Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Isolation and Culturing
2.2. MALDI-TOF
2.3. Determination of Antibiotic Resistance and Minimum Inhibitory Concentration (MIC) Values
2.4. DNA Isolation and PCR-Based Investigations
3. Results
3.1. Species Determination and Phenotypic Traits
3.2. Antimicrobial Resistance Patterns and MIC Values
3.3. Virulence Genes
3.4. Occupied States of PAI Integration Sites
3.5. Phylogenetic Relations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Target Gene/Region | Related Pathotype | Primer Name | Sequence 5′ -> 3′ | Annealing Temperature (°C) | Reference |
---|---|---|---|---|---|
stx1 | STEC, EHEC | stx1-det-F1 | GTACGGGGATGCAGATAAATCGC | 52 | [55] |
stx1-det-R1 | AGCAGTCATTACATAAGAACGYCCACT | 52 | [55] | ||
stx2 | STEC, EHEC | F4 | GGCACTGTCTGAAACTGCTCCTGT | 52 | [55] |
R1 | ATTAAACTGCACTTCAGCAAATCC | 52 | [55] | ||
F4-f | CGCTGTCTGAGGCATCTCCGCT | 52 | [55] | ||
R1-e/f | TAAACTTCACCTGGGCAAAGCC | 52 | [55] | ||
eaeA | EPEC | B52 | AGGCTTCGTCACAGTTG | 52 | [56] |
B53 | CCATCGTCACCAGAGGA | 52 | [56] | ||
cdtB | various | CDT-s1 | GAAAGTAAATGGAATATAAATGTCCG | 55 | [57] |
CDT-s2 | GAAAATAAATGGAACACACATGTCCG | 55 | [57] | ||
CDT-as1 | AAATCACCAAGAATCATCCAGTTA | 55 | [57] | ||
CDT-as2 | AAATCTCCTGCAATCATCCAGTTA | 55 | [57] | ||
cnf1 | NTEC | CNF1-A | GAACTTATTAAGGATAGT | 50 | [58] |
CNF1-B | CATTATTTATAACGCTG | 50 | [58] | ||
cnf2 | NTEC | CNF1-A | AATCTAATTAAAGAGAAC | 50 | [58] |
CNF2-B | CATGCTTTGTATATCTA | 50 | [58] | ||
papC | ExPEC | pap1 | GACGGCTGTACTGCAGGGTGTGGCG | 65 | [59] |
pap2 | ATATCCTTTCTGCAGGGATGCAATA | 65 | [59] | ||
sfa | ExPEC | sfa1 | CTCCGGAGAACTGGGTGCATCTTAC | 65 | [59] |
sfa2 | CGGAGGAGTAATTACAAACCTGGCA | 65 | [59] | ||
chuA | ChuA.1 | GACGAACCAACGGTCAGGAT | 59 | [25] | |
ChuA.2 | TGCCGCCAGTACCAAAGACA | 59 | [25] | ||
yjaA | YjaA.1 | TGAAGTGTCAGGAGACGCTG | 59 | [25] | |
YjaA.2 | ATGGAGAATGCGTTCCTCAAC | 59 | [25] | ||
TspE4.C2 | TspE4C2.1 | GAGTAATGTCGGGGCATTCA | 59 | [25] | |
TspE4C2.2 | CGCGCCAACAAAGTATTACG | 59 | [25] | ||
arpA group E | ArpAgpE.f | GATTCCATCTTGTCAAAATATGCC | 59 | [60] | |
ArpAgpE.r | GAAAAGAAAAAGAATTCCCAAGAG | 59 | [60] | ||
arpA group C | trpAgpC.1 | AGTTTTATGCCCAGTGCGAG | 59 | [60] | |
trpAgpC.2 | TCTGCGCCGGTCACGCCC | 59 | [60] | ||
asnT | asnT1 | TATTCGCCCCGTTCACACG | 60 | [54] | |
asnT2 | GATACCCGCAGTTAAGCGG | 60 | [54] | ||
pheV | pheV1 | ACGAGACGAGGCGAATCAG | 60 | [54] | |
pheV2 | CCGTTGAGCGAACGGATTG | 60 | [54] | ||
serX | serX1 | CTCTCTTGCGCATTTTGATTG | 60 | [54] | |
serX2 | AGACAGGAACGACAATTTGG | 60 | [54] | ||
thrW | thrW1 | AAGGCCATTGACGCATCGC | 60 | [54] | |
thrW2 | CCATTTACCCCACTCAGCG | 60 | [54] | ||
selC | selC1 | GCGTGTATTAGGCGGAAAAAAC | 60 | [54] | |
selC2 | CCCTGAACTTCCCCACAAC | 60 | [54] | ||
leuX | leuX1 | GTGGCGTGCGACAGGTATA | 60 | [54] | |
leuX2 | GTTTCTCCGGCCCTAAGAC | 60 | [54] | ||
chuA | chu1 | GGTATTTATGGTTCAGTGATG | 60 | [54] | |
chu4 | TTTTCTCACTCAAATTGAACG | 60 | [54] | ||
waaC | waalücke 1 | CGCACTCACTGATGCCCAGCA | 60 | [54] | |
waalücke 2 | AGTCCAATCCATGCTTTACGCCAT | 60 | [54] | ||
Sp1 (reaction 1) | 31.1-f | CGCCAGCTAAATCGAACCGCAT | 68 | [24] | |
31.1-r | CGGCTGATGATGACGACTTACTG | 68 | [24] | ||
Sp3 (reaction 1) | 84.3-f | CAGCAGATTGAAGCAGCACTCG | 68 | [24] | |
84.3-r | GAATAAGAGCTGAGTCGTGCGG | 68 | [24] | ||
Sp4 (reaction 1) | 106.5-f | ACGATTGAGCTGACACCGGGC | 68 | [24] | |
106.5-r | CCGGGCTTAATGTGCGGGCC | 68 | [24] | ||
