Google Scholar] [CrossRef]
- Li, P.; Kaiser, P.; Lampiris, H.W.; Kim, P.; Yukl, S.A.; Havlir, D.V.; Greene, W.C.; Wong, J.K. Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation. Nat. Med. 2016, 22, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.S.; Han, S.S.; Kim, T.L.; Jang, J.W.; Seo, H.-M.; Kim, J.S. Treatment of Recalcitrant Viral Warts with Combination Therapy of Systemic Acitretin and Diphenylcyclopropenone Immunotherapy. Ann. Dermatol. 2020, 32, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ding, Y.; Zhou, J.; Sun, X.; Wang, S. The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3. Phytomedicine 2009, 16, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Mishra, K.P.; Ganju, L. Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors. Arch. Virol. 2016, 161, 3331–3344. [Google Scholar] [CrossRef]
- Lu, R.; Wu, Y.; Guo, H.; Zhang, Z.; He, Y. Salidroside Protects Against Influenza A Virus-Induced Acute Lung Injury in Mice. Dose Response 2021, 19, 15593258211011335. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, L.; Long, J.; Xie, Q.; Zheng, Y.; Liu, K.; Li, X. Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties. Chem. Biol. Interact. 2021, 339, 109268. [Google Scholar] [CrossRef]
- Li, D.; Gale, R.P.; Liu, Y.; Lei, B.; Wang, Y.; Diao, D.; Zhang, M. 5′-Triphosphate siRNA targeting MDR1 reverses multi-drug resistance and activates RIG-I-induced immune-stimulatory and apoptotic effects against human myeloid leukaemia cells. Leuk. Res. 2017, 58, 23–30. [Google Scholar] [CrossRef]
- Poeck, H.; Besch, R.; Maihoefer, C.; Renn, M.; Tormo, D.; Morskaya, S.S.; Kirschnek, S.; Gaffal, E.; Landsberg, J.; Hellmuth, J.; et al. 5′-Triphosphate-siRNA: Turning gene silencing and Rig-I activation against melanoma. Nat. Med. 2008, 14, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, K.V.; Bonoiu, A.C.; Davis, W.G.; Ranjan, P.; Ding, H.; Hu, R.; Bowzard, J.B.; Bergey, E.J.; Katz, J.M.; Knight, P.R.; et al. Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc. Natl. Acad. Sci. USA 2010, 107, 10172–10177. [Google Scholar] [CrossRef] [PubMed]
- Ho, V.; Yong, H.Y.; Chevrier, M.; Narang, V.; Lum, J.; Toh, Y.-X.; Lee, B.; Chen, J.; Tan, E.Y.; Luo, D.; et al. RIG-I Activation by a Designer Short RNA Ligand Protects Human Immune Cells against Dengue Virus Infection without Causing Cytotoxicity. J. Virol. 2019, 93, e00102-19. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Israelow, B.; Lucas, C.; Vogels, C.B.F.; Gomez-Calvo, M.L.; Fedorova, O.; Breban, M.I.; Menasche, B.L.; Dong, H.; Linehan, M.; et al. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. J. Exp. Med. 2022, 219, e20211818. [Google Scholar] [CrossRef] [PubMed]
- Goulet, M.-L.; Olagnier, D.; Xu, Z.; Paz, S.; Belgnaoui, S.M.; Lafferty, E.I.; Janelle, V.; Arguello, M.; Paquet, M.; Ghneim, K.; et al. Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity. PLoS Pathog. 2013, 9, e1003298. [Google Scholar] [CrossRef]
- Franco, E.J.; Pires de Mello, C.P.; Brown, A.N. Antiviral Evaluation of UV-4B and Interferon-Alpha Combination Regimens against Dengue Virus. Viruses 2021, 13, 771. [Google Scholar] [CrossRef]
- Ranoa, D.R.E.; Parekh, A.D.; Pitroda, S.P.; Huang, X.; Darga, T.; Wong, A.C.; Huang, L.; Andrade, J.; Staley, J.P.; Satoh, T.; et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 2016, 7, 26496–26515. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hu, J.; Zhang, H.; Xu, F.; He, W.; Wang, X.; Li, M.; Lu, W.; Zeng, G.; et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J. Clin. Investig. 2019, 129, 4850–4862. [Google Scholar] [CrossRef]
