Epidemiological Characteristics of Overseas-Imported Infectious Diseases Identified through Airport Health-Screening Measures: A Case Study on Fuzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surveillance System of Imported Infectious Diseases
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Temporal Patterns
3.3. Spatial Patterns
3.4. Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Tourism Organization. International Tourism Highlights, 2020 Edition. Available online: https://www.e-unwto.org/doi/epdf/10.18111/9789284422456 (accessed on 8 November 2023).
- Wang, Y.; Wang, X.; Liu, X.; Ren, R.; Zhou, L.; Li, C.; Tu, W.; Ni, D.; Li, Q.; Feng, Z.; et al. Epidemiology of Imported Infectious Diseases, China, 2005–2016. Emerg. Infect. Dis. 2018, 25, 33–41. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Z.W.; Zhang, X.A.; Liu, M.Y.; Wang, J.L.; Zhang, H.Y.; Wang, L.P.; Guo, X.H.; Fang, L.Q.; Liu, W. The imported infections among foreign travelers in China: An observational study. Glob. Health 2022, 18, 97. [Google Scholar] [CrossRef] [PubMed]
- Leder, K.; Wilson, M.E. Surveillance of travel-related infections in China. Lancet Public Health 2018, 3, e356–e357. [Google Scholar] [CrossRef]
- Chen, J.; Bergquist, R.; Zhou, X.N.; Xue, J.B.; Qian, M.B. Combating infectious disease epidemics through China’s Belt and Road Initiative. PLoS Negl. Trop. Dis. 2019, 13, e0007107. [Google Scholar] [CrossRef]
- Fang, L.Q.; Sun, Y.; Zhao, G.P.; Liu, L.J.; Jiang, Z.J.; Fan, Z.W.; Wang, J.X.; Ji, Y.; Ma, M.J.; Teng, J.; et al. Travel-related infections in mainland China, 2014–2016: An active surveillance study. Lancet Public Health 2018, 3, e385–e394. [Google Scholar] [CrossRef] [PubMed]
- Mouchtouri, V.A.; Christoforidou, E.P.; An der Heiden, M.; Menel Lemos, C.; Fanos, M.; Rexroth, U.; Grote, U.; Belfroid, E.; Swaan, C.; Hadjichristodoulou, C. Exit and Entry Screening Practices for Infectious Diseases among Travelers at Points of Entry: Looking for Evidence on Public Health Impact. Int. J. Environ. Res. Public Health 2019, 16, 4638. [Google Scholar] [CrossRef]
- Chetty, T.; Daniels, B.B.; Ngandu, N.K.; Goga, A. A rapid review of the effectiveness of screening practices at airports, land borders and ports to reduce the transmission of respiratory infectious diseases such as COVID-19. S. Afr. Med. J. 2020, 110, 1105–1109. [Google Scholar] [CrossRef]
- Wang, L.; Ren, X.; Cowling, B.J.; Zeng, L.; Geng, M.; Wu, P.; Li, Z.; Yu, H.; Gao, G. Systematic review: National notifiable infectious disease surveillance system in China. Online J. Public Health Inform. 2019, 11, e62534. [Google Scholar]
- Civil Aviation Administration of China. 2019 Civil Airport Production Statistics Bulletin. Available online: http://www.caac.gov.cn/XXGK/XXGK/TJSJ/202003/t20200309_201358.html (accessed on 10 November 2023).
- Bisdorff, B.; Schauer, B.; Taylor, N.; Rodríguez-Prieto, V.; Comin, A.; Brouwer, A.; Dórea, F.; Drewe, J.; Hoinville, L.; Lindberg, A.; et al. Active animal health surveillance in European Union Member States: Gaps and opportunities. Epidemiol. Infect. 2017, 145, 802–817. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S. STL: A seasonal-trend decomposition procedure based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Armitage, P. Tests for Linear Trends in Proportions and Frequencies. Biometrics 1955, 11, 375–386. [Google Scholar] [CrossRef]
- Liu, W.H.; Shi, C.; Lu, Y.; Luo, L.; Ou, C.Q. Epidemiological characteristics of imported acute infectious diseases in Guangzhou, China, 2005–2019. PLoS Negl. Trop. Dis. 2022, 16, e0010940. [Google Scholar] [CrossRef] [PubMed]