Sp5 (reaction 2) | 110.2-f | CGAAGGGGCAACCGCGAAAATA | 68 | [24] | |
110.2-r | CCCTTGTTACTTTCAGCATTCCG | 68 | [24] | ||
Sp6 (reaction 2) | 122.1-f | GGTGATGGTTTGTGGGAGAGGT | 68 | [24] | |
122.1-r | TTGGGGGCTTAACGAATACCCC | 68 | [24] | ||
Sp8 (reaction 2) | 124.3-f | GCGTGCAGGTAATGGTAATCCG | 68 | [24] | |
124.3-r | TTTAATGCCGTCCTGTTCCTGAGA | 68 | [24] | ||
Sp10 (reaction 3) | 145.3-f | TCCGGCATTTTCCCTGACACCA | 68 | [24] | |
145.3-r | TATCGCGTGCCTCCTGGGTTAT | 68 | [24] | ||
Sp9 (reaction 3) | 133.1-f | GGCATCTAACGGTCTGGTGCC | 68 | [24] | |
133.1-r | CAGCAGAAGCGAACAGCCGTCT | 68 | [24] | ||
Sp11 (reaction 3) | 164.1-f | TGACATCCACCACATCCGCAGAA | 68 | [24] | |
164.1-r | TGTGAGGAAGAGCAGACGGAGA | 68 | [24] | ||
Sp15 (reaction 4) | 220.4-f | TACAGCGAATGCCAAATACGCTC | 68 | [24] | |
220.4-r | TCACCCCTACAGAGAGCAAAAGAG | 68 | [24] | ||
Sp14 (reaction 4) | 204.4-f | CCAAAATACATCCACCCACCGCA | 68 | [24] | |
204.4-r | AACGCATAGAAGAGCTGGAGGC | 68 | [24] | ||
Sp17 (reaction 4) | 276.1-f | CAGGTGGGTTGGGTAAGGTTTG | 68 | [24] | |
276.1-r | GATGGCTGCTATGGGGATGGC | 68 | [24] |
References
- Russo, T.A.; Johnson, J.R. Proposal for a New Inclusive Designation for Extraintestinal Pathogenic Isolates of Escherichia coli: ExPEC. J. Infect. Dis. 2000, 181, 1753–1754. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-Antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef]
- Bunduki, G.K.; Heinz, E.; Phiri, V.S.; Noah, P.; Feasey, N.; Musaya, J. Virulence Factors and Antimicrobial Resistance of Uropathogenic Escherichia coli (UPEC) Isolated from Urinary Tract Infections: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2021, 21, 753. [Google Scholar] [CrossRef]
- Dale, A.P.; Woodford, N. Extra-Intestinal Pathogenic Escherichia coli (ExPEC): Disease, Carriage and Clones. J. Infect. 2015, 71, 615–626. [Google Scholar] [CrossRef]
- Köhler, C.-D.; Dobrindt, U. What Defines Extraintestinal Pathogenic Escherichia coli? Int. J. Med. Microbiol. 2011, 301, 642–647. [Google Scholar] [CrossRef]
- Riley, L.W. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol. Spectr. 2020, 8. [Google Scholar] [CrossRef]
- Bozcal, E. Insight into the Mobilome of Escherichia coli. In The Universe of Escherichia coli; IntechOpen: London, UK, 2019; ISBN 978-1-83881-153-2. [Google Scholar]
- Dobrindt, U.; Blum-Oehler, G.; Nagy, G.; Schneider, G.; Johann, A.; Gottschalk, G.; Hacker, J. Genetic Structure and Distribution of Four Pathogenicity Islands (PAI I536 to PAI IV536) of Uropathogenic Escherichia coli Strain 536. Infect. Immun. 2002, 70, 6365–6372. [Google Scholar] [CrossRef]
- Lloyd, A.L.; Rasko, D.A.; Mobley, H.L.T. Defining Genomic Islands and Uropathogen-Specific Genes in Uropathogenic Escherichia coli. J. Bacteriol. 2007, 189, 3532–3546. [Google Scholar] [CrossRef]
- Hochhut, B.; Wilde, C.; Balling, G.; Middendorf, B.; Dobrindt, U.; Brzuszkiewicz, E.; Gottschalk, G.; Carniel, E.; Hacker, J. Role of Pathogenicity Island-Associated Integrases in the Genome Plasticity of Uropathogenic Escherichia coli Strain 536. Mol. Microbiol. 2006, 61, 584–595. [Google Scholar] [CrossRef]
- Abbas, B.; Omer, O.H. Review of Infectious Diseases of the Camel. Vet. Bull. 2005, 75, 1N–16N. [Google Scholar]
