Diagnostic Accuracy of a Thick Blood Smear Compared to qPCR for Malaria Associated with Pregnancy in Colombia
Abstract
:1. Introduction
- (i)
- In the stages of malaria control, TBS effectiveness has only been demonstrated for the programmatic phase, ignoring its true value for the pre-elimination, elimination, and reintroduction prevention phases. In the case of Colombia, the CPG for malaria indicates that early diagnosis is a vital component of the control and elimination strategies as well as transmission reduction [17].
- (ii)
- Although most experts believe that TBS should be used only in febrile patients, the central argument for this recommendation is not one of diagnostic accuracy or clinical–epidemiological rigor but of optimizing the scarce economic resources allocated to the epidemiological surveillance of this disease [1,11,17]. The impossibility in the short and medium term for Colombia to put molecular tests into operation in the places where patients arrive for consultation should also be considered.
- (iii)
- In ideal epidemiological terms, a good diagnostic test for infectious diseases should cover the entire clinical spectrum of the disease, i.e., from its asymptomatic stages, rather than being limited to advanced stages where sensitivity and specificity are known to be high. For the epidemiological MAP surveillance, the diagnosis should not be limited to its clinical use in symptomatic patients, excluding the importance of a good diagnostic method for epidemiological surveillance of the infection and its transmission.
- (iv)
- Colombian NIH recommends using TBS in pregnant women, who are usually asymptomatic, in their quarterly antenatal control, as well as screening of all people with an epidemiological link or exposure in an endemic area, demonstrating the need to be aware of the performance of TBS in this type of population.
- (v)
- In Colombia, no diagnostic evaluation of all the accuracy parameters of TBS for symptomatic or asymptomatic pregnant women has been performed. Previous research shows high heterogeneity in diagnostic sensitivity in this group, ranging from 32.3% [27] to 63.7% [28]. TBS has been shown to have a high sensitivity in P. falciparum infections, but the parameters of accuracy in P. vivax-predominant settings are unknown [30].
- (vi)
- The scant evidence on the diagnostic accuracy of TBS for MAP is focused on GM, with few approaches for PM and CM [31].
- (vii)
- In Colombia, the effect of the following variables on the diagnostic evaluation parameters is unknown: causal species, anemic or febrile state, history of malaria in the last year, and history of GM, which are relevant to issuing recommendations on groups in which the TBS has a good or bad diagnostic performance.
- (i)
- Without adequate and valid MAP calculations, physicians would either disregard negative results (usually false negatives [FNs]) or increase antimalarial drug prescriptions [38] owing to mistrust in their diagnostic standard. Other authors have reported that Plasmodium spp. was found in less than 1% of subjects receiving antimalarial treatment in low-endemic areas [39]. The clinical overdiagnosis of malaria in hospitals coexists with its underdiagnosis in the community, resulting in antimalarial drugs being administered to people who do not require them [40]. This would imply a misuse of resources allocated to treating malaria and an increased risk of antimalarial drug resistance [41].
- (ii)
- Without community screening using valid and highly sensitive methods, surveillance would be limited to clinical disease, resulting in an inaccurate epidemiological and parasitological picture due to an underestimated prevalence and incidence as well as unreliable data for setting epidemiological surveillance, control, or elimination goals [42,43].
- (iii)
- Without a proper diagnosis, the risk of cases of traveler’s malaria increases [44].
2. Materials and Methods
2.1. Study Subjects
2.2. Malaria Diagnosis
2.3. Collection of Information and Bias Control
2.4. Statistical Analysis
2.5. Ethical Aspects
3. Results
4. Discussion
4.1. Gestational Malaria
4.2. Placenta Malaria
4.3. Congenital Malaria
4.4. Limitations of This Study
- (i)
- in other models, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cycle threshold (Ct) of qPCR (semiquantitative measurement inversely related to the amount of genetic material in the sample) and its correlation with clinical data have been used to suggest reference ranges for Ct (<30, highly infectious; 30–34, moderately infectious; 35–37, indeterminate; and >37, non-infectious). Similar studies could be suggested for MAP [57], and
- (ii)
- based on the outcomes previously mentioned for submicroscopic MAP cases, it can be assumed that the possibility of detecting asymptomatic carriage of malaria is low in the case of the molecular diagnosis of MAP. However, there is a clear need for further research and an increase in the health budget allocated to the molecular diagnosis of this disease.
4.5. Strengths of This Study
- (i)
- It is Colombia’s first study with a large sample size for the mother–placenta–neonate trinomial.
- (ii)
- It is one of the few studies in the world that presents the thorough diagnostic parameters for clinical and epidemiological programs in a comprehensive manner.
- (iii)
- It assesses diagnostic ability in key subgroups according to symptoms, malaria history, and causal species and discusses the effect of the interaction of these factors on the accuracy of the TBS.