- Findlater, A.; Bogoch, I.I. Human Mobility and the Global Spread of Infectious Diseases: A Focus on Air Travel. Trends Parasitol. 2018, 34, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, W.; Dong, Z.; You, X. Travel-related infection in Guangzhou, China, 2009–2019. Travel Med. Infect. Dis. 2021, 43, 102106. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Chen, T.; Deng, L.L.; Han, Y.J.; Wang, D.Y.; Wang, L.P.; He, G.X. Epidemiological characteristics of imported respiratory infectious diseases in China, 2014–2018. Infect. Dis. Poverty 2022, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Huizer, Y.L.; Swaan, C.M.; Leitmeyer, K.C.; Timen, A. Usefulness and applicability of infectious disease control measures in air travel: A review. Travel. Med. Infect. Dis. 2015, 13, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Selvey, L.A.; Antão, C.; Hall, R. Entry screening for infectious diseases in humans. Emerg. Infect. Dis. 2015, 21, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Quilty, B.J.; Clifford, S.; Flasche, S.; Eggo, R.M.; CMMID nCoV Working Group2. Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Euro Surveill. 2020, 25, 2000080. [Google Scholar] [CrossRef] [PubMed]
- Priest, P.C.; Duncan, A.R.; Jennings, L.C.; Baker, M.G. Thermal image scanning for influenza border screening: Results of an airport screening study. PLoS ONE 2011, 6, e14490. [Google Scholar] [CrossRef]
- Normile, D. Airport screening is largely futile, research shows. Science 2020, 367, 1177–1178. [Google Scholar] [CrossRef]
- Gautret, P.; Leder, K.; Field, V.; Kain, K.C.; Hamer, D.H.; Libman, M. GeoSentinel surveillance of travel-associated infections: What lies in the future? Travel. Med. Infect. Dis. 2020, 36, 101600. [Google Scholar] [CrossRef] [PubMed]
- Clifford, S.; Pearson, C.A.B.; Klepac, P.; Van Zandvoort, K.; Quilty, B.J.; CMMID COVID-19 Working Group; Eggo, R.M.; Flasche, S. Effectiveness of interventions targeting air travellers for delaying local outbreaks of SARS-CoV-2. J. Travel. Med. 2020, 27, taaa068. [Google Scholar] [CrossRef] [PubMed]
- Khatib, A.N.; McGuinness, S.; Wilder-Smith, A. COVID-19 transmission and the safety of air travel during the pandemic: A scoping review. Curr. Opin. Infect. Dis. 2021, 34, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Apelt, N.; Hartberger, C.; Campe, H.; Löscher, T. The Prevalence of Norovirus in returning international travelers with diarrhea. BMC Infect. Dis. 2010, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.Y.; Chung, J.W.; Chang, K.J.; You, M.H.; Chai, J.S.; Kang, Y.A.; Kim, S.H.; Jeoung, H.; Cheon, D.; Jeoung, A.; et al. Clinical characteristics and etiology of travelers’ diarrhea among Korean travelers visiting South-East Asia. J. Korean Med. Sci. 2011, 26, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Academy, C.T. “The Belt and Road”: Big Data Report of China’s Outbound Free Travel 2019. Available online: http://www.ctaweb.org.cn/cta/lysjzx/xsjl_2.shtml (accessed on 25 November 2023).
- Lun, X.; Wang, Y.; Zhao, C.; Wu, H.; Zhu, C.; Ma, D.; Xu, M.; Wang, J.; Liu, Q.; Xu, L.; et al. Epidemiological characteristics and temporal-spatial analysis of overseas imported dengue fever cases in outbreak provinces of China, 2005–2019. Infect Dis. Poverty 2022, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Huang, Z.; Zhou, H.; Anders, K.L.; Perkins, T.A.; Yin, W.; Li, Y.; Mu, D.; Chen, Q.; Zhang, Z.; et al. The changing epidemiology of dengue in China, 1990–2014: A descriptive analysis of 25 years of nationwide surveillance data. BMC Med. 2015, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Liu, Q.; Guo, X.; Wu, D.; Ke, C.; Liu-Helmersson, J.; Jiang, J.; Weng, Y.; Wang, Y. The epidemiological characteristics of dengue in high-risk areas of China, 2013–2016. PLoS Negl. Trop. Dis. 2021, 15, e0009970. [Google Scholar] [CrossRef]