- Bessalah, S.; Fairbrother, J.M.; Salhi, I.; Vanier, G.; Khorchani, T.; Seddik, M.M.; Hammadi, M. Antimicrobial Resistance and Molecular Characterization of Virulence Genes, Phylogenetic Groups of Escherichia coli Isolated from Diarrheic and Healthy Camel-Calves in Tunisia. Comp. Immunol. Microbiol. Infect. Dis. 2016, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Tejedor-Junco, M.T.; González-Martín, M.; Corbera, J.A.; Silva, V.; Igrejas, G.; Torres, C.; Poeta, P. Escherichia coli Producing Extended-Spectrum β-Lactamases (ESBL) from Domestic Camels in the Canary Islands: A One Health Approach. Animals 2020, 10, 1295. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Heikal, G.I.; Barhoma, R.M. Traceability of Enteropathogenic E. coli in Cattle and Camel Carcasses. Benha Vet. Med. J. 2016, 31, 50–55. [Google Scholar] [CrossRef]
- Saad, S.M.; Abou-Elroos, N.; Abou Elghar, I. Occurrence of Enterobacteriaceae in Fresh Camel Meat with Special Reference to Salmonellae. Benha Vet. Med. J. 2018, 35, 79–95. [Google Scholar] [CrossRef]
- Bottone, E.J. Hypermucoviscous Phenotype Expressed by an Isolate of Uropathogenic Escherichia coli: An Overlooked and Underappreciated Virulence Factor. Clin. Microbiol. Newsl. 2010, 32, 81–85. [Google Scholar] [CrossRef]
- Hayashi, T.; Makino, K.; Ohnishi, M.; Kurokawa, K.; Ishii, K.; Yokoyama, K.; Han, C.G.; Ohtsubo, E.; Nakayama, K.; Murata, T.; et al. Complete Genome Sequence of Enterohemorrhagic Escherichia coli O157:H7 and Genomic Comparison with a Laboratory Strain K-12. DNA Res. 2001, 8, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Dozois, C.M.; Clément, S.; Desautels, C.; Oswald, E.; Fairbrother, J.M. Expression of P, S, and F1C Adhesins by Cytotoxic Necrotizing Factor 1-Producing Escherichia coli from Septicemic and Diarrheic Pigs. FEMS Microbiol. Lett. 1997, 152, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The Complete Genome Sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Blum, G.; Ott, M.; Lischewski, A.; Ritter, A.; Imrich, H.; Tschäpe, H.; Hacker, J. Excision of Large DNA Regions Termed Pathogenicity Islands from tRNA-Specific Loci in the Chromosome of an Escherichia coli Wild-Type Pathogen. Infect. Immun. 1994, 62, 606–614. [Google Scholar] [CrossRef]
- Oswald, E.; de Rycke, J.; Lintermans, P.; van Muylem, K.; Mainil, J.; Daube, G.; Pohl, P. Virulence Factors Associated with Cytotoxic Necrotizing Factor Type Two in Bovine Diarrheic and Septicemic Strains of Escherichia coli. J. Clin. Microbiol. 1991, 29, 2522–2527. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli Phylo-Typing Method Revisited: Improvement of Specificity and Detection of New Phylo-Groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Tóth, I.; Bagyinszky, E.; Sváb, D. Multiplex Polymerase Chain Reaction Typing Scheme Based on Escherichia coli O157:H7 Sakai Prophage (Sp)-Associated Genes. Int. J. Infect. Dis. 2022, 120, 68–76. [Google Scholar] [CrossRef]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
- Shon, A.S.; Bajwa, R.P.S.; Russo, T.A. Hypervirulent (Hypermucoviscous) Klebsiella Pneumoniae. Virulence 2013, 4, 107–118. [Google Scholar] [CrossRef]
- Neumann, B.; Lippmann, N.; Wendt, S.; Karlas, T.; Lübbert, C.; Werner, G.; Pfeifer, Y.; Schuster, C.F. Recurrent Bacteremia with a Hypermucoviscous Escherichia coli Isolated from a Patient with Perihilar Cholangiocarcinoma: Insights from a Comprehensive Genome-Based Analysis. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 28. [Google Scholar] [CrossRef]
