Toxoplasmosis Infection during Pregnancy
Abstract
:1. Introduction
2. Materials and Methods
3. Toxoplasmosis Pathobiology
4. Toxoplasmosis Infection during Pregnancy
5. Global Burden of Congenital Toxoplasmosis
6. Congenital Toxoplasmosis and Treatment
6.1. Outcomes of Toxoplasmosis Treatment during Pregnancy
6.2. Outcomes of Toxoplasmosis Treatment in Congenitally Infected Infants
6.3. Outcomes of Untreated Congenital Toxoplasmosis
7. Long-Term Effects of Toxoplasmosis
8. Prevention
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J.L.; Holland, G.N. Annual burden of ocular toxoplasmosis in the US. Am. J. Trop. Med. Hyg. 2010, 82, 464–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, P.L.; Sorvillo, F.; Kuo, T.; Javanbakht, M. Trends, Productivity Losses, and Associated Medical Conditions Among Toxoplasmosis Deaths in the United States, 2000–2010. Am. J. Trop. Med. Hyg. 2014, 91, 959–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, F.; Goulet, V.; Le Strat, Y.; Desenclos, J.-C. Toxoplasmosis among pregnant women in France: Risk factors and change of prevalence between 1995 and 2003. Rev. D’épidémiologie St. Publique 2009, 57, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Price, C.; Wilkins, P.P.; Kruszon-Moran, D.; Rivera, H.N. Toxoplasma gondii Seroprevalence in the United States 2009–2010 and Comparison with the Past Two Decades. Am. J. Trop. Med. Hyg. 2014, 90, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Riahi, S.M.; Gamble, H.R.; Fakhri, Y.; Shiadeh, M.N.; Danesh, M.; Behniafar, H.; Paktinat, S.; Foroutan, M.; Mokdad, A.H.; et al. Global prevalence of latent toxoplasmosis in pregnant women: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 673–683. [Google Scholar] [CrossRef]
- Rostami, A.; Riahi, S.M.; Contopoulos-Ioannidis, D.G.; Gamble, H.R.; Fakhri, Y.; Shiadeh, M.N.; Foroutan, M.; Behniafar, H.; Taghipour, A.; Maldonado, Y.A.; et al. Acute Toxoplasma infection in pregnant women worldwide: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007807. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.L.; Dargelas, V.; Roberts, J.; Press, C.; Remington, J.S.; Montoya, J.G. Risk Factors for Toxoplasma gondii Infection in the United States. Clin. Infect. Dis. 2009, 49, 878–884. [Google Scholar] [CrossRef] [Green Version]
- England, J.; Bailin, S.S.; Gehlhausen, J.R.; Rubin, D.H. Toxoplasmosis: The Heart of the Diagnosis. Open Forum Infect. Dis. 2019, 6, ofy338. [Google Scholar] [CrossRef]
- Baril, L. Risk Factors for Toxoplasma Infection in Pregnancy: A Case-Control Study in France. Scand. J. Infect. Dis. 1999, 31, 305–309. [Google Scholar] [CrossRef]
- Cook, A.J.C.; Gilbert, R.; Buffolano, W.; Zufferey, J.; Petersen, E.; Jenum, P.A.; Foulon, W.; Semprini, A.E.; Dunn, D.T.; Holliman, R. Sources of toxoplasma infection in pregnant women: European multicentre case-control study Commentary: Congenital toxoplasmosis—Further thought for food. BMJ 2000, 321, 142–147. [Google Scholar] [CrossRef]
- Osthoff, M.; Chew, E.; Bajel, A.; Kelsey, G.; Panek-Hudson, Y.; Mason, K.; Szer, J.; Ritchie, D.; Slavin, M. Disseminated toxoplasmosis after allogeneic stem cell transplantation in a seronegative recipient. Transpl. Infect. Dis. 2013, 15, E14–E19. [Google Scholar] [CrossRef]
- Khurana, S.; Batra, N. Toxoplasmosis in organ transplant recipients: Evaluation, implication, and prevention. Trop. Parasitol. 2016, 6, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Rawal, B.D. Laboratory Infection with Toxoplasma. J. Clin. Pathol. 1959, 12, 59–61. [Google Scholar] [CrossRef] [Green Version]
- Kapperud, G.; Jenum, P.A.; Stray-Pedersen, B.; Melby, K.K.; Eskild, A.; Eng, J. Risk Factors for Toxoplasma gondii Infection in Pregnancy: Results of a Prospective Case-Control Study in Norway. Am. J. Epidemiol. 1996, 144, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Boyer, K.; Hill, D.; Mui, E.; Wroblewski, K.; Karrison, T.; Dubey, J.P.; Sautter, M.; Noble, A.G.; Withers, S.; Swisher, C.; et al. Unrecognized Ingestion of Toxoplasma gondii Oocysts Leads to Congenital Toxoplasmosis and Causes Epidemics in North America. Clin. Infect. Dis. 2011, 53, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Jennes, M.; De Craeye, S.; Devriendt, B.; Dierick, K.; Dorny, P.; Cox, E. Strain- and Dose-Dependent Reduction of Toxoplasma gondii Burden in Pigs Is Associated with Interferon-Gamma Production by CD8+ Lymphocytes in a Heterologous Challenge Model. Front. Cell. Infect. Microbiol. 2017, 7, 232. [Google Scholar] [CrossRef] [Green Version]
- Halonen, S.K.; Weiss, L.M. Toxoplasmosis. Handb. Clin. Neurol. 2013, 114, 125–145. [Google Scholar]