- Brzostek-Racine, S.; Gordon, C.; Van Scoy, S.; Reich, N.C. The DNA damage response induces IFN. J. Immunol. 2011, 187, 5336–5345. [Google Scholar] [CrossRef]
- Zhu, S.; Waguespack, M.; Barker, S.A.; Li, S. Doxorubicin directs the accumulation of interleukin-12-induced IFNγ into tumors for enhancing STAT1 dependent antitumor effect. Clin. Cancer Res. 2007, 13, 4252–4260. [Google Scholar] [CrossRef]
- Tesniere, A.; Schlemmer, F.; Boige, V.; Kepp, O.; Martins, I.; Ghiringhelli, F.; Aymeric, L.; Michaud, M.; Apetoh, L.; Barault, L.; et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010, 29, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Sadraeian, M.; Zhang, L.; Aavani, F.; Biazar, E.; Jin, D. Viral inactivation by light. eLight 2022, 2, 18. [Google Scholar] [CrossRef]
- Kagan, A.B.; Garrison, D.A.; Anders, N.M.; Webster, J.A.; Baker, S.D.; Yegnasubramanian, S.; Rudek, M.A. DNA methyltransferase inhibitor exposure-response: Challenges and opportunities. Clin. Transl. Sci. 2023, 16, 1309–1322. [Google Scholar] [CrossRef]
- Issa, J.-P. Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: Dose, duration, and patient selection. Nat. Clin. Pract. Oncol. 2005, 2 (Suppl. S1), S24–S29. [Google Scholar] [CrossRef] [PubMed]
- Roulois, D.; Yau, H.L.; De Carvalho, D.D. Pharmacological DNA demethylation: Implications for cancer immunotherapy. Oncoimmunology 2016, 5, e1090077. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, F.; Tian, L.; Li, T.; Zhang, Z.; Ren, Z.; Chen, X.; Chen, W.; Li, K.; Sheng, J. Lidocaine inhibits influenza a virus replication by up-regulating IFNα4 via TBK1-IRF7 and JNK-AP1 signaling pathways. Int. Immunopharmacol. 2023, 115, 109706. [Google Scholar] [CrossRef]
- Bedard, K.M.; Wang, M.L.; Proll, S.C.; Loo, Y.-M.; Katze, M.G.; Gale, M.; Iadonato, S.P. Isoflavone agonists of IRF-3 dependent signaling have antiviral activity against RNA viruses. J. Virol. 2012, 86, 7334–7344. [Google Scholar] [CrossRef]
- Andres, A.; Donovan, S.M.; Kuhlenschmidt, M.S. Soy isoflavones and virus infections. J. Nutr. Biochem. 2009, 20, 563–569. [Google Scholar] [CrossRef]
- Pattabhi, S.; Wilkins, C.R.; Dong, R.; Knoll, M.L.; Posakony, J.; Kaiser, S.; Mire, C.E.; Wang, M.L.; Ireton, R.C.; Geisbert, T.W.; et al. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway. J. Virol. 2015, 90, 2372–2387. [Google Scholar] [CrossRef]
- Huryn, D.M.; Kornfilt, D.J.P.; Wipf, P. p97: An Emerging Target for Cancer, Neurodegenerative Diseases, and Viral Infections. J. Med. Chem. 2020, 63, 1892–1907. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, K.; Chen, L.; Jin, X.; Chen, H.; Tang, G.; Yao, S.Q.; Feng, Z.; Zhang, C.-J. A targeted covalent inhibitor of p97 with proteome-wide selectivity. Acta Pharm. Sin. B 2022, 12, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Chisamore, M.J.; Cunningham, M.E.; Flores, O.; Wilkinson, H.A.; Chen, J.D. Characterization of a novel small molecule subtype specific estrogen-related receptor alpha antagonist in MCF-7 breast cancer cells. PLoS ONE 2009, 4, e5624. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ma, S.; Tian, Y.; Wei, C.; Zhu, Y.; Li, F.; Zhang, P.; Wang, P.; Zhang, Y.; Zhong, H. ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction. PLoS Pathog. 2017, 13, e1006347. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Purdy, J.G.; Wu, K.; Rabinowitz, J.D.; Shenk, T. Estrogen-related receptor α is required for efficient human cytomegalovirus replication. Proc. Natl. Acad. Sci. USA 2014, 111, E5706–E5715. [Google Scholar] [CrossRef] [PubMed]