- Harris, S.; Piotrowska, M.J.; Goldstone, R.J.; Qi, R.; Foster, G.; Dobrindt, U.; Madec, J.-Y.; Valat, C.; Rao, F.V.; Smith, D.G.E. Variant O89 O-Antigen of E. Coli Is Associated With Group 1 Capsule Loci and Multidrug Resistance. Front. Microbiol. 2018, 9, 9026. [Google Scholar] [CrossRef]
- Benham, A.; Davis, J.; Puzio, C.; Blakey, G.; Slobodov, G. Renal Abscess Yields Elusive Hypermucoviscous Phenotype of, Uropathogenic Escherichia coli: A Case Report. J. Okla. State Med. Assoc. 2013, 106, 435–438. [Google Scholar]
- Namikawa, H.; Oinuma, K.-I.; Yamada, K.; Kaneko, Y.; Kakeya, H.; Shuto, T. Differences in Severity of Bacteraemia Caused by Hypermucoviscous and Non-Hypermucoviscous Klebsiella Pneumoniae. Int. J. Antimicrob. Agents 2023, 61, 106767. [Google Scholar] [CrossRef]
- Muloi, D.; Ward, M.J.; Pedersen, A.B.; Fèvre, E.M.; Woolhouse, M.E.J.; van Bunnik, B.A.D. Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to Human Populations? A Systematic Review. Foodborne Pathog. Dis. 2018, 15, 467–474. [Google Scholar] [CrossRef]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Huang, Y.; Zhou, R.; Gong, S.; Yang, H.; Chen, S.; Wang, M.; Cheng, A. Dissemination of Antibiotic Resistance Genes (ARGs) via Integrons in Escherichia coli: A Risk to Human Health. Environ. Pollut. 2020, 266, 115260. [Google Scholar] [CrossRef]
- Isler, M.; Wissmann, R.; Morach, M.; Zurfluh, K.; Stephan, R.; Nüesch-Inderbinen, M. Animal Petting Zoos as Sources of Shiga Toxin-Producing Escherichia coli, Salmonella and Extended-Spectrum β-Lactamase (ESBL)-Producing Enterobacteriaceae. Zoonoses Public Health 2021, 68, 79–87. [Google Scholar] [CrossRef]
- Fadlelmula, A.; Al-Hamam, N.A.; Al-Dughaym, A.M. A Potential Camel Reservoir for Extended-Spectrum β-Lactamase-Producing Escherichia coli Causing Human Infection in Saudi Arabia. Trop. Anim. Health Prod. 2016, 48, 427–433. [Google Scholar] [CrossRef]
- Saidani, M.; Messadi, L.; Mefteh, J.; Chaouechi, A.; Soudani, A.; Selmi, R.; Dâaloul-Jedidi, M.; Ben Chehida, F.; Mamlouk, A.; Jemli, M.H.; et al. Various Inc-Type Plasmids and Lineages of Escherichia coli and Klebsiella Pneumoniae Spreading blaCTX-M-15, blaCTX-M-1 and Mcr-1 Genes in Camels in Tunisia. J. Glob. Antimicrob. Resist. 2019, 19, 280–283. [Google Scholar] [CrossRef]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; Gao, Q.; et al. Updates on the Global Dissemination of Colistin-Resistant Escherichia coli: An Emerging Threat to Public Health. Sci. Total Environ. 2021, 799, 149280. [Google Scholar] [CrossRef]
- De Rycke, J.; González, E.A.; Blanco, J.; Oswald, E.; Blanco, M.; Boivin, R. Evidence for Two Types of Cytotoxic Necrotizing Factor in Human and Animal Clinical Isolates of Escherichia coli. J. Clin. Microbiol. 1990, 28, 694–699. [Google Scholar] [CrossRef]
- Schmoll, T.; Hoschützky, H.; Morschhäuser, J.; Lottspeich, F.; Jann, K.; Hacker, J. Analysis of Genes Coding for the Sialic Acid-Binding Adhesin and Two Other Minor Fimbrial Subunits of the S-Fimbrial Adhesin Determinant of Escherichia coli. Mol. Microbiol. 1989, 3, 1735–1744. [Google Scholar] [CrossRef]
- Dobrindt, U.; Blum-Oehler, G.; Hartsch, T.; Gottschalk, G.; Ron, E.Z.; Fünfstück, R.; Hacker, J. S-Fimbria-Encoding Determinant sfaI Is Located on Pathogenicity Island III536 of Uropathogenic Escherichia coli Strain 536. Infect. Immun. 2001, 69, 4248–4256. [Google Scholar] [CrossRef]