- Sheng, Z.Y.; Li, M.; Yang, R.; Liu, Y.H.; Yin, X.X.; Mao, J.R.; Brown, H.E.; An, J.; Zhou, H.N.; Wang, P.G. COVID-19 prevention measures reduce dengue spread in Yunnan Province, China, but do not reduce established outbreak. Emerg. Microbes Infect. 2022, 11, 240–249. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Huang, M.; Zhang, Y.; Xie, J.; Yan, Y.; Zheng, K.; Weng, Y. Epidemiological and etiological investigation of dengue fever in the Fujian province of China during 2004–2014. Sci. China Life Sci. 2017, 60, 72–80. [Google Scholar] [CrossRef]
- Sang, S.; Yin, W.; Bi, P.; Zhang, H.; Wang, C.; Liu, X.; Chen, B.; Yang, W.; Liu, Q. Predicting local dengue transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate variability. PLoS ONE 2014, 9, e102755. [Google Scholar] [CrossRef]
- Kuan, M.M.; Chang, F.Y. Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan. BMC Infect. Dis. 2012, 12, 182. [Google Scholar] [CrossRef]
- Morin, C.W.; Comrie, A.C.; Ernst, K. Climate and dengue transmission: Evidence and implications. Environ. Health Perspect. 2013, 121, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Aik, J.; Ng, L.C. Short Report: Adult Aedes abundance and risk of dengue transmission. PLoS Negl. Trop. Dis. 2021, 15, e0009475. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Le, H.X.; Nguyen, D.T.; Ho, H.Q.; Chuang, T.W. Impact of Climate Variability and Abundance of Mosquitoes on Dengue Transmission in Central Vietnam. Int. J. Environ. Res. Public. Health 2020, 17, 2453. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, J.; Wang, Y.; Chen, F.; Zheng, C.; Xie, L. Genomic Characterization of Travel-Associated Dengue Viruses Isolated from the Entry-Exit Ports in Fujian Province, China, 2013–2015. Jpn. J. Infect. Dis. 2017, 70, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.K.; Jiang, Q.Y.; Hou, J. The COVID-19 epidemic and other notifiable infectious diseases in China. Microbes Infect. 2022, 24, 104881. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, M.Y.; Wang, J.L.; Zhang, H.Y.; Sun, Y.; Yuan, Y.; Zhou, S.X.; Wang, Y.X.; Wang, Z.B.; Zhu, Y.X.; et al. Epidemiology of imported infectious diseases, China, 2014–2018. J. Travel. Med. 2020, 27, taaa211. [Google Scholar] [CrossRef]
- Wu, Q.; Dong, S.; Li, X.; Yi, B.; Hu, H.; Guo, Z.; Lu, J. Effects of COVID-19 Non-Pharmacological Interventions on Dengue Infection: A Systematic Review and Meta-Analysis. Front. Cell Infect. Microbiol. 2022, 12, 892508. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Lourenço, J.; Wang, L.; Cazelles, B.; Dong, L.; Li, B.; Liu, Y.; Jit, M.; Bosse, N.I.; et al. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: A statistical modelling study. Lancet Infect. Dis. 2022, 22, 657–667. [Google Scholar] [CrossRef]
Overall * (n = 2362) | Not Detected * (n = 1803) | Respiratory # (n = 496) | Gastrointestinal # (n = 15) | Vector-Borne # (n = 48) | |
---|---|---|---|---|---|
Gender | |||||
Male | 1508 (63.8) | 1139 (63.2) | 324 (65.3, −0.964) | 2 (13.3, −4.366) | 43 (89.6, 3.606) |
Female | 851 (36.0) | 661 (36.7) | 172 (34.7, 0.964) | 13 (86.7, 4.388) | 5 (10.4, −3.606) |
Age (years) | |||||
Median (IQR) | 33 (0–96) | 32 (0–96) | 34 (0–34) | 31 (2–68) | 11 (23–51) |
<20 | 853 (36.1) | 700 (38.8) | 151 (30.4, 4.573) | 2 (13.3, −1.236) | 0 (0.0, −4.448) |
20–49 | 1171 (49.6) | 859 (47.6) | 257 (51.8, −5.343) | 8 (53.3, 0.196) | 47 (97.9, 6.143) |
≥50 | 338 (14.3) | 244 (13.5) | 88 (17.7, 1.643) | 5 (33.3, 1.734) | 1 (2.1, −2.854) |
Citizenship | |||||
Mainland China | 1896 (80.3) | 1419 (78.7) | 418 (84.3, −1.98) | 12 (80.0, 0.592) | 47 (97.9, 2.578) |
Hong Kong, Macau, or Taiwan regions | 118 (5.0) | 96 (5.3) | 22 (4.4, 1.706) | 0 (0.0, −0.795) | 0 (0.0, −1.467) |
Other countries | 347 (14.7) | 287 (15.9) | 56 (11.3, 1.193) | 1 (20.0, −1.175) | 1 (2.1, −2.025) |
Type of entry-exit port | |||||
Entry | 2249 (95.2) | 1722 (95.5) | 466 (94.0, 0.876) | 13 (86.7, 1.333) | 48 (100.0, 1.758) |