- (iv)
- Although TBS was historically used in people with fever and PCR was developed to identify parasite components (DNA) in asymptomatic people or those with very low parasitemia, this study showed satisfactory results for cases of GM caused by P. vivax and in pregnant women with previous malaria, expanding the evidence in favor of the use of this test in various clinical and epidemiological situations (aspects for which there are no previous studies and demonstrate the novelty of this research). Moreover, there was no false positive in PM with TBS which is relevant to avoid subsequent resistance problems due to poor prescription of antimalarials. However, in GM, classification errors occurred in 0.8% mainly in cases of mixed GM; despite being a very low number, it shows the importance of carrying out more diagnostic accuracy studies for mixed malaria.
- (v)
- Evidence was gathered to support the importance of active surveillance of MAP in Colombia, which requires more effort compared to passive detection because health workers must search for patients in the community. This type of search is crucial for the pre-elimination and elimination phases of malaria because it allows for the detection of undiagnosed symptomatic cases with passive surveillance, as well as asymptomatic patients using focus studies.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2022. 2022. Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 1 December 2022).
- González, M. Malaria and pregnancy: Complications, prevention and treatment. Prog. Obstet. Ginecol. 2014, 57, 468–471. [Google Scholar] [CrossRef]
- Malaria Policy Advisory Group World Health Organization. Meeting Report of the Evidence Review Group on Malaria in Pregnancy, Geneva, Switzerland, 9–11 July 2017; World Health Organization: Geneva, Switzerland, 2017; 46p. [Google Scholar]
- Carmona-Fonseca, J. The epidemiology of malaria in Colombia: A heretical view. Soc. Med. 2020, 13, 75–87. [Google Scholar]
- Liu, Y.; Griffin, J.B.; Muehlenbachs, A.; Rogerson, S.J.; Bailis, A.J.; Sharma, R.; Sullivan, D.J.; Tshefu, A.K.; Landis, S.H.; Kabongo, J.M.; et al. Diagnosis of placental malaria in poorly fixed and processed placental tissue. Malar. J. 2016, 15, 272. [Google Scholar] [CrossRef] [PubMed]
- Omer, S.A.; Adam, I.; Noureldien, A.; Elhaj, H.; Guerrero-Latorre, L.; Silgado, A.; Sulleiro, E.; Molina, I. Congenital malaria in newborns delivered to mothers with malaria-infected placenta in Blue Nile State, Sudan. J. Trop. Pediatr. 2020, 66, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Gülaşı, S.; Özdener, N. Congenital malaria: Importance of diagnosis and treatment in pregnancy. Turk. J. Pediatr. 2016, 58, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Fonseca, J.; Maestre, A. Incidencia de Las Malarias Gestacional, Congénita y Placentaria en Urabá (Antioquia, Colombia), 2005–2007. Rev. Colomb. Obstet. Ginecol. 2009, 60, 12–26. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74342009000100005#:~:text=La%20incidencia%20de%20MC%20es,en%20las%20de%20baja%20endemicidad (accessed on 1 December 2022). [CrossRef]
- Centers for Disease Control and Prevention. Intermittent Preventive Treatment of Malaria for Pregnant Women (IPTp). 2022. Available online: https://www.cdc.gov/malaria/malaria_worldwide/reduction/iptp.html#:~:text=Malaria%20infection%20during%20pregnancy%20can,a%20risk%20factor%20for%20death (accessed on 1 December 2022).
- Carmona-Fonseca, J.; Cardona-Arias, J.A. Placental malaria caused by Plasmodium vivax or P. falciparum in Colombia: Histopathology and mediators in placental processes. PLoS ONE 2022, 17, e0263092. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Treatment of Malaria, 3rd ed.; World Health Organization: Geneva, Switzerland, 2015; pp. 27–30.
- Carmona-Fonseca, J.; Cardona-Arias, J.A. Overview of epidemiology of malaria associated with pregnancy in northwestern Colombia, 1985–2020. J. Commun. Dis. 2021, 53, 140–147. [Google Scholar] [CrossRef]
- Cardona, J.; Carmona, J. Meta-analysis of the prevalence of malaria associated with pregnancy in Colombia 2000-2020. PLoS ONE 2021, 16, e0255028. [Google Scholar] [CrossRef]
- Cardona, J.; Carmona, J. Frequency of gestational malaria and maternal–neonatal outcomes, in Northwestern Colombia 2009–2020. Sci. Rep. 2022, 12, 10944. [Google Scholar] [CrossRef]
- Cardona, J.; Carmona, J. Frequency of placental malaria and its associated factors in northwestern Colombia, pooled analysis 2009–2020. PLoS ONE 2022, 17, e0268949. [Google Scholar] [CrossRef] [PubMed]
- Cardona, J.; Carmona, J. Congenital malaria: Frequency and epidemiology in Colombia, 2009–2020. PLoS ONE 2022, 17, e0263451. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Salud y Protección Social de Colombia. Guía de Práctica Clínica Diagnóstico y Tratamiento de la Malaria; Ministerio de Salud y Protección Social: Bogotá, Colombia, 2022; 117p. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/Guia-atencion-clinica-malaria.pdf (accessed on 1 December 2022).