- Karnati, K.R.; Wang, Y.; Du, Y. Exploring the binding mode and thermodynamics of inverse agonists against estrogen-related receptor alpha. RSC Adv. 2020, 10, 16659–16668. [Google Scholar] [CrossRef]
- Lynch, C.; Zhao, J.; Sakamuru, S.; Zhang, L.; Huang, R.; Witt, K.L.; Merrick, B.A.; Teng, C.T.; Xia, M. Identification of Compounds That Inhibit Estrogen-Related Receptor Alpha Signaling Using High-Throughput Screening Assays. Molecules 2019, 24, 841. [Google Scholar] [CrossRef]
- Wang, J.; Fang, F.; Huang, Z.; Wang, Y.; Wong, C. Kaempferol is an estrogen-related receptor alpha and gamma inverse agonist. FEBS Lett. 2009, 583, 643–647. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Zhang, L.; Chen, L.; Du, Y.; Ye, T.; Shi, X. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway. Fitoterapia 2016, 111, 78–86. [Google Scholar] [CrossRef]
- Ning, Y.; Chen, H.; Du, Y.; Ling, H.; Zhang, L.; Chen, L.; Qi, H.; Shi, X.; Li, Q. A novel compound LingH2-10 inhibits the growth of triple negative breast cancer cells in vitro and in vivo as a selective inverse agonist of estrogen-related receptor α. Biomed. Pharmacother. 2017, 93, 913–922. [Google Scholar] [CrossRef]
- Duellman, S.J.; Calaoagan, J.M.; Sato, B.G.; Fine, R.; Klebansky, B.; Chao, W.-R.; Hobbs, P.; Collins, N.; Sambucetti, L.; Laderoute, K.R. A novel steroidal inhibitor of estrogen-related receptor α (ERRα). Biochem. Pharmacol. 2010, 80, 819–826. [Google Scholar] [CrossRef]
- Seo, W.; Yoo, S.; Zhong, Y.; Lee, S.-H.; Woo, S.-Y.; Choi, H.-S.; Won, M.; Roh, T.; Jeon, S.M.; Kim, K.T.; et al. Targeting ERRα promotes cytotoxic effects against acute myeloid leukemia through suppressing mitochondrial oxidative phosphorylation. J. Hematol. Oncol. 2022, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.R.; Tatonetti, N.P. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: A systematic review. Pharmacogenom. J. 2016, 16, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Korade, Z.; Heffer, M.; Mirnics, K. Medication effects on developmental sterol biosynthesis. Mol. Psychiatry 2022, 27, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Tallman, K.A.; Allen, L.B.; Klingelsmith, K.B.; Anderson, A.; Genaro-Mattos, T.C.; Mirnics, K.; Porter, N.A.; Korade, Z. Prescription Medications Alter Neuronal and Glial Cholesterol Synthesis. ACS Chem. Neurosci. 2021, 12, 735–745. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, J.; Yang, Y.; Si, Y.; Zhou, Z.; Zhu, X.; Wu, S.; Liu, H.; Zhang, H.; Zhang, L.; et al. STING strengthens host anti-hantaviral immunity through an interferon-independent pathway. Virol. Sin. 2023, 38, 568–584. [Google Scholar] [CrossRef]
- Fawzy, I.O.; Negm, M.; Ahmed, R.; Esmat, G.; Hamdi, N.; Abdelaziz, A.I. Tamoxifen alleviates hepatitis C virus-induced inhibition of both toll-like receptor 7 and JAK-STAT signalling pathways in PBMCs of infected Egyptian females. J. Viral Hepat. 2012, 19, 854–861. [Google Scholar] [CrossRef]
- Zu, S.; Luo, D.; Li, L.; Ye, Q.; Li, R.-T.; Wang, Y.; Gao, M.; Yang, H.; Deng, Y.-Q.; Cheng, G. Tamoxifen and clomiphene inhibit SARS-CoV-2 infection by suppressing viral entry. Signal Transduct. Target. Ther. 2021, 6, 435. [Google Scholar] [CrossRef]
- Cham, L.B.; Friedrich, S.-K.; Adomati, T.; Bhat, H.; Schiller, M.; Bergerhausen, M.; Hamdan, T.; Li, F.; Machlah, Y.M.; Ali, M.; et al. Tamoxifen Protects from Vesicular Stomatitis Virus Infection. Pharmaceuticals 2019, 12, 142. [Google Scholar] [CrossRef]