Exit | 111 (4.7) | 80 (4.4) | 29 (5.8, 0.876) | 2 (13.3, 1.333) | 0 (0.0, 1.758) |
Case-finding approach | |||||
Fever screening | 1693 (717) | 1268 (70.3) | 383 (77.2, 1.848) | 3 (20.0, −5.153) | 39 (81.3, 0.886) |
Medical inspection | 124 (5.2) | 94 (5.2) | 29 (5.8, 1.413) | 0 (0.0, −0.935) | 1 (2.1, 1.056) |
Self-declaration | 261 (11.0) | 205 (11.4) | 46 (9.3, −1.643) | 3 (20.0, 1.305) | 7 (14.6, 1.102) |
On-board staff | 276 (11.7) | 229 (12.7) | 38 (7.7, −1.784) | 9 (60.0, 7.299) | 0 (0.0, −2.195) |
Follow up | 2 (0.1) | 1 (0.1) | 0 (0.0, −2.808) | 0 (0.0, −0.166) | 1 (2.1, 3.266) |
Symptoms | Overall (n = 2362) | No Virus Detected (n = 1803) | Respiratory (n = 496) | Gastrointestinal (n = 15) | Vector-Borne (n = 48) |
---|---|---|---|---|---|
Temp ≥ 37.8 °C | 930 | 699 (75.2) | 201 (21.6) | 3 (0.3) | 27 (2.9) |
Cough | 612 | 474 (77.5) | 122 (19.9) | 1 (0.2) | 15 (2.5) |
Runny nose | 424 | 335 (79.0) | 84 (19.8) | 0 (0.0) | 5 (1.2) |
Nasal obstruction | 58 | 43 (74.1) | 16 (27.6) | 0 (0.0) | 0 (0.0) |
Sore throat | 43 | 37 (86.0) | 6 (14.0) | 0 (0.0) | 0 (0.0) |
Muscle aches | 46 | 35 (76.1) | 8 (17.4) | 0 (0.0) | 3 (6.5) |
Sneezing | 5 | 5 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Diarrhea | 94 | 65 (69.1) | 15 (16.0) | 12 (12.8) | 2 (2.1) |
Vomiting | 132 | 102 (77.3) | 26 (19.7) | 1 (0.8) | 3 (2.3) |
Fever (self-reported) | 1913 | 1479 (77.3) | 393 (20.5) | 3 (0.2) | 38 (2.0) |
Symptoms | Notifiable Infections (n = 423) | Influenza (n = 466) | Dengue (n = 46) | Norovirus Infection (n = 12) | Typhoid and Paratyphoid (n = 1) |
---|---|---|---|---|---|
Temp ≥ 37.8 °C | 212 | 181 (85.4) | 28 (13.2) | 3 (1.4) | 0 (0.0) |
Cough | 157 | 150 (95.5) | 6 (3.8) | 1 (0.6) | 0 (0.0) |
Runny nose | 104 | 102 (98.1) | 2 (1.9) | 0 (0.0) | 0 (0.0) |
Nasal obstruction | 13 | 13 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Sore throat | 3 | 3 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Muscle aches | 10 | 7 (70.0) | 3 (30.0) | 0 (0.0) | 0 (0.0) |
Sneezing | 1 | 1 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Diarrhea | 15 | 2 (13.3) | 1 (6.7) | 11 (73.3) | 1 (6.7) |
Vomiting | 8 | 4 (50.0) | 1 (12.5) | 3 (37.5) | 0 (0.0) |
Fever (self-reported) | 382 | 335 (87.7) | 44 (11.5) | 3 (0.8) | 0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, Y.; Chen, J.; Li, Q.; Chen, Y.; Zhang, Y.; Cai, S.; Zhan, M.; Wu, C.; Lin, X.; et al. Epidemiological Characteristics of Overseas-Imported Infectious Diseases Identified through Airport Health-Screening Measures: A Case Study on Fuzhou, China. Trop. Med. Infect. Dis. 2024, 9, 138. https://doi.org/10.3390/tropicalmed9060138
Li H, Yang Y, Chen J, Li Q, Chen Y, Zhang Y, Cai S, Zhan M, Wu C, Lin X, et al. Epidemiological Characteristics of Overseas-Imported Infectious Diseases Identified through Airport Health-Screening Measures: A Case Study on Fuzhou, China. Tropical Medicine and Infectious Disease. 2024; 9(6):138. https://doi.org/10.3390/tropicalmed9060138
Chicago/Turabian StyleLi, Hong, Yan Yang, Jiake Chen, Qingyu Li, Yifeng Chen, Yilin Zhang, Shaojian Cai, Meirong Zhan, Chuancheng Wu, Xinwu Lin, and et al. 2024. "Epidemiological Characteristics of Overseas-Imported Infectious Diseases Identified through Airport Health-Screening Measures: A Case Study on Fuzhou, China" Tropical Medicine and Infectious Disease 9, no. 6: 138. https://doi.org/10.3390/tropicalmed9060138
APA StyleLi, H., Yang, Y., Chen, J., Li, Q., Chen, Y., Zhang, Y., Cai, S., Zhan, M., Wu, C., Lin, X., & Xiang, J. (2024). Epidemiological Characteristics of Overseas-Imported Infectious Diseases Identified through Airport Health-Screening Measures: A Case Study on Fuzhou, China. Tropical Medicine and Infectious Disease, 9(6), 138. https://doi.org/10.3390/tropicalmed9060138