- Fabbri, A.; Travaglione, S.; Fiorentini, C. Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1): Toxin Biology, in Vivo Applications and Therapeutic Potential. Toxins 2010, 2, 283–296. [Google Scholar] [CrossRef]
- De Rycke, J.; Milon, A.; Oswald, E. Necrotoxic Escherichia coli (NTEC): Two Emerging Categories of Human and Animal Pathogens. Vet. Res. 1999, 30, 221–233. [Google Scholar]
- Archambaud, M.; Courcoux, P.; Labigne-Roussel, A. Detection by Molecular Hybridization of Pap, Afa, and Sea Adherence Systems in Escherichia coli Strains Associated with Urinary and Enteral Infections. Ann. De L’institut Pasteur/Microbiol. 1988, 139, 575–588. [Google Scholar] [CrossRef]
- Lai, Y.; Rosenshine, I.; Leong, J.M.; Frankel, G. Intimate Host Attachment: Enteropathogenic and Enterohaemorrhagic Escherichia coli. Cell. Microbiol. 2013, 15, 1796–1808. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef]
- Yang, K.; Pagaling, E.; Yan, T. Estimating the Prevalence of Potential Enteropathogenic Escherichia coli and Intimin Gene Diversity in a Human Community by Monitoring Sanitary Sewage. Appl. Environ. Microbiol. 2014, 80, 119–127. [Google Scholar] [CrossRef]
- Hernandes, R.T.; Elias, W.P.; Vieira, M.A.M.; Gomes, T.A.T. An Overview of Atypical Enteropathogenic Escherichia coli. FEMS Microbiol. Lett. 2009, 297, 137–149. [Google Scholar] [CrossRef]
- Narnaware, S.D.; Ranjan, R.; Jyotsana, B.; Sahoo, A. Virulence Genes and Antimicrobial Resistance Profile of Escherichia coli Isolates from Diarrhoeic Neonatal Dromedary Camels. J. Camel Pract. Res. 2022, 29, 127–132. [Google Scholar] [CrossRef]
- Le Gall, T.; Clermont, O.; Gouriou, S.; Picard, B.; Nassif, X.; Denamur, E.; Tenaillon, O. Extraintestinal Virulence Is a Coincidental By-Product of Commensalism in B2 Phylogenetic Group Escherichia coli Strains. Mol. Biol. Evol. 2007, 24, 2373–2384. [Google Scholar] [CrossRef]
- Morgan, R.N.; Saleh, S.E.; Farrag, H.A.; Aboulwafa, M.M. Prevalence and Pathologic Effects of Colibactin and Cytotoxic Necrotizing Factor-1 (Cnf 1) in Escherichia coli: Experimental and Bioinformatics Analyses. Gut Pathog. 2019, 11, 22. [Google Scholar] [CrossRef]
- Ismail, L.C.; Osaili, T.M.; Mohamad, M.N.; Zakaria, H.; Ali, A.; Tarek, A.; Ashfaq, A.; Abdouli, M.A.A.; Saleh, S.T.; Daour, R.A.; et al. Camel Milk Consumption Patterns and Perceptions in the UAE: A Cross-Sectional Study. J. Nutr. Sci. 2022, 11, e59. [Google Scholar] [CrossRef]
- Vidovic, N.; Vidovic, S. Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef]
- Carvalho, I.; Silva, N.; Carrola, J.; Silva, V.; Currie, C.; Igrejas, G.; Poeta, P. Antibiotic Resistance. In Antibiotic Drug Resistance; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 239–259. ISBN 978-1-119-28254-9. [Google Scholar]
- Huss, P.; Raman, S. Engineered Bacteriophages as Programmable Biocontrol Agents. Curr. Opin. Biotechnol. 2020, 61, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Grozdanov, L.A. Analysis of the Genome Organization and Fitness Traits of Non-Pathogenic Escherichia coli Strain Nissle 1917 (O6:K5:H1); Universität Würzburg: Würzburg, Germany, 2004. [Google Scholar]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter Evaluation of a Sequence-Based Protocol for Subtyping Shiga Toxins and Standardizing Stx Nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed]