- Instituto Nacional de Salud de Colombia. Manual Para el Diagnóstico de Malaria no Complicada en Puestos de Diagnóstico y Tratamiento; INS: Bogotá, Colombia, 2015; 74p. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INS/manual-diagnostico-malaria-no-complicada.pdf (accessed on 1 December 2022).
- Cortés, L.J.; Guerra, A.P. Concordance analysis of three diagnostic tests for malaria in the symptomatic population of Colombian endemic municipalities. Biomedica 2020, 40, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Gavina, K.; Gnidehou, S.; Arango, E.; Hamel-Martineau, C.; Mitran, C.; Agudelo, O.; Lopez, C.; Karidio, A.; Banman, S.; Carmona-Fonseca, J.; et al. Clinical outcomes of submicroscopic infections and correlates of protection of VAR2CSA antibodies in a longitudinal study of pregnant women in Colombia. Infect. Immun. 2018, 86, e00797-17. [Google Scholar] [CrossRef]
- López, C.; Carmona, J. Malaria placentaria submicroscópica: Histopatología y expresión de mediadores de procesos fisiológicos. Rev. Peru. Med. Exp. Salud Pública 2020, 37, 220–228. [Google Scholar] [CrossRef]
- Agudelo, O.; Arango, E.; Carmona, J. Submicroscopic and asymptomatic congenital infection by Plasmodium vivax or P. falciparum in Colombia: 37 cases with placental histopathology and cytokine profile in maternal and placental blood. J. Trop. Med. 2017, 2017, 368078. [Google Scholar]
- Buchwald, A.G.; Sixpence, A.; Chimenya, M.; Damson, M.; Sorkin, J.D.; Wilson, M.L.; Seydel, K.; Hochman, S.; Mathanga, D.P.; Taylor, T.E.; et al. Clinical implications of asymptomatic Plasmodium falciparum infections in Malawi. Clin. Infect. Dis. 2019, 68, 106–112. [Google Scholar] [CrossRef]
- Nguyen, T.N.; von Seidlein, L.; Nguyen, T.V.; Truong, P.N.; Hung, S.D.; Pham, H.T.; Nguyen, T.U.; Le, T.D.; Dao, V.H.; Mukaka, M.; et al. The persistence and oscillations of submicroscopic Plasmodium falciparum and Plasmodium vivax infections over time in Vietnam: An open cohort study. Lancet Infect. Dis. 2018, 18, 565–572. [Google Scholar] [CrossRef]
- Chen, I.; Clarke, S.E.; Gosling, R.; Hamainza, B.; Killeen, G.; Magill, A.; O’Meara, W.; Price, R.N.; Riley, E.M. “Asymptomatic” Malaria: A chronic and debilitating infection that should be treated. PLoS Med. 2016, 13, e1001942. [Google Scholar] [CrossRef]
- Lin, J.T.; Saunders, D.L.; Meshnick, S.R. The role of submicroscopic parasitemia in malaria transmission: What is the evidence? Trends Parasitol. 2014, 30, 183–190. [Google Scholar] [CrossRef]
- Ahmed, R.; Levy, E.I.; Maratina, S.S.; de Jong, J.J.; Asih, P.B.; Rozi, I.E.; Hawley, W.; Syafruddin, D.; ter Kuile, F. Performance of four HRP-2/pLDH combination rapid diagnostic tests and field microscopy as screening tests for malaria in pregnancy in Indonesia: A cross-sectional study. Malar. J. 2015, 14, 420. [Google Scholar] [CrossRef] [PubMed]
- Umbers, A.J.; Unger, H.W.; Rosanas-Urgell, A.; Wangnapi, R.A.; Kattenberg, J.H.; Jally, S.; Silim, S.; Lufele, E.; Karl, S.; Ome-Kaius, M.; et al. Accuracy of an HRP-2/panLDH rapid diagnostic test to detect peripheral and placental Plasmodium falciparum infection in Papua New Guinean women with anaemia or suspected malaria. Malar. J. 2015, 14, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashif, A.H.; Adam, G.K.; Mohmmed, A.A.; Elzaki, S.E.; AbdelHalim, A.M.; Adam, I. Reliability of rapid diagnostic test for diagnosing peripheral and placental malaria in an area of unstable malaria transmission in Eastern Sudan. Diagn. Pathol. 2013, 8, 59. [Google Scholar] [CrossRef]
- Rogerson, S.J.; Mkundika, P.; Kanjala, M.K. Diagnosis of Plasmodium falciparum malaria at delivery: Comparison of blood film preparation methods and of blood films with histology. J. Clin. Microbiol. 2003, 41, 1370–1374. [Google Scholar] [CrossRef]
