Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Fresh Salad Vegetables in the United Arab Emirates
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Setting and Sample Collection
2.2. Enumeration and Confirmation of E. coli
2.3. Antibiotic Susceptibility Testing
2.4. Whole-Genome Sequencing-Based Characterization
2.5. Data Analysis
3. Results
3.1. Presence and Determinants of E. coli in Fresh Salad Vegetables
3.2. Antimicrobial Resistance in E. coli from Fresh Salad Vegetables
3.3. Genomic Characterization of Multidrug-Resistant E. coli Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlBlooshi, S.; Khalid, A.; Hijazi, R. The Barriers to Sustainable Nutrition for Sustainable Health among Zayed University Students in the UAE. Nutrients 2022, 14, 4175. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Alam, M.-U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Ondon, B.S.; Li, S.N.; Zhou, Q.X.; Li, F.X. Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. Rev. Environ. Contam. Toxicol. 2021, 256, 121–153. [Google Scholar] [CrossRef]
- Holzel, C.S.; Tetens, J.L.; Schwaiger, K. Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne Pathog. Dis. 2018, 15, 671–688. [Google Scholar] [CrossRef]
- Mansour, S.; Asrar, T.; Elhenawy, W. The multifaceted virulence of adherent-invasive Escherichia coli. Gut Microbes 2023, 15, 2172669. [Google Scholar] [CrossRef]
- Van Hoek, A.H.A.M.; Veenman, C.; van Overbeek, W.M.; Lynch, G.; Husman, A.M.D.; Blaak, H. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Int. J. Food Microbiol. 2015, 204, 1–8. [Google Scholar] [CrossRef]
- Maciuca, I.E.; Williams, N.J.; Tuchilus, C.; Dorneanu, O.; Guguianu, E.; Carp-Carare, C.; Rimbu, C.; Timofte, D. High Prevalence of Escherichia coli-Producing CTX-M-15 Extended-Spectrum Beta-Lactamases in Poultry and Human Clinical Isolates in Romania. Microb. Drug Resist. 2015, 21, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Devaux, I.; Varela-Santos, C.; Payne-Hallstrom, L.; Takkinen, J.; Bogaardt, C.; Coulombier, D. Investigation of travel-related cases in a multinational outbreak: Example of the Shiga-toxin producing E. coli outbreak in Germany, May-June 2011. Epidemiol. Infect. 2015, 143, 3468–3474. [Google Scholar] [CrossRef]
- Habib, I.; Mohamed, M.-Y.I.; Khan, M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2021, 10, 2369. [Google Scholar] [CrossRef] [PubMed]
- Badar, Z.; Shanableh, A.; El-Keblawy, A.; Mosa, K.A.; Semerjian, L.; Al Mutery, A.; Hussain, M.I.; Bhattacharjee, S.; Tsombou, F.M.; Ayyaril, S.S.; et al. Assessment of Uptake, Accumulation and Degradation of Paracetamol in Spinach (Spinacia oleracea L.) under Controlled Laboratory Conditions. Plants 2022, 11, 1626. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Oladimeji, S.A.; Solomon, S.G.; Olufeagba, S.O.; Ogah, S.I.; Ikhwanuddin, M. Aquaponics production system: A review of historical perspective, opportunities, and challenges of its adoption. Food Sci. Nutr. 2023, 11, 1157–1165. [Google Scholar] [CrossRef]
- Mohammad, Z.H.; Prado, I.D.; Sirsat, S.A. Comparative microbial analyses of hydroponic versus in-soil grown Romaine lettuce obtained at retail. Heliyon 2022, 8, e11050. [Google Scholar] [CrossRef] [PubMed]
- Osaili, T.M.; Obaid, R.S.; Alkayyali, S.A.I.; Ayman, H.; Bunni, S.M.; Alkhaled, S.B.; Hasan, F.; Mohamad, M.N.; Ismail, L.C. Consumers’ knowledge and attitudes about food additives in the UAE. PLoS ONE 2023, 18, e0282495. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.A. Sample Size Estimation in Veterinary Epidemiologic Research. Front. Vet. Sci. 2021, 7, 539573. [Google Scholar] [CrossRef] [PubMed]
- Quarcoo, G.; Adomako, L.A.B.; Abrahamyan, A.; Armoo, S.; Sylverken, A.A.; Addo, M.G.; Alaverdyan, S.; Jessani, N.S.; Harries, A.D.; Ahmed, H.; et al. What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. Int. J. Environ. Res. Public Heal. 2022, 19, 12722. [Google Scholar] [CrossRef]
- Bej, A.K.; DiCesare, J.L.; Haff, L.; Atlas, R.M. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl. Environ. Microbiol. 1991, 57, 1013–1017. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Zankari, E.; Allesoe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Tetzschner, A.M.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef]
- Emirates Authority for Standardization & Metrology (ESMA), United Arab Emirates. UAE standard No: 1016/2002, Microbiological Criteria for Food Stuffs-Part 1. 2002. Available online: https://micor.agriculture.gov.au/Dairy/Documents/Pdfs/GSO_1016-2000_STD_Microbiological_Criteria_for_Food_Stuffs-_Part_1.pdf (accessed on 20 March 2023).