- China, B.; Pirson, V.; Mainil, J. Typing of Bovine Attaching and Effacing Escherichia coli by Multiplex in Vitro Amplification of Virulence-Associated Genes. Appl. Environ. Microbiol. 1996, 62, 3462–3465. [Google Scholar] [CrossRef] [PubMed]
- Toth, I.; Herault, F.; Beutin, L.; Oswald, E. Production of Cytolethal Distending Toxins by Pathogenic Escherichia coli Strains Isolated from Human and Animal Sources: Establishment of the Existence of a New Cdt Variant (Type IV). J. Clin. Microbiol. 2003, 41, 4285–4291. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Blanco, J.E.; Blanco, J.; Alonso, M.P.; Balsalobre, C.; Mouriño, M.; Madrid, C.; Juárez, A. Polymerase Chain Reaction for Detection of Escherichia coli Strains Producing Cytotoxic Necrotizing Factor Type 1 and Type 2 (CNF1 and CNF2). J. Microbiol. Methods 1996, 26, 95–101. [Google Scholar] [CrossRef]
- Le Bouguenec, C.; Archambaud, M.; Labigne, A. Rapid and Specific Detection of the Pap, Afa, and Sfa Adhesin-Encoding Operons in Uropathogenic Escherichia coli Strains by Polymerase Chain Reaction. J. Clin. Microbiol. 1992, 30, 1189–1193. [Google Scholar] [CrossRef]
- Lescat, M.; Clermont, O.; Woerther, P.L.; Glodt, J.; Dion, S.; Skurnik, D.; Djossou, F.; Dupont, C.; Perroz, G.; Picard, B.; et al. Commensal Escherichia coli Strains in Guiana Reveal a High Genetic Diversity with Host-Dependant Population Structure. Environ. Microbiol. Rep. 2013, 5, 49–57. [Google Scholar] [CrossRef]
Strain | Pathological Findings | Source (Organ) | Phenotype | Farm |
---|---|---|---|---|
TE1 | meningitis | brain | hmv | F2 |
TE2 | septicaemia | brain | F1 | |
TE3 | septicaemia | lung | F1 | |
TE4 | septicaemia | liver | F1 | |
TE5 | septicaemia, meningitis | brain | hmv | F1 |
TE6 | septicaemia | liver | F1 | |
TE7 | meningeal odema | brain | hmv | F1 |
TE8 | meningitis | brain | F2 | |
TE9 | meningitis | brain | F1 | |
TE10 | meningitis | brain | F1 | |
TE11 | septicaemia, meningitis, arthritis | brain | mucuous, but not hmv | F1 |
TE12 | septicaemia, meningitis, arthritis | brain | F2 | |
TE13 | septicaemia, meningitis | brain | F1 | |
TE14 | coccidiosis | liver | F2 | |
TE15 | stillbirth | liver | F2 | |
TE16 | septicaemia | liver | F2 | |
TE17 | septicaemia, meningitis | brain | F1 | |
TE18 | bronchopneumonia | lung | F2 | |
TE19 | septicaemia, bronchopneumonia | lung | sticky, but not hmv | F2 |
TE20 | meningitis | brain | F2 | |
TE21 | septicaemia | brain | hmv | F2 |
TE22 | septicaemia, bronchopneumonia, meningitis | brain | hmv | F1 |
TE23 | septicaemia, pneumonia | lung | F1 | |
TE24 | septicaemia, meningitis | brain | F1 | |
TE25 | septicaemia, bronchopneumonia, meningitis, arthritis | brain | F2 | |
TE26 | septicaemia, bronchopneumonia, meningitis | brain | F2 | |
TE27 | septicaemia | liver | F1 | |
TE28 | septicaemia, meningitis | brain | F2 | |
TE29 | septicaemia | lung | hmv | F1 |
TE30 | septicaemia, meningitis | brain | F2 |
Strain | Virulence Genes | Reference |
---|---|---|
EHEC O157:H7 Sakai | stx1, stx2, eaeA, Sp1-Sp17 | [17] |
28C | chuA, yjaA, TspE4.C2, arpA, cnf1, papC, sfa | [18] |
MG1655 | asnT, pheV, serX, thrW, selC, leuX, chuA, waaC, argW | [19] |
UPEC 536 * | asnT, pheV, serX, thrW, selC, leuX, chuA, waaC, argW | [20] |
1404 | cnf2 | [21] |
Antibiotics | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | AM | AMCL | CEFT | CEFQ | GEN | NEO | OTC | DOX | FLO | COL | ENR | MAR | TMP-SMX |