- Campos, I.M.; Uribe, M.L.; Cuesta, C.; Franco-Gallego, A.; Carmona-Fonseca, J.; Maestre, A. Diagnosis of gestational, congenital, and placental malaria in Colombia: Comparison of the efficacy of microscopy, nested polymerase chain reaction, and histopathology. Am. J. Trop. Med. Hyg. 2011, 84, 929–935. [Google Scholar] [CrossRef]
- Oyegoke, O.O.; Maharaj, L.; Akoniyon, O.P.; Kwoji, I.; Roux, A.T.; Adewumi, T.S.; Maharaj, R.; Oyebola, B.T.; Adeleke, M.A.; Okpeku, M. Malaria diagnostic methods with the elimination goal in view. Parasitol. Res. 2022, 121, 1867–1885. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Cheng, Z. Advances in molecular diagnosis of malaria. Adv. Clin. Chem. 2017, 80, 155–192. [Google Scholar] [CrossRef]
- Cao, J.; Sturrock, H.J.; Cotter, C.; Zhou, S.; Zhou, H.; Liu, Y.; Tang, L.; Gosling, R.D.; Feachem, R.G.; Gao, Q. Communicating and monitoring surveillance and response activities for malaria elimination: China’s “1-3-7” strategy. PLoS Med. 2014, 11, e1001642. [Google Scholar] [CrossRef]
- Sturrock, H.J.; Hsiang, M.S.; Cohen, J.M.; Smith, D.L.; Greenhouse, B.; Bousema, T.; Gosling, R.D. Targeting asymptomatic malaria infections: Active surveillance in control and elimination. PLoS Med. 2013, 10, e1001467. [Google Scholar] [CrossRef]
- Cotter, C.; Sturrock, H.J.; Hsiang, M.S.; Liu, J.; Phillips, A.A.; Hwang, J.; Gueye, C.S.; Fullman, N.; Gosling, R.D.; Feachem, R.G. The changing epidemiology of malaria elimination: New strategies for new challenges. Lancet 2013, 382, 900–911. [Google Scholar] [CrossRef]
- Tiono, A.B.; Ouédraogo, A.; Ogutu, B.; Diarra, A.; Coulibaly, S.; Gansané, A.; Sirima, S.B.; O’Neil, G.; Mukhopadhyay, A.; Hamed, K. A controlled, parallel, cluster-randomized trial of community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar. J. 2013, 12, 79. [Google Scholar] [CrossRef] [PubMed]
- Sansom, C. Overprescribing of antimalarials. Lancet Infect. Dis. 2009, 9, 596. [Google Scholar] [CrossRef]
- Reyburn, H.; Mbakilwa, H.; Mwangi, R.; Mwerinde, O.; Olomi, R.; Drakeley, C.; Whitty, C.J. Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: Randomised trial. BMJ 2007, 334, 403. [Google Scholar] [CrossRef] [PubMed]
- Ansah, E.K.; Narh-Bana, S.; Epokor, M.; Akanpigbiam, S.; Quartey, A.A.; Gyapong, J.; Whitty, C.J. Rapid testing for malaria in settings where microscopy is available and peripheral clinics where only presumptive treatment is available: A randomised controlled trial in Ghana. BMJ 2010, 340, c930. [Google Scholar] [CrossRef]
- Lubell, Y.; Reyburn, H.; Mbakilwa, H.; Mwangi, R.; Chonya, S.; Whitty, C.J.; Mills, A. The impact of response to the results of diagnostic tests for malaria: Cost-benefit analysis. BMJ 2008, 336, 202–205. [Google Scholar] [CrossRef]
- Cibulskis, R.E.; Aregawi, M.; Williams, R.; Otten, M.; Dye, C. Worldwide incidence of malaria in 2009: Estimates, time trends, and a critique of methods. PLoS Med. 2011, 8, e1001142. [Google Scholar] [CrossRef]
- Harris, I.; Sharrock, W.W.; Bain, L.M.; Gray, K.A.; Bobogare, A.; Boaz, L.; Lilley, K.; Krause, D.; Vallely, A.; Johnson, M.L.; et al. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: Challenges for malaria diagnostics in an elimination setting. Malar. J. 2010, 9, 254. [Google Scholar] [CrossRef]
- malERA Consultative Group on Diagnoses and Diagnostics. A research agenda for malaria eradication: Diagnoses and diagnostics. PLoS Med. 2011, 8, e1000396. [Google Scholar] [CrossRef]
- Carmona, J. La Región “Urabá Antioqueño-Cuencas altas de los ríos Sinú y San Jorge-Bajo Cauca Antioqueño”: “guarida” del paludismo colombiano Revista de la Universidad Industrial de Santander. Salud 2017, 49, 577–589. [Google Scholar] [CrossRef]
- Ministerio de Salud de Colombia. Análisis de Situación de Salud (ASIS) Colombia, 2019. 2019. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/asis-2019-colombia.pdf (accessed on 1 December 2022).