- Health Protection Agency (UK). Guidelines for Assessing the Microbiological Safety of Ready-to-Eat Foods Placed on the Market. 2009. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/363146/Guidelines_for_assessing_the_microbiological_safety_of_ready-to-eat_foods_on_the_market.pdf (accessed on 20 March 2023).
- Habib, I.; Sampers, I.; Uyttendaele, M.; Berkvens, D.; De Zutter, L. Baseline data from a Belgium-wide survey of Campylobacter species contamination in chicken meat preparations and considerations for a reliable monitoring program. Appl. Environ. Microbiol. 2008, 74, 5483–5489. [Google Scholar] [CrossRef]
- Mclauchlin, J.; Aird, H.; Amar, C.F.L.; Jenkins, C.; Jorgensen, F.; Lai, S.; Willis, C. Microbiological Quality of Ready-to-Eat Salad Products Collected from Retail and Catering Settings in England during 2020 to 2021. J. Food Prot. 2022, 85, 1680–1689. [Google Scholar] [CrossRef]
- Campos, J.; Mourao, J.; Pestana, N.; Peixe, L.; Novais, C.; Antunes, P. Microbiological quality of ready-to-eat salads: An underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. Int. J. Food Microbiol. 2013, 166, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Makkaew, P.; Miller, M.; Fallowfield, H.J.; Cromar, N.J. Microbial risk in wastewater irrigated lettuce: Comparing Escherichia coli contamination from an experimental site with a laboratory approach. Water Sci. Technol. 2016, 74, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Siddique, M.A.; Rahman, M.; Bari, M.L.; Ferdousi, S. A study on the prevalence of heavy metals, pesticides, and microbial contaminants and antibiotics resistance pathogens in raw salad vegetables sold in Dhaka, Bangladesh. Heliyon 2019, 5, e01205. [Google Scholar] [CrossRef]
- Shah, M.S.; Eppinger, M.; Ahmed, S.; Shah, A.A.; Hameed, A.; Hasan, F. Multidrug-resistant diarrheagenic E. coli pathotypes are associated with ready-to-eat salad and vegetables in Pakistan. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 267–273. [Google Scholar] [CrossRef]
- McIntyre, L.; Cornelius, A. Microbiological Survey of Retail Fresh Produce of Imported, Domestic Conventional and Domestic Organic Origin. Institute of Environmental Science and Research, Christchurch. 2009. Available online: http://www.foodsafety.govt.nz/elibrary/industry/microbiological-survey-retail-researchprojects/ (accessed on 17 March 2023).