Minimal Inhibitory Concentrations (MIC values) | |||||||||||||
TE1 | 128 | 32 | 16 | 16 | 1 | 4 | 128 | 32 | 8 | 0.125 | 0.015 | 0.015 | 256 |
TE2 | 128 | 64 | 32 | 32 | 64 | 2 | 128 | 32 | 8 | 0.25 | 0.015 | 0.015 | 256 |
TE3 | 128 | 32 | 32 | 32 | 64 | 64 | 128 | 64 | 128 | 0.25 | 32 | 32 | 256 |
TE4 | 128 | 128 | 32 | 8 | 2 | 4 | 128 | 64 | 16 | 0.25 | 32 | 16 | 256 |
TE5 | 128 | 128 | 32 | 32 | 2 | 4 | 128 | 16 | 8 | 0.25 | 32 | 32 | 256 |
TE6 | 128 | 128 | 32 | 32 | 64 | 2 | 128 | 64 | 8 | 0.25 | 32 | 16 | 256 |
TE7 | 128 | 32 | 32 | 32 | 64 | 2 | 8 | 4 | 128 | 0.25 | 32 | 16 | 256 |
TE8 | 128 | 32 | 32 | 32 | 2 | 64 | 128 | 64 | 8 | 0.125 | 32 | 8 | 256 |
TE9 | 128 | 32 | 32 | 32 | 16 | 64 | 128 | 64 | 8 | 0.125 | 32 | 16 | 256 |
TE10 | 128 | 16 | 16 | 16 | 2 | 4 | 8 | 4 | 8 | 0.125 | 32 | 16 | 256 |
TE11 | 128 | 128 | 32 | 32 | 0.5 | 4 | 16 | 8 | 8 | 0.125 | 32 | 32 | 256 |
TE12 | 128 | 32 | 32 | 32 | 2 | 64 | 128 | 64 | 8 | 0.125 | 32 | 16 | 256 |
TE13 | 128 | 32 | 16 | 16 | 2 | 4 | 128 | 16 | 8 | 0.125 | 0.015 | 0.015 | 256 |
TE14 | 128 | 32 | 32 | 32 | 2 | 64 | 128 | 64 | 8 | 0.125 | 32 | 8 | 256 |
TE15 | 128 | 16 | 32 | 32 | 2 | 64 | 128 | 64 | 8 | 0.125 | 32 | 8 | 256 |
TE16 | 128 | 32 | 32 | 32 | 1 | 64 | 4 | 32 | 8 | 0.125 | 0.06 | 0.015 | 256 |
TE17 | 128 | 32 | 32 | 32 | 64 | 64 | 128 | 64 | 128 | 0.125 | 32 | 32 | 256 |
TE18 | 128 | 64 | 32 | 32 | 1 | 64 | 128 | 64 | 8 | 0.25 | 32 | 16 | 256 |
TE19 | 128 | 64 | 32 | 32 | 2 | 64 | 128 | 64 | 8 | 0.5 | 32 | 16 | 256 |
TE20 | 128 | 32 | 16 | 4 | 2 | 2 | 128 | 16 | 8 | 0.5 | 32 | 16 | 256 |
TE21 | 8 | 8 | 16 | 4 | 2 | 4 | 4 | 4 | 8 | 0.25 | 0.015 | 0.015 | 256 |
TE22 | 8 | 8 | 16 | 4 | 2 | 4 | 8 | 8 | 8 | 0.25 | 32 | 32 | 256 |
TE23 | 128 | 32 | 16 | 4 | 64 | 64 | 128 | 64 | 8 | 0.25 | 32 | 32 | 256 |
TE24 | 8 | 8 | 16 | 4 | 1 | 2 | 8 | 4 | 8 | 0.25 | 32 | 32 | 256 |
TE25 | 128 | 32 | 32 | 32 | 16 | 64 | 128 | 64 | 8 | 0.25 | 32 | 16 | 256 |
TE26 | 128 | 64 | 32 | 2 | 2 | 64 | 128 | 32 | 8 | 0.25 | 32 | 8 | 256 |
TE27 | 128 | 32 | 16 | 2 | 2 | 64 | 128 | 16 | 8 | 0.25 | 0.015 | 0.015 | 256 |
TE28 | 128 | 32 | 16 | 2 | 2 | 64 | 128 | 16 | 8 | 0.25 | 0.015 | 0.015 | 256 |
TE29 | 128 | 64 | 8 | 2 | 2 | 64 | 128 | 64 | 16 | 0.25 | 32 | 32 | 256 |
TE30 | 128 | 64 | 8 | 2 | 2 | 64 | 8 | 8 | 16 | 0.25 | 32 | 16 | 256 |
MIC50 | 128 | 32 | 32 | 32 | 2 | 64 | 128 | 32 | 8 | 0.25 | 32 | 16 | 256 |
MIC90 | 128 | 128 | 32 | 32 | 64 | 64 | 128 | 64 | 16 | 0.25 | 32 | 32 | 256 |
Virulence Genes | Phylogenetic Group | Intact/Disrupted State of UPEC PAI Integration Sites | Prophage Type | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | stx1 | stx2 | eae | cdt | cnf1 | cnf2 | papC | sfa | asnT | pheV | serX | thrW | selC | leuX | fimZ | chu | waa | Number of Disrupted PAI Integration Sites | ||
TE1 | - | - | - | - | - | - | - | - | A | d | d | i * | d | i | d | d | i | i | 5 | 8888 |
TE2 | - | - | - | - | - | - | - | - | A | d | d | i * | d | d | d | d | i | i | 6 | 8888 |
TE3 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | i | d | d | i | i | 6 | 8858 |
TE4 | - | - | - | - | - | - | - | - | A | d | d | i | d | d | d | d | i | i | 6 | 8888 |
TE5 | - | - | - | - | - | - | - | - | A | d | d | i * | d | d | d | d | i | i | 6 | 8857 |
TE6 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | d | d | d | i | i | 7 | 5868 |
TE7 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | i | d | i | i | i | 5 | 8788 |