- Cortés, J.; Romero, L.; Aguirre, C.; Pinzón, L.; Cuervo, S. Enfoque clínico del síndrome febril agudo en Colombia. Infectio 2017, 21, 39–50. [Google Scholar] [CrossRef]
- Dayananda, K.K.; Achur, R.N.; Gowda, D.C. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J. Vector Borne Dis. 2018, 55, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Moxon, C.A.; Gibbins, M.P.; McGuinness, D.; Milner, D.A., Jr.; Marti, M. New insights into malaria pathogenesis. Annu. Rev. Pathol. 2020, 15, 315–343. [Google Scholar] [CrossRef] [Green Version]
- Eusebi, P. Diagnostic accuracy measures. Cerebrovasc. Dis. 2013, 36, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Mayor, A.; Moro, L.; Aguilar, R.; Bardají, A.; Cisteró, P.; Serra-Casas, E.; Sigaúque, B.; Alonso, P.L.; Ordi, J.; Menéndez, C. How hidden can malaria be in pregnant women? Diagnosis by microscopy, placental histology, polymerase chain reaction and detection of histidine-rich protein 2 in plasma. Clin Infect. Dis. 2012, 54, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Fried, M.; Muehlenbachs, A.; Duffy, P.E. Diagnosing malaria in pregnancy: An update. Expert Rev. Anti-Infect. Ther. 2012, 10, 1177–1187. [Google Scholar] [CrossRef]
- Takem, E.N.; D’Alessandro, U. Malaria in pregnancy. Mediterr. J. Hematol. Infect. Dis. 2013, 5, e2013010. [Google Scholar] [CrossRef]
- Romagosa, C.; Menendez, C.; Ismail, M.R.; Quintó, L.; Ferrer, B.; Alonso, P.L.; Ordi, J. Polarisation microscopy increases the sensitivity of hemozoin and Plasmodium detection in the histological assessment of placental malaria. Acta Trop. 2004, 90, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Abbas, N.; Saba, T.; Mehmood, Z.; Mahmood, T.; Ahmed, K.T. Microscopic malaria parasitemia diagnosis and grading on benchmark datasets. Microsc. Res. Tech. 2018, 81, 1042–1058. [Google Scholar] [CrossRef]
- Solari, L.; Soto, A.; Mendoza, D.; Llanos, A. Comparación de las densidades parasitarias en gota gruesa de sangre venosa versus digitopunción en el diagnóstico de Malaria Vivax. Rev. Méd. Herediana 2002, 13, 140–143. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2002000400005 (accessed on 1 December 2022). [CrossRef]
- Serrano, A.; Ruiz, A.; Segura, A.; Olmo, V.; Micó, R.; Barquilla, A.; Morán, A. Aplicación del valor umbral del número de ciclos (Ct) de PCR en la COVID-19. Semergen 2021, 47, 337–341. [Google Scholar] [CrossRef]
n | % | |||
---|---|---|---|---|
Pregnant woman | qPCR n = 829 | Total | 297 | 35.8 |
P. falciparum | 102 | 12.3 | ||
P. vivax | 187 | 22.5 | ||
Mixed | 8 | 1.0 | ||
TBS n = 829 | Total | 163 | 19.7 | |
P. falciparum | 32 | 3.9 | ||
P. vivax | 130 | 15.7 | ||
Mixed | 1 | 0.1 | ||
Placenta | qPCR n = 579 | Total | 159 | 27.4 |
P. falciparum | 72 | 12.4 | ||
P. vivax | 65 | 11.2 | ||
Mixed | 22 | 3.8 | ||
TBS n = 579 | Total | 13 | 2.2 | |
P. falciparum | 4 | 0.7 | ||
P. vivax | 9 | 1.5 | ||
Neonate | qPCR peripheral blood n = 221 | Total | 5 | 2.3 |
P. falciparum | 2 | 0.9 | ||
P. vivax | 3 | 1.4 | ||