- Xiao, J.; Li, W.; Zheng, X.; Qi, L.; Wang, H.; Zhang, C.; Wan, X.; Zheng, Y.; Zhong, R.; Zhou, X.; et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity 2020, 52, 109–122.e6. [Google Scholar] [CrossRef]
- Xu, G.; Salen, G.; Shefer, S.; Ness, G.C.; Chen, T.S.; Zhao, Z.; Salen, L.; Tint, G.S. Treatment of the cholesterol biosynthetic defect in Smith-Lemli-Opitz syndrome reproduced in rats by BM 15.766. Gastroenterology 1995, 109, 1301–1307. [Google Scholar] [CrossRef]
- Ahmed, C.M.I.; Dabelic, R.; Martin, J.P.; Jager, L.D.; Haider, S.M.; Johnson, H.M. Enhancement of antiviral immunity by small molecule antagonist of suppressor of cytokine signaling. J. Immunol. 2010, 185, 1103–1113. [Google Scholar] [CrossRef]
- Frey, K.G.; Ahmed, C.M.I.; Dabelic, R.; Jager, L.D.; Noon-Song, E.N.; Haider, S.M.; Johnson, H.M.; Bigley, N.J. HSV-1-induced SOCS-1 expression in keratinocytes: Use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. J. Immunol. 2009, 183, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, C.M.; Dabelic, R.; Bedoya, S.K.; Larkin, J.; Johnson, H.M. A SOCS1/3 Antagonist Peptide Protects Mice Against Lethal Infection with Influenza A Virus. Front. Immunol. 2015, 6, 574. [Google Scholar] [CrossRef]
- Johnson, H.M.; Lewin, A.S.; Ahmed, C.M. SOCS, Intrinsic Virulence Factors, and Treatment of COVID-19. Front. Immunol. 2020, 11, 582102. [Google Scholar] [CrossRef] [PubMed]
- Schräder, T.; Dudek, S.E.; Schreiber, A.; Ehrhardt, C.; Planz, O.; Ludwig, S. The clinically approved MEK inhibitor Trametinib efficiently blocks influenza A virus propagation and cytokine expression. Antivir. Res. 2018, 157, 80–92. [Google Scholar] [CrossRef]
- Baturcam, E.; Vollmer, S.; Schlüter, H.; Maciewicz, R.A.; Kurian, N.; Vaarala, O.; Ludwig, S.; Cunoosamy, D.M. MEK inhibition drives anti-viral defence in RV but not RSV challenged human airway epithelial cells through AKT/p70S6K/4E-BP1 signalling. Cell Commun. Signal. 2019, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T. “RB-reactivator screening” as a novel cell-based assay for discoveries of molecular targeting agents including the first-in-class MEK inhibitor trametinib (trade name: Mekinist). Pharmacol. Ther. 2022, 236, 108234. [Google Scholar] [CrossRef] [PubMed]
- McMillen, C.M.; Beezhold, D.H.; Blachere, F.M.; Othumpangat, S.; Kashon, M.L.; Noti, J.D. Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference. Virology 2016, 497, 171–184. [Google Scholar] [CrossRef]
- Karothia, D.; Dash, P.K.; Parida, M.; Bhagyawant, S.; Kumar, J.S. Inhibition of West Nile virus Replication by Bifunctional siRNA Targeting the NS2A and NS5 Conserved Region. Curr. Gene Ther. 2018, 18, 180–190. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Chang, Y.; Jiang, B.; Deng, R.; Wang, A.; Zhang, G. Nonstructural protein 11 (nsp11) of porcine reproductive and respiratory syndrome virus (PRRSV) promotes PRRSV infection in MARC-145 cells. BMC Vet. Res. 2016, 12, 90. [Google Scholar] [CrossRef]
- Mahmoodur, R.; Ali, I.; Husnain, T.; Riazuddin, S. RNA interference: The story of gene silencing in plants and humans. Biotechnol. Adv. 2008, 26, 202–209. [Google Scholar] [CrossRef]