TE8 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | i | d | d | i | i | 6 | 8888 |
TE9 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | d | d | i | i | i | 6 | 8888 |
TE10 | - | - | - | - | - | - | - | - | A | d | d | i * | d | d | d | d | i | i | 6 | 8888 |
TE11 | - | - | - | - | - | - | - | - | A | d | i | i * | d | d | d | i | i | i | 4 | 8858 |
TE12 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | i | d | i | i | i | 5 | 8888 |
TE13 | - | - | - | - | - | - | - | - | A | d | i | i * | d | d | d | i | i | i | 4 | 8888 |
TE14 | - | - | - | - | + | - | - | + | B1 | d | d | i * | d | i | d | d | i | i | 5 | 8888 |
TE15 | - | - | - | - | + | - | - | + | B1 | d | d | d | d | i | d | d | i | i | 6 | 8888 |
TE16 | - | - | + | - | - | - | - | - | D | i | d | i * | d | d | d | d | i ** | i | 5 | 7767 |
TE17 | - | - | - | - | - | - | - | - | A | d | d | i * | d | d | d | d | i | i | 6 | 8857 |
TE18 | - | - | - | - | + | - | - | + | B1 | d | d | d | d | i | d | i | i | i | 5 | 8888 |
TE19 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | i | d | d | i | i | 6 | 8888 |
TE20 | - | - | - | - | - | - | - | - | A | d | d | i * | d | d | d | d | i | i | 6 | 8858 |
TE21 | - | - | - | - | - | - | - | - | D | i | d | i * | d | i | d | d | i ** | i | 4 | 8787 |
TE22 | - | - | - | - | - | - | - | - | A | d | i | i | d | d | d | i | i | i | 4 | 8828 |
TE23 | - | - | - | - | - | - | - | - | A | d | i | i | d | d | d | i | i | i | 4 | 8828 |
TE24 | - | - | - | - | - | - | + | - | A | d | d | i * | d | d | d | d | i | i | 6 | 8838 |
TE25 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | d | d | d | i | i | 7 | 8888 |
TE26 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | i | d | i | i | i | 5 | 8888 |
TE27 | - | - | - | - | - | - | - | - | B1 | d | d | d | d | i | d | i | i | i | 5 | 8888 |
TE28 | - | - | - | - | - | - | - | - | A | d? | i | i | d | d | d | i | i | i | 3 | 8828 |
TE29 | - | - | - | - | - | - | - | - | A | d | i | i | d | i | d | i | i | i | 3 | 8828 |
TE30 | - | - | - | - | - | - | - | - | A | d | d | i * | d | d | d | d | i | i | 6 | 8788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sváb, D.; Somogyi, Z.; Tóth, I.; Marina, J.; Jose, S.V.; Jeeba, J.; Safna, A.; Juhász, J.; Nagy, P.; Abdelnassir, A.M.T.; et al. Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains. Trop. Med. Infect. Dis. 2024, 9, 123. https://doi.org/10.3390/tropicalmed9060123
Sváb D, Somogyi Z, Tóth I, Marina J, Jose SV, Jeeba J, Safna A, Juhász J, Nagy P, Abdelnassir AMT, et al. Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains. Tropical Medicine and Infectious Disease. 2024; 9(6):123. https://doi.org/10.3390/tropicalmed9060123
Chicago/Turabian StyleSváb, Domonkos, Zoltán Somogyi, István Tóth, Joseph Marina, Shantymol V. Jose, John Jeeba, Anas Safna, Judit Juhász, Péter Nagy, Ahmed Mohamed Taha Abdelnassir, and et al. 2024. "Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains" Tropical Medicine and Infectious Disease 9, no. 6: 123. https://doi.org/10.3390/tropicalmed9060123
APA StyleSváb, D., Somogyi, Z., Tóth, I., Marina, J., Jose, S. V., Jeeba, J., Safna, A., Juhász, J., Nagy, P., Abdelnassir, A. M. T., Ismail, A. A., & Makrai, L. (2024). Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains. Tropical Medicine and Infectious Disease, 9(6), 123. https://doi.org/10.3390/tropicalmed9060123