qPCR Umbilical cord n = 381 | Total | 63 | 16.5 | |
P. falciparum | 40 | 10.5 | ||
P. vivax | 19 | 5.0 | ||
Mixed | 4 | 1.0 |
Frequency | S | E | PPV | NPV | |
---|---|---|---|---|---|
Total (positive vs. negative for malaria) | |||||
% (95% CI) | 35.8 (32.5–39.1) | 54.9 (49.0–60.7) | 100 (99.9–100) | 100 (99.7–100) | 79.9 (79.7–83.0) |
N | 297/829 | 163/297 | 532/532 | 163/163 | 532/666 |
By species (positive for species vs. negative for malaria) | |||||
P. falciparum | |||||
% (95% CI) | 16.0 (13.0–18.9) | 29.7 (20.3–39.1) | 100 (99.9–100) | 100 (98.3–100) | 88.2 (85.6–90.9) |
n | 101/633 | 30/101 | 532/532 | 30/30 | 532/603 |
P. vivax | |||||
% (95% CI) | 25.9 (22.6–29.2) | 67.7 (60.8–74.7) | 100 (99.9–100) | 100 (99.6–100) | 89.9 (87.4–92.4) |
n | 186/718 | 126/186 | 532/532 | 126/126 | 532/592 |
By Symptom (positive for each symptom vs. negative for the symptom) | |||||
No fever | |||||
% (95% CI) | 14.9 (10.9–18.9) | 28.6 (14.9–42.2) | 100 (99.8–100) | 100 (96.4–100) | 88.9 (85.3–92.5) |
n | 49/329 | 14/49 | 280/280 | 14/14 | 280/315 |
With fever | |||||
% (95% CI) | 68.9 (59.5–78.3) | 95.8 (90.4–100) | 100 (98.4–100) | 100 (99.3–100) | 91.4 (80.7–100) |
n | 71/103 | 68/71 | 32/32 | 68/68 | 32/35 |
No anemia | |||||
% (95% CI) | 26.8 (22.1–31.5) | 38.5 (28.3–48.8) | 100 (99.8–100) | 100 (98.6–100) | 81.6 (77.2–86.0) |
n | 96/358 | 37/96 | 262/262 | 37/37 | 262/321 |
With anemia | |||||
% (95% CI) | 49.1 (41.3–56.9) | 41.0 (29.8–52.2) | 100 (99.4–100) | 100 (98.5–100) | 63.7 (55.2–72.2) |
n | 83/169 | 34/83 | 86/86 | 34/34 | 86/135 |
With mild anemia | |||||
% (95% CI) | 43.2 (33.6–52.9) | 33.3 (19.0–47.7) | 100 (99.2–100) | 100 (96.9–100) | 66.3 (56.3–76.3) |
n | 48/111 | 16/48 | 63/63 | 16/16 | 63/95 |
With moderate anemia | |||||
% (95% CI) | 60.3 (46.9–73.8) | 51.4 (33.4–69.4) | 100 (97.8–100) | 100 (97.2–100) | 57.5 (40.9–74.1) |
n | 35/58 | 18/35 | 23/23 | 18/18 | 23/40 |
Presence of a history of malaria | |||||
With a history of malaria in the last year | |||||
% (95% CI) | 50.5 (44.5–56.6) | 69.0 (61.1–77.0) | 100 (99.6–100) | 100 (99.5–100) | 76.0 (69.5–82.4) |
N | 142/281 | 98/142 | 139/139 | 98/98 | 139/183 |
No history of malaria in the past year | |||||
% (95% CI) | 19.8 (16.1–23.4) | 12.6 (5.4–19.8) | 100 (99.9–100) | 100 (95.8–100) | 82.3 (78.7–85.9) |
N | 95/481 | 12/95 | 386/386 | 12/12 | 386/469 |
With a history of malaria in this pregnancy | |||||
% (95% CI) | 64.0 (57.1–70.9) | 68.8 (60.3–77.2) | 100 (99.3–100) | 100 (99.4–100) | 64.3 (55.0–73.6) |
n | 128/200 | 88/128 | 72/72 | 88/88 | 72/112 |
No history of malaria in this pregnancy | |||||
% (95% CI) | 19.4 (16.0–22.7) | 20.2 (12.2–28.2) | 100 (99.9–100) | 100 (97.7–100) | 83.9 (80.7–87.1) |
n | 109/562 | 22/109 | 453/453 | 22/22 | 453/540 |
NLR | Youden | PPCD | |
---|---|---|---|
Total | 0.45 (0.40–0.51) | 0.55 (0.49–0.61) | 83.8 (81.3–86.4) |
By species | |||
P. falciparum | 0.70 (0.62–0.80) | 0.30 (0.21–0.39) | 88.8 (86.3–91.3) |
P. vivax | 0.32 (0.26–0.40) | 0.68 (0.61–0.74) | 91.6 (89.5–93.7) |