- Friedrich, M.; Pfeifer, G.; Binder, S.; Aigner, A.; Vollmer Barbosa, P.; Makert, G.R.; Fertey, J.; Ulbert, S.; Bodem, J.; König, E.-M.; et al. Selection and Validation of siRNAs Preventing Uptake and Replication of SARS-CoV-2. Front. Bioeng. Biotechnol. 2022, 10, 801870. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Amanlou, A.; Moosavi-Movahedi, F.; Golestanian, S.; Amanlou, M. Tetracyclines as a potential antiviral therapy against Crimean Congo hemorrhagic fever virus: Docking and molecular dynamic studies. Comput. Biol. Chem. 2017, 70, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Baikerikar, S. Curcumin and Natural Derivatives Inhibit Ebola Viral Proteins: An In silico Approach. Pharmacogn. Res. 2017, 9, S15–S22. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.R.; Parks, R.J. Curcumin as an Antiviral Agent. Viruses 2020, 12, 1242. [Google Scholar] [CrossRef]
- Liu, C.-L.; Hung, H.-C.; Lo, S.-C.; Chiang, C.-H.; Chen, I.J.; Hsu, J.T.A.; Hou, M.-H. Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development. Sci. Rep. 2016, 6, 21662. [Google Scholar] [CrossRef]
- Terrier, O.; Dilly, S.; Pizzorno, A.; Chalupska, D.; Humpolickova, J.; Bouřa, E.; Berenbaum, F.; Quideau, S.; Lina, B.; Fève, B.; et al. Antiviral Properties of the NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2 Coronavirus. Molecules 2021, 26, 2593. [Google Scholar] [CrossRef]
- Lejal, N.; Tarus, B.; Bouguyon, E.; Chenavas, S.; Bertho, N.; Delmas, B.; Ruigrok, R.W.H.; Di Primo, C.; Slama-Schwok, A. Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrob. Agents Chemother. 2013, 57, 2231–2242. [Google Scholar] [CrossRef]
- Kakisaka, M.; Sasaki, Y.; Yamada, K.; Kondoh, Y.; Hikono, H.; Osada, H.; Tomii, K.; Saito, T.; Aida, Y. A Novel Antiviral Target Structure Involved in the RNA Binding, Dimerization, and Nuclear Export Functions of the Influenza A Virus Nucleoprotein. PLoS Pathog. 2015, 11, e1005062. [Google Scholar] [CrossRef]
- Durymanova Ono, E.A.; Iamamoto, K.; Castilho, J.G.; Carnieli, P.; de Novaes Oliveira, R.; Achkar, S.M.; Carrieri, M.L.; Kotait, I.; Brandão, P.E. In vitro and in vivo inhibition of rabies virus replication by RNA interference. Braz. J. Microbiol. 2013, 44, 879–882. [Google Scholar] [CrossRef]
- Nitschinsk, K.M.; Clarke, D.T.; Idris, A.; McMillan, N.A. RNAi Targeting of Human Metapneumovirus P and N Genes Inhibits Viral Growth. Intervirology 2018, 61, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ng, F.; Chen, M. Short-hairpin RNAs delivered by recombinant adeno-associated virus inhibited the replication of influenza A viruses in vitro. Virology 2021, 564, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Teng, D.; Obika, S.; Ueda, K.; Honda, T. A Small Interfering RNA Cocktail Targeting the Nucleoprotein and Large Protein Genes Suppresses Borna Disease Virus Infection. Front. Microbiol. 2019, 10, 2781. [Google Scholar] [CrossRef]
- Phuong, N.H.; Kwak, C.; Heo, C.-K.; Cho, E.W.; Yang, J.; Poo, H. Development and Characterization of Monoclonal Antibodies against Nucleoprotein for Diagnosis of Influenza A Virus. J. Microbiol. Biotechnol. 2018, 28, 809–815. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.-C.; Zhao, P.-S.; Liang, M.; Gao, Y.-W.; Yang, S.-T.; Qin, C.; Wang, C.-Y.; Xia, X.-Z. Antisense oligonucleotides targeting the RNA binding region of the NP gene inhibit replication of highly pathogenic avian influenza virus H5N1. Int. Immunopharmacol. 2011, 11, 2057–2061. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Dong, S.; Liu, Y.; Zhou, M.; Guo, J.; Jia, X.; Zhang, Y.; Hou, Y.; Tian, M.; Xiao, G.; et al. Screening and Identification of Lujo Virus Entry Inhibitors from an Food and Drug Administration-Approved Drugs Library. Front. Microbiol. 2021, 12, 793519. [Google Scholar] [CrossRef]