- Jacxsens, L.; Van Boxstael, S.; Nanyunja, J.; Jordaan, D.; Luning, P.; Uyttendaele, M. Opinions on Fresh Produce Food Safety and Quality Standards by Fresh Produce Supply Chain Experts from the Global South and North. J. Food Prot. 2015, 78, 1914–1924. [Google Scholar] [CrossRef]
- Saldinger, S.S.; Rodov, V.; Kenigsbuch, D.; Bar-Tal, A. Hydroponic Agriculture and Microbial Safety of Vegetables: Promises, Challenges, and Solutions. Horticulturae 2023, 9, 51. [Google Scholar] [CrossRef]
- Tham, C.A.T.; Zwe, Y.H.; Li, D. Microbial study of lettuce and agriculture water used for lettuce production at Singapore urban farms. Food Control. 2021, 126, 108065. [Google Scholar] [CrossRef]
- Lopez-Galvez, F.; Gil, M.I.; Pedrero-Salcedo, F.; Alarcon, J.J.; Allende, A. Monitoring generic Escherichia coli in reclaimed and surface water used in hydroponically cultivated greenhouse peppers and the influence of fertilizer solutions. Food Control 2016, 67, 90–95. [Google Scholar] [CrossRef]
- Jiménez-Belenguer, A.I.; Ferrús, M.A.; Hernández, M.; García-Hernández, J.; Moreno, Y.; Castillo, M. Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics 2023, 12, 387. [Google Scholar] [CrossRef]
- Valentino, V.; Sequino, G.; Cobo-Diaz, J.F.; Alvarez-Ordonez, A.; De Filippis, F.; Ercolini, D. Evidence of virulence and antibiotic resistance genes from the microbiome mapping in minimally processed vegetables producing facilities. Food Res. Int. 2022, 162, 112202. [Google Scholar] [CrossRef]
- Eger, E.; Domke, M.; Heiden, S.E.; Paditz, M.; Balau, V.; Huxdorff, C.; Zimmermann, D.; Homeier-Bachmann, T.; Schaufler, K. Highly Virulent and Multidrug-Resistant Escherichia coli Sequence Type 58 from a Sausage in Germany. Antibiotics 2022, 11, 1006. [Google Scholar] [CrossRef]
- Reid, C.J.; Cummins, M.L.; Borjesson, S.; Brouwer, M.S.M.; Hasman, H.; Hammerum, A.M.; Roer, L.; Hess, S.; Berendonk, T.; Nesporova, K.; et al. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat. Commun. 2022, 13, 683. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Yang, H. Integrated metabolomics of “big six” Escherichia coli on pea sprouts to organic acid treatments. Food Res. Int. 2022, 157, 111354. [Google Scholar] [CrossRef] [PubMed]
- Zekar, F.M.; Granier, S.A.; Touati, A.; Millemann, Y. Occurrence of Third-Generation Cephalosporins-Resistant Klebsiella pneumoniae in Fresh Fruits and Vegetables Purchased at Markets in Algeria. Microb. Drug Resist. 2020, 26, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Baky, R.M.; Ibrahim, R.A.; Mohamed, D.S.; Ahmed, E.F.; Hashem, Z.S. Prevalence of Virulence Genes and Their Association with Antimicrobial Resistance Among Pathogenic E. coli Isolated from Egyptian Patients with Different Clinical Infections. Infect. Drug Resist. 2020, 13, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Sora, V.M.; Meroni, G.; Martino, P.A.; Soggiu, A.; Bonizzi, L.; Zecconi, A. Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. Pathogens 2021, 10, 1355. [Google Scholar] [CrossRef]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef]
Product Item | Total Samples No. (%) | No. of Samples Positive for E. coli (%) | No. of Samples with Unsatisfactory E. coli Counts (%) ** |
---|---|---|---|
Arugula | 51 (12.75) | 40 (78.43) | 36 (70.59) |
Cabbage | 36 (9.00) | — *** | — |
Coriander | 31 (7.75) | 9 (29.03) | 7 (22.58) |
Dill | 18 (4.50) | 10 (55.56) | 9 (50.00) |
Iceberg lettuce | 31 (7.75) | — | — |
Romaine lettuce | 51 (12.75) | 5 (9.89) | 5 (9.80) |