By symptom | |||
No fever | 0.71 (0.60–0.85) | 0.29 (0.16–0.41) | 89.4 (85.9–92.9) |
With fever | 0.04 (0.01–0.13) | 0.96 (0.91–1.00) | 97.1 (93.4–100) |
No anemia | 0.61 (0.52–0.72) | 0.39 (0.29–0.48) | 83.5 (79.5–87.5) |
With anemia | 0.59 (0.49–0.71) | 0.41 (0.30–0.52) | 71.0 (63.9–78.1) |
With mild anemia | 0.67 (0.55–0.81) | 0.33 (0.20–0.47) | 71.2 (62.3–80.1) |
With moderate anemia | 0.49 (0.35–0.68) | 0.51 (0.35–0.68) | 70.7 (58.1–83.3) |
By history of malaria | |||
With malaria during the last year | 0.31 (0.24–0.40) | 0.69 (0.61–0.77) | 84.3 (79.9–88.8) |
No malaria during last year | 0.87 (0.81–0.94) | 0.13 (0.06–0.19) | 82.7 (79.3–86.2) |
With malaria during this pregnancy | 0.31 (0.24–0.40) | 0.69 (0.61–0.77) | 80.0 (74.2–85.8) |
No malaria during this pregnancy | 0.80 (0.73–0.88) | 0.20 (0.13–0.28) | 84.5 (81.4–87.6) |
S | NPV | NLR | Younden | |
---|---|---|---|---|
No fever | ||||
P. falciparum | 18.2 (0–36.6) n = 4/22 | 94.0 (91.1–96.8) n = 280/298 | 0.82 (0.67–1.0) | 0.18 (0.0–0.34) |
P. vivax | 40.0 (18.8–61.2) n = 10/25 | 94.9 (92.2–97.7) n = 280/305 | 0.60 (0.44–0.83) | 0.40 (0.21–0.59) |
With fever | ||||
P. falciparum | 100 (75.0–100) n = 2/2 | 100 (98.0–100) n = 32/32 | -- | 1.0 (1.0–1.0) |
P. vivax | 95.6 (90.1–100) n = 66/69 | 91.4 (80.7–100) n = 32/35 | 0.04 (0.01–0.13) | 0.96 (0.91–1.0) |
No anemia | ||||
P. falciparum | 20.9 (7.6–34.2) n = 9/43 | 88.5(84.7–92.3) n = 262/296 | 0.79 (0.68–0.92) | 0.21 (0.09–0.33) |
P. vivax | 50.0 (34.8–65.2) n = 24/48 | 91.6(88.2–95.0) n = 262/286 | 0.50 (0.38–0.66) | 0.50 (0.36–0.64) |
With anemia | ||||
P. falciparum | 4.3 (0–14.9) n = 1/23 | 79.6(71.6–87.7) n = 86/108 | 0.96 (0.88–1.0) | 0.04 (0–0.13) |
P. vivax | 55.2 (41.5–68.8) n = 32/58 | 76.8 (68.5–85.0) n = 86/112 | 0.45 (0.34–0.60) | 0.55 (0.42–0.68) |
With malaria in the last year | ||||
P. falciparum | 25.0 (8.4–41.6) n = 8/32 | 85.3 (79.5–91.0) n = 139/163 | 0.75 (0.61–0.92) | 0.25 (0.10–0.40) |
P. vivax | 81.9 (74.1–89.7) n = 86/105 | 88.0 (82.6–93.4) 139/158 | 0.18 (0.12–0.27) | 0.82 (0.75–0.89) |
No malaria during last year | ||||
P. falciparum | 6.8 (0–15.4) n = 3/44 | 90.4 (87.5–93.3) n = 386/427 | 0.93 (0.86–1.0) | 0.07 (0–0.14) |
P. vivax | 16.7 (5.1–28.3) n = 8/48 | 90.6 (87.7–93.5) 386/426 | 0.83 (0.73–0.95) | 0.17 (0.06–0.27) |
With malaria in this pregnancy | ||||
P. falciparum | 18.5 (2.0–35.0) n = 5/27 | 76.6 (67.5–85.7) n = 72/94 | 0.81 (0.68–0.98) | 0.19 (0.04–0.33) |
P. vivax | 82.3 (74.1–90.4) n = 79/96 | 80.9 (72.2–89.6) n = 72/89 | 0.18 (0.12–0.27) | 0.82 (0.75–0.90) |
No malaria in this pregnancy | ||||
P. falciparum | 12.2 (2.0–22.4) n = 6/49 | 50.0 (38.8–61.1) n = 43/86 | 0.88 (0.79–0.97) | 0.12 (0.03–0.21) |
P. vivax | 26.3 (14.0–38.6) n = 15/57 | 50.6 (39.4–61.8) n = 43/85 | 0.74 (0.63–0.86) | 0.26 (0.15–0.38) |
Frequency | S | NPV | PPCD | |
---|---|---|---|---|
Total | ||||
% (95% CI) | 27.5 (27.3–27.6) | 8.2 (7.8–8.5) | 74.2 (74.1–74.3) | 74.8 (74.7–74.9) |
n | 159/579 | 13/159 | 420/566 | (13 + 420)/579 |