- Baďurová, L.; Polčicová, K.; Omasta, B.; Ovečková, I.; Kocianová, E.; Tomášková, J. 2-Deoxy-D-glucose inhibits lymphocytic choriomeningitis virus propagation by targeting glycoprotein N-glycosylation. Virol. J. 2023, 20, 108. [Google Scholar] [CrossRef]
- Pająk, B.; Zieliński, R.; Manning, J.T.; Matejin, S.; Paessler, S.; Fokt, I.; Emmett, M.R.; Priebe, W. The Antiviral Effects of 2-Deoxy-D-glucose (2-DG), a Dual D-Glucose and D-Mannose Mimetic, against SARS-CoV-2 and Other Highly Pathogenic Viruses. Molecules 2022, 27, 5928. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Wang, J.; Chen, J.; Guo, Z.; Liu, Y.; Hua, H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 8. [Google Scholar] [CrossRef]
- Liu, Y.; Goulet, M.-L.; Sze, A.; Hadj, S.B.; Belgnaoui, S.M.; Lababidi, R.R.; Zheng, C.; Fritz, J.H.; Olagnier, D.; Lin, R. RIG-I-Mediated STING Upregulation Restricts Herpes Simplex Virus 1 Infection. J. Virol. 2016, 90, 9406–9419. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Yang, Z.; Zhou, Q. Lidocaine relieves murine allergic rhinitis by regulating the NF-κB and p38 MAPK pathways. Exp. Ther. Med. 2022, 23, 193. [Google Scholar] [CrossRef]
- Pilna, H.; Hajkova, V.; Knitlova, J.; Liskova, J.; Elsterova, J.; Melkova, Z. Vaccinia Virus Expressing Interferon Regulatory Factor 3 Induces Higher Protective Immune Responses against Lethal Poxvirus Challenge in Atopic Organism. Viruses 2021, 13, 1986. [Google Scholar] [CrossRef] [PubMed]
- Durham, G.A.; Williams, J.J.L.; Nasim, M.T.; Palmer, T.M. Targeting SOCS Proteins to Control JAK-STAT Signalling in Disease. Trends Pharmacol. Sci. 2019, 40, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Banjan, B.; Krishnan, D.; Koshy, A.J.; Soman, S.; Leelamma, A.; Raju, R.; Revikumar, A. In-silico screening and identification of potential drug-like compounds for dengue-associated thrombocytopenia from Carica papaya leaf extracts. J. Biomol. Struct. Dyn. 2023, 41, 5963–5981. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.T.U.; Mumtaz, A.; Naseem, R.; Ali, A.; Fatima, T.; Jabbar, T.; Ahmad, Z.; Ashfaq, U.A. Molecular Docking Based Screening of Plant Flavonoids as Dengue NS1 Inhibitors. Bioinformation 2014, 10, 460–465. [Google Scholar] [CrossRef]
- Beatty, P.R.; Puerta-Guardo, H.; Killingbeck, S.S.; Glasner, D.R.; Hopkins, K.; Harris, E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 2015, 7, 304ra141. [Google Scholar] [CrossRef]
- Henchal, E.A.; Henchal, L.S.; Schlesinger, J.J. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol. 1988, 69 Pt 8, 2101–2107. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Chuang, Y.-C.; Liu, C.-C.; Ho, T.-S.; Lin, Y.-S.; Anderson, R.; Yeh, T.-M. Antibodies against Modified NS1 Wing Domain Peptide Protect against Dengue Virus Infection. Sci. Rep. 2017, 7, 6975. [Google Scholar] [CrossRef]
- Wu, S.-F.; Liao, C.-L.; Lin, Y.-L.; Yeh, C.-T.; Chen, L.-K.; Huang, Y.-F.; Chou, H.-Y.; Huang, J.-L.; Shaio, M.-F.; Sytwu, H.-K. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice. Vaccine 2003, 21, 3919–3929. [Google Scholar] [CrossRef]
- Schlesinger, J.J.; Brandriss, M.W.; Walsh, E.E. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol. 1987, 68 Pt 3, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.; Paweska, J.T.; Arbuthnot, P.; Weinberg, M.S. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs. Antivir. Ther. 2012, 17, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Soldan, S.S.; Plassmeyer, M.L.; Matukonis, M.K.; González-Scarano, F. La Crosse virus nonstructural protein NSs counteracts the effects of short interfering RNA. J. Virol. 2005, 79, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Hedil, M.; Kormelink, R. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins. Viruses 2016, 8, 208. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Yan, Y.; Liao, S.; Li, Y.; Ye, Y.; Liu, N.; Zhao, F.; Xu, P. 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Arch. Pharm. Res. 2020, 43, 489–502. [Google Scholar] [CrossRef]