Lettuce (others) * | 48 (12.00) | 2 (4.17) | 2 (4.17) |
Onion leaves | 15 (3.75) | 1 (6.67) | 1 (6.67) |
Parsley | 39 (9.75) | 15 (38.46) | 13 (33.33) |
Spinach | 49 (12.25) | 32 (65.31) | 30 (61.22) |
Mixed packs | 31 (7.75) | 6 (19.35) | 3 (9.68) |
Total | 400 (100.00) | 120 (30.00) | 106 (26.50) |
Determinant Variable | Coefficient | Standard Error | p-Value | 95% Confidence Interval |
---|---|---|---|---|
Sampling site: Vegetable market vs. supermarket | 0.081 | 0.311 | 0.792 | −0.528; 0.691 |
Sample display status: Refrigerated display vs. room temperature display | 0.526 | 0.790 | 0.505 | −1.021; 2.075 |
Sample packaging status: Packaged vs. loose | −0.241 | 0.830 | 0.771 | −1.869; 1.386 |
The origin of samples: Local vs. imported | 1.861 | 0.327 | <0.001 | 1.218; 2.504 |
Farming system: Smart farming vs. traditional farming | −2.818 | 0.535 | <0.001 | −3.867; −1.768 |
Antimicrobial Category | Antimicrobial Agent | No. of E. coli Isolates (n = 145) | ||
---|---|---|---|---|
Resistant n (%) | Intermediate n (%) | Susceptible n (%) | ||
Fluoroquinolone | Ciprofloxacin (CIP) | 9 (6.20) | 80 (55.18) | 56 (38.62) |
Phenicol | Chloramphenicol (C) | 10 (6.89) | 1 (0.68) | 134 (92.42) |
Aminoglycosides | Gentamicin (CN) | 4 (2.75) | 2 (1.37) | 139 (95.86) |
Tetracyclines | Tetracycline (TET) | 29 (20.00) | 9 (6.20) | 107 (73.78) |
2nd generation Cephalosporins | Cefoxitin (FOX) | 1 (0.68) | 2 (1.37) | 142 (97.94) |
3rd generation Cephalosporins | Cefotaxime (CTX) | 10 (6.89) | 2 (1.37) | 133 (91.72) |
Ceftriaxone (CRO) | 11(7.58) | 2 (1.37) | 132 (91.04) | |
4th generation Cephalosporins | Cefepime (FEP) | 1 (0.68) | 9 (6.20) | 135 (93.11) |
Carbapenems | Imipenem (IPM) | 0 (0.00) | 2 (1.38) | 143 (98.62) |
Sulfonamides | Trimethoprim-sulfamethoxazole (SXT) | 15 (10.35) | 1 (0.68) | 129 (88.96) |
Penicillin | Ampicillin (AMP) | 30 (20.68) | 2 (1.37) | 113 (77.94) |
Macrolides | Azithromycin (AZM) | 8 (5.51) | 1 (0.68) | 136 (93.80) |
No. Antimicrobial Classes | No. of Isolates (%) | Co-Resistance Patterns * (No. of Isolates per Pattern) | Codes of Isolates Characterized by Whole-Genome Sequencing |
---|---|---|---|
Three | 7 (35) | 3rdGC-T-P (3) | 41.1, 43.2, 153.1 |
T-S-P (1) | 55.1 | ||
Ph-3rdGC-P (1) | 56.1 | ||
3rdGC-P-4thGC (1) | 178.1 | ||
T-P-M (1) | 207.1 | ||
Four | 6 (30) | 3rdGC-T-S-P (3) | 34.1, 194.2, 350.1 |
FQ-A-T-P (1) | 11.1 | ||
FQ-T-S-P (1) | 77.2 | ||
Ph-T-S-P (1) | 242.1 | ||
Five | 7 (35) | FQ-Ph-T-S-P (3) | 77.1, 124, 266.2 |
A-2ndGC-S-P-M (1) | 87.1 | ||
T-3rdGC-S-P-M (1) | 345.2 | ||
A-T-3rdGC-S-P (1) | 346.2 | ||
FQ-Ph-A-T-P (1) | 359.1 | ||
Total | 20 (100.00) | 18/20 ** |
Isolate | Product Item * | ST | Plasmid Incompatibility Types | Antimicrobial Resistance Genes | ||||
---|---|---|---|---|---|---|---|---|
Beta-Lactam | Quinolone | Macrolide | Aminoglycoside | Lincosamide | ||||
11.1 | Parsley | 1642 | IncFIB, IncFIA, IncY | blaTEM-1B | x | x | aph(3″)-lb, aph(6)-ld, aph(3′)-la, aac(3)-lld, aadA17 | lnu(F) |
34.1 | Rocket | 58 | IncFIB | blaCTX-M-15, blaTEM-1B | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
41.1 | Arugula | 58 | IncFIB | blaCTX-M-15, blaTEM-1B | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
43.2 | Arugula | 1727 | IncFIB | blaCTX-M-15, blaTEM-1B | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
55.1 | Parsley | 1294 | IncFIB | blaTEM-1B | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
56.1 | Coriander | 1727 | IncY | blaCTX-M-15 | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