By species | ||||
P. falciparum | ||||
% (95% CI) | 14.6 (14.5–14.7) | 5.6 (4.8–6.3) | 86.1 (85.9–86.2) | 86.2 (86.1–86.3) |
n | 72/492 | 4/72 | 420/492 | (4 + 420)/492 |
P. vivax | ||||
% (95% CI) | 13.4 (13.3–13.5) | 6.1 (5.3–7.0) | 87.3 (87.2–87.4) | 87.4 (87.3–87.5) |
n | 65/485 | 4/65 | 420/481 | (4 + 420)/485 |
By symptomatology | ||||
No anemia | ||||
% (95% CI) | 24.0 (24.8–25.2) | 9.7 (9.0–10.5) | 76.9 (76.7–77.1) | 77.4 (77.2–77.6) |
n | 72/288 | 7/72 | 216/281 | (7 + 216)/288 |
With anemia | ||||
% (95%CI) | 52.2 (51.7–52.7) | 10.2 (9.3–11.1) | 50.5 (49.9–51.0) | 53.1 (52.6–53.6) |
n | 59/113 | 6/59 | 54/107 | (6 + 54)/113 |
With mild anemia | ||||
% (95% CI) | 53.4 (52.7–54.2) | 10.3 (8.9–11.6) | 49.3 (48.5–50.1) | 52.0 (51.3–52.8) |
n | 39/73 | 4/39 | 34/69 | (4 + 34)/73 |
With moderate anemia | ||||
% (95% CI) | 50.0 (48.7–51.3) | 10.0 (7.4–12.6) | 52.6 (51.2–54.0) | 55.0 (53.7–56.3) |
n | 20/40 | 2/20 | 20/38 | (2 + 20)/40 |
No fever | ||||
% (95% CI) | 6.5 (6.3–6.8) | 7.7 (3.8–11.6) | 93.9 (93.7–94.2) | 94.0 (93.7–94.2) |
n | 13/199 | 1/13 | 186/198 | (1 + 186)/199 |
Presence of a history of malaria | ||||
No malaria last year | ||||
% (95% CI) | 18.9 (18.7–19.0) | 1.3 (0.6–1.9) | 81.3 (81.2–81.4) | 81.3 (81.2–81.5) |
n | 78/413 | 1/78 | 335/412 | (1 + 335)/413 |
With malaria last year | ||||
% (95% CI) | 47.3 (46.9–47.7) | 17.1 (16.4–17.9) | 57.3 (56.9–57.8) | 60.8 (60.4–61.2) |
n | 70/148 | 12/70 | 78/136 | (12 + 78)/148 |
No malaria in this pregnancy | ||||
% (95% CI) | 18.6 (18.4–18.7) | 1.2 (0.6–1.9) | 81.6 (81.5–81.7) | 81.7 (81.5–81.8) |
n | 80/431 | 1/80 | 351/430 | (1 + 351)/431 |
With malaria in this pregnancy | ||||
% (95% CI) | 52.3 (51.9–52.7) | 17.6 (16.9–18.4) | 52.5 (52.1–53.0) | 56.9 (56.5–57.4) |
n | 68/130 | 12/68 | 62/118 | (12 + 62)/130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardona-Arias, J.A.; Higuita Gutiérrez, L.F.; Carmona-Fonseca, J. Diagnostic Accuracy of a Thick Blood Smear Compared to qPCR for Malaria Associated with Pregnancy in Colombia. Trop. Med. Infect. Dis. 2023, 8, 119. https://doi.org/10.3390/tropicalmed8020119
Cardona-Arias JA, Higuita Gutiérrez LF, Carmona-Fonseca J. Diagnostic Accuracy of a Thick Blood Smear Compared to qPCR for Malaria Associated with Pregnancy in Colombia. Tropical Medicine and Infectious Disease. 2023; 8(2):119. https://doi.org/10.3390/tropicalmed8020119
Chicago/Turabian StyleCardona-Arias, Jaiberth Antonio, Luis Felipe Higuita Gutiérrez, and Jaime Carmona-Fonseca. 2023. "Diagnostic Accuracy of a Thick Blood Smear Compared to qPCR for Malaria Associated with Pregnancy in Colombia" Tropical Medicine and Infectious Disease 8, no. 2: 119. https://doi.org/10.3390/tropicalmed8020119
APA StyleCardona-Arias, J. A., Higuita Gutiérrez, L. F., & Carmona-Fonseca, J. (2023). Diagnostic Accuracy of a Thick Blood Smear Compared to qPCR for Malaria Associated with Pregnancy in Colombia. Tropical Medicine and Infectious Disease, 8(2), 119. https://doi.org/10.3390/tropicalmed8020119