- Henrich, S.; Cameron, A.; Bourenkov, G.P.; Kiefersauer, R.; Huber, R.; Lindberg, I.; Bode, W.; Than, M.E. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat. Struct. Biol. 2003, 10, 520–526. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zheng, N.Q.; Li, D.M.; Gu, L.; Peng, X.M. Entecavir combined with furin inhibitor simultaneously reduces hepatitis B virus replication and e antigen secretion. Virol. J. 2014, 11, 165. [Google Scholar] [CrossRef]
- Rojek, J.M.; Pasqual, G.; Sanchez, A.B.; Nguyen, N.-T.; de la Torre, J.-C.; Kunz, S. Targeting the proteolytic processing of the viral glycoprotein precursor is a promising novel antiviral strategy against arenaviruses. J. Virol. 2010, 84, 573–584. [Google Scholar] [CrossRef]
Viral Name | Main Targets/ Pathways | Mechanisms for the Suppression of IFN Response | Relevant Amino Acid Sites | References |
---|---|---|---|---|
DBV | TRIM25 | NSs → IBs → sequester TRIM25 → RIG-I activity ↓ | \ | [49,50] |
TBK1, IKKε | NSs → IBs → sequester TBK1 and IKKε → TBK1/IKKε-IRF3/IRF7 signaling ↓ | Amino acids serine 21 and leucine 23 in NSs. | [51,52] | |
IRF7 | NSs → IBs → nuclear translocation of IRF7 ↓ | \ | [54] | |
STAT2 | NSs → IBs → sequester STAT2, but not STAT1 → phosphorylation and nuclear translocation of STAT2 ↓ | \ | [53] | |
STAT1, STAT2 | NSs → IBs → sequester STAT2 and STAT1 → phosphorylation of STAT2 ↓, nuclear translocations of STAT2 ↓ and STAT1 ↓ | \ | [55] | |
LSm14A | NSs → LSm14A → RIG-I activity ↓ | The second arginine in the LRRD at the N-terminus of NSs. | [56] | |
GTV | TBK1, STAT2 | NSs → IBs, FSs → sequester TBK1 and STAT2 | \ | [57] |
HRTV | TBK1 | NSs → TBK1 → IRF3 activity ↓ | Amino acids serine 21 and leucine 23 in NSs. | [52,59] |
STAT1 | Without the help of viral protein → STAT1 ↓ | \ | [58] | |
STAT2 | NSs → STAT2 → nuclear translocation of STAT2 ↓ | \ | [58] | |
NSDV | STAT1, STAT2 | L protein → phosphorylation of STAT1 ↓ and STAT2 ↓ | \ | [60] |
RVFV | Transcription factor IIH complex, PKR | NSs → SAP30, YY1 → transcription factor IIH complex ↓, PKR ↓ | \ | [63,64,65] |
RIOK3 | Viral infection → RIOK3 ↓ | \ | [69] | |
SFSV | IRF3 | NSs → shield the DNA-binding domain of IRF3 → TBK1-IRF3 ↓ | \ | [71] |
JAK1 | NSs → JAK1 → phosphorylation and nuclear translocation of STAT1 ↓ in type I IFN response | \ | [72] | |
PKR | NSs → eIF2B activity ↑ → translational inhibition effect of PKR ↓ | \ | [73] | |
HTNV | MAVS | Gn → TUFM → degrade MAVS | \ | [77] |
NF-κB | NP → sequester NF-κB in the cytoplasm, NF-κB activity ↓ | \ | [74] | |
NF-κB | NP → miR-146a ↑ → NF-κB pathway ↓ | \ | [75] | |
NF-κB | NP, Gn, Gc → NF-κB activity ↓, ISGs expression ↓ | \ | [76] | |
PUUV | \ | GPC, Gn/Gc → IFN-β promoter activity ↓ | \ | [78] |
ISRE | GPC → antagonizes ISRE on ISGs | \ | [78] | |
IRF3 | NSs → IRF3 activity ↓, IFN-β promoter activity ↓ | \ | [80] | |
TULV | IRF3 | NSs → IRF3 activity ↓, IFN-β promoter activity ↓ | \ | [80] |
SNV | JAK-STAT | GPC → JAK-STAT ↓ | \ | [79] |
BUNV | RNAP II | NSs → MED8, p44 → dysregulate RNAP II | \ | [82] |
LACV | RNAP II | NSs → DNA damage response pathway → degrade IIo-borne RBP1 subunits → RNAP II ↓ NSs and cofactor Elongin C → degrade RNAP II subunit RPB1 → RNAP II ↓ | \ | [84,85] |