77.1 | Parsley | 206 | IncFII, IncX4, IncR | x | x | x | aadA24, aph(3′)-la, aadA2 | lnu(G) |
77.2 | Parsley | 206 | IncFII, IncX4, IncR | x | x | x | aph(3′)-la, aadA1 | lnu(G) |
153.1 | Arugula | 155 | x | blaCTX-M-15 | qnrS1 | x | x | x |
178.1 | Parsley | 2161 | x | blaCTX-M-15 | qnrS1 | x | x | x |
194.2 | Arugula | 7588 | IncFIB | blaCTX-M-15, blaTEM-1B | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
207.1 | Spinach | 10 | IncN | blaTEM-1B | qnrS1 | mph(A) | aadA17 | lnu(F) |
242.1 | Lettuce | 58 | IncR | blaCARB-2 | qnrS1 | x | aadA1, aadA2b | x |
266.2 | Coriander | 2206 | x | blaTEM-1B | x | x | aph(3″)-lb, aph(6)-ld, aadA1 | x |
345.2 | Arugula | 7588 | IncR, IncFIB | blaCTX-M-15, blaTEM-1B | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
346.2 | Arugula | 328 | IncFII | blaTEM-1B | x | x | aph(3″)-lb, aph(6)-ld | x |
350.1 | Arugula | 7588 | IncFIB | blaCTX-M-15, blaTEM-1B | qnrS1 | x | aph(3″)-lb, aph(6)-ld | x |
359.1 | Parsley | 224 | IncHI2/ | blaTEM-1A | x | x | aph(3″)-lb, aph(3′)-la, aph(6)-ld, aadA1, aac(3)-lla | x |
IncHI2A |
Gene | Frequency | Gene Function/Description | ExPEC Pathotype * | Intestinal Pathotype * |
---|---|---|---|---|
csgA | 17 | Curli fimbriae subunit protein | UPEC, SEPEC, APEC | EPEC, EHEC |
hlyE | 12 | Hemolysin E | EAEC | |
fimH | 11 | Type 1 fimbrial adhesin fimh | UPEC, NMEC, SEPEC, APEC | |
iss | 9 | Increased serum survival protein | NMEC, SEPEC, APEC | |
afaA | 2 | Afimbrial adhesin A | UPEC | |
iucC | 1 | Aerobactin synthase component C | UPEC, APEC | EIEC |
espA | 1 | Type III secretion system protein espa | EPEC, ETEC | |
espF | 1 | Type III secretion system protein espf | EPEC, EHEC | |
espB | 1 | Type III secretion system protein espb | EPEC | |
nleA | 1 | Non-LEE-encoded effector A | EPEC | |
espJ | 1 | Type III secretion system protein espj | EPEC, EHEC | |
tir | 1 | Translocated intimin receptor | EPEC, EHEC | |
iutA | 1 | Aerobactin receptor | EIEC | |
afaD | 1 | Afimbrial adhesin D | UPEC | |
traT | 1 | Serum resistance-associated protein trat | NMEC, SEPEC, APEC | |
irp2 | 1 | Iron-regulated protein 2 | NMEC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, I.; Al-Rifai, R.H.; Mohamed, M.-Y.I.; Ghazawi, A.; Abdalla, A.; Lakshmi, G.; Agamy, N.; Khan, M. Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Fresh Salad Vegetables in the United Arab Emirates. Trop. Med. Infect. Dis. 2023, 8, 294. https://doi.org/10.3390/tropicalmed8060294
Habib I, Al-Rifai RH, Mohamed M-YI, Ghazawi A, Abdalla A, Lakshmi G, Agamy N, Khan M. Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Fresh Salad Vegetables in the United Arab Emirates. Tropical Medicine and Infectious Disease. 2023; 8(6):294. https://doi.org/10.3390/tropicalmed8060294
Chicago/Turabian StyleHabib, Ihab, Rami H. Al-Rifai, Mohamed-Yousif Ibrahim Mohamed, Akela Ghazawi, Afra Abdalla, Glindya Lakshmi, Neveen Agamy, and Mushtaq Khan. 2023. "Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Fresh Salad Vegetables in the United Arab Emirates" Tropical Medicine and Infectious Disease 8, no. 6: 294. https://doi.org/10.3390/tropicalmed8060294
APA StyleHabib, I., Al-Rifai, R. H., Mohamed, M. -Y. I., Ghazawi, A., Abdalla, A., Lakshmi, G., Agamy, N., & Khan, M. (2023). Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Fresh Salad Vegetables in the United Arab Emirates. Tropical Medicine and Infectious Disease, 8(6), 294. https://doi.org/10.3390/tropicalmed8060294