Phleboviruses | ISG20 | Escape the antiviral effect of ISG20 | \ | [87] |
CCHFV | ISG15 | L protein → ISG15-encoded ubiquitin ↓, the conjugation of ubiquitin-like proteins with cellular proteins ↓ | \ | [60] |
Key Targets | Potential Strategies against Bunyavirus | Research and Applications of Antiviral Therapy | Reference |
---|---|---|---|
RLR | |||
RIG-I and MDA5 | PolyI: C; BO-112 | Mengo virus, RSV, SARS-CoV-2 | [89,90,91,92] |
MSCs | HIV, HBV, SARS-CoV-2 | [93,94,95,96,97,98] | |
RIG-I | NTZ | Influenza virus, Viral gastroenteritis, RV, EBOV | [99,100,101,102] |
Acitretin | HIV, BKPyV, HPV | [103,104,105] | |
Salidroside | DENV, CVB3, IAV | [106,107,108,109] | |
RNA agonists of RIG-I: 3p10LG9, 5′-pppRNA, 5′-ppp siRNA, 3p-siRNA-MDR1, and SLR14 | IAV, DENV, HSV-1, SARS-CoV-2 | [110,111,112,113,114,115] | |
IR; DNA-damaging agents: doxorubicin, etoposide, teniposide, and oxaliplatin | ZIKV, Influenza virus, Poliovirus, SARS-CoV-2, DENV | [116,117,118,119,120,121,122] | |
MDA5 | DNA demethylation agents: DNMTis such as AZA and DAC | \ | [123,124,125] |
TBK1 | Lidocaine | IAV, SARS-CoV-2 | [126] |
IRF3 | Isoflavone and isoflavone-like compounds: KIN 101, genistein | HCV, Influenza virus, AdV, HSV, HIV, RV | [127,128] |
Hydroxyquinoline family compounds: KIN1400, KIN1408, KIN1409 | WNV, DENV, HCV, IAV, RSV, NiV, LASV, EBOV | [129] | |
Others | P97 inhibitors: clotrimazole | Poliovirus, HSV, CMV, Influenza virus | [130,131] |
ERRα inverse agonist: XCT790; ERRα inhibitors: compound A, kaempferol, compound B, LingH2-10, naringenin, SR16388, five anticancer drugs and nine pesticides that inhibit ERRα activity | CMV, VSV, NDV, HSV, HBV | [132,133,134,135,136,137,138,139,140,141] | |
7-DHC; DHCR7 inhibitors: tamoxifen, AY9944, haloperidol, aripiprazole, cariprazine, trazodone, BM15.766 | ZIKV, VSV, HCV, HSV, SARS-CoV-2 | [142,143,144,145,146,147,148,149,150] | |
SOCS antagonist: pJAK2 (1001–1013) | HSV-1, IAV, VV, EMCV, DENV, ZIKV, WNV, EBOV | [151,152,153,154] | |
MEKi: trametinib | IAV, RV2, RSVA2 | [155,156,157] | |
NSs | RNAi | RVFV, IAV, PRRSV, WNV, SARS-CoV-2 | [158,159,160,161,162] |
NP | doxycycline and minocycline | CCHFV | [163] |
curcumin | IAV, EBOV, HIV, DENV, HSV-2, etc. | [164,165,166] | |
naproxen | IAV, SARS-CoV-2 | [167,168] | |
compound RK424 | IAV | [169] | |
RNAi | hMPV, RABV, BoDV-1, IAV | [170,171,172,173] | |
NP-specific mAbs | IAV | [174] | |
antisense oligonucleotides | AIV H5N1 | [175] | |
GPC | trametinib | LUJV | [176] |
Gn | 2-DG | LCMV, SARS-CoV-2, HPV18, RV, HBV, HSV, etc. | [177,178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Shen, M.; Wang, X.; Yin, A.; Liu, B.; Zhu, J.; Zhang, Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Trop. Med. Infect. Dis. 2024, 9, 205. https://doi.org/10.3390/tropicalmed9090205
He Y, Shen M, Wang X, Yin A, Liu B, Zhu J, Zhang Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Tropical Medicine and Infectious Disease. 2024; 9(9):205. https://doi.org/10.3390/tropicalmed9090205
Chicago/Turabian StyleHe, Yingying, Min Shen, Xiaohe Wang, Anqi Yin, Bingyan Liu, Jie Zhu, and Zhenhua Zhang. 2024. "Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses" Tropical Medicine and Infectious Disease 9, no. 9: 205. https://doi.org/10.3390/tropicalmed9090205
APA StyleHe, Y., Shen, M., Wang, X., Yin, A., Liu, B., Zhu, J., & Zhang, Z. (2024). Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Tropical Medicine and Infectious Disease, 9(9), 205. https://doi.org/10.3390/tropicalmed9090205