- Fritz, H.M.; Bowyer, P.W.; Bogyo, M.; Conrad, P.A.; Boothroyd, J.C. Proteomic Analysis of Fractionated Toxoplasma Oocysts Reveals Clues to Their Environmental Resistance. PLoS ONE 2012, 7, e29955. [Google Scholar] [CrossRef] [Green Version]
- Silveira, C.; Vallochi, A.L.; da Silva, U.R.; Muccioli, C.; Holland, G.N.; Nussenblatt, R.B.; Belfort, R.; Rizzo, L.V. Toxoplasma gondii in the peripheral blood of patients with acute and chronic toxoplasmosis. Br. J. Ophthalmol. 2011, 95, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Boyer, K.M.; Holfels, E.; Roizen, N.; Swisher, C.; Mack, D.; Remington, J.; Withers, S.; Meier, P.; McLeod, R.; the Toxoplasmosis Study Group. Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: Implications for prenatal management and screening. Am. J. Obstet. Gynecol. 2005, 192, 564–571. [Google Scholar] [CrossRef]
- Jamieson, S.E.; de Roubaix, L.-A.; Cortina-Borja, M.; Tan, H.K.; Mui, E.J.; Cordell, H.J.; Kirisits, M.J.; Miller, E.N.; Peacock, C.S.; Hargrave, A.C.; et al. Genetic and Epigenetic Factors at COL2A1 and ABCA4 Influence Clinical Outcome in Congenital Toxoplasmosis. PLoS ONE 2008, 3, e2285. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.E.; Freeman, K.; Lago, E.G.; Bahia-Oliveira, L.M.G.; Tan, H.K.; Wallon, M.; Buffolano, W.; Stanford, M.R.; Petersen, E.; for The European Multicentre Study on Congenital Toxoplasmosis (EMSCOT). Ocular Sequelae of Congenital Toxoplasmosis in Brazil Compared with Europe. PLoS Negl. Trop. Dis. 2008, 2, e277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, C.D.; Erlich, S.S.; Mastrucci, M.T.; Hutto, S.C.; Parks, W.P.; Scott, G.B. Congenital toxoplasmosis occurring in infants perinatally infected with human immunodeficiency virus 1. Pediatr. Infect. Dis. J. 1990, 9, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Demar, M.; Hommel, D.; Djossou, F.; Peneau, C.; Boukhari, R.; Louvel, D.; Bourbigot, A.-M.; Nasser, V.; Ajzenberg, D.; Darde, M.-L.; et al. Acute toxoplasmoses in immunocompetent patients hospitalized in an intensive care unit in French Guiana. Clin. Microbiol. Infect. 2012, 18, E221–E231. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, S.; Guy, E.; Dawson, S.J.; Francis, J.M.; Joynson, D. Chronic active toxoplasmosis in an immunocompetent patient. J. Infect. 1993, 27, 305–310. [Google Scholar] [CrossRef]
- Gilbert, R.; Gras, L.; European Multicentre Study on Congenital Toxoplasmosis. Effect of timing and type of treatment on the risk of mother to child transmission of Toxoplasma gondii. BJOG Int. J. Obstet. Gynaecol. 2003, 110, 112–120. [Google Scholar] [CrossRef]
- Garweg, J.G.; Scherrer, J.; Wallon, M.; Kodjikian, L.; Peyron, F. Reactivation of ocular toxoplasmosis during pregnancy. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 241–242. [Google Scholar] [CrossRef]
- Djurković-Djaković, O.; Dupouy-Camet, J.; Van der Giessen, J.; Dubey, J.P. Toxoplasmosis: Overview from a One Health perspective. Food Waterborne Parasitol. 2019, 15, e00054. [Google Scholar] [CrossRef]
- Torgerson, P.R.; Mastroiacovo, P. The global burden of congenital toxoplasmosis: A systematic review. Bull. World Health Organ. 2013, 91, 501–508. [Google Scholar] [CrossRef]
- McLeod, R.; Boyer, K.; Karrison, T.; Kasza, K.; Swisher, C.; Roizen, N.; Jalbrzikowski, J.; Remington, J.; Heydemann, P.; Noble, A.G.; et al. Outcome of Treatment for Congenital Toxoplasmosis, 1981–2004: The National Collaborative Chicago-Based, Congenital Toxoplasmosis Study. Clin. Infect. Dis. 2006, 42, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Berrébi, A.; Assouline, C.; Bessières, M.-H.; Lathière, M.; Cassaing, S.; Minville, V.; Ayoubi, J.-M. Long-term outcome of children with congenital toxoplasmosis. Am. J. Obstet. Gynecol. 2010, 203, 552.e1–552.e6. [Google Scholar] [CrossRef]
- Mandelbrot, L.; Kieffer, F.; Sitta, R.; Laurichesse-Delmas, H.; Winer, N.; Mesnard, L.; Berrebi, A.; Le Bouar, G.; Bory, J.-P.; Cordier, A.-G.; et al. Prenatal therapy with pyrimethamine + sulfadiazine vs spiramycin to reduce placental transmission of toxoplasmosis: A multicenter, randomized trial. Am. J. Obstet. Gynecol. 2018, 219, 386.e1–386.e9. [Google Scholar] [CrossRef]
- Valentini, P.; Buonsenso, D.; Barone, G.; Serranti, D.; Calzedda, R.; Ceccarelli, M.; Speziale, D.; Ricci, R.; Masini, L. Spiramycin/cotrimoxazole versus pyrimethamine/sulfonamide and spiramycin alone for the treatment of toxoplasmosis in pregnancy. J. Perinatol. 2015, 35, 90–94. [Google Scholar] [CrossRef]
- Cortina-Borja, M.; Tan, H.K.; Wallon, M.; Paul, M.; Prusa, A.; Buffolano, W.; Malm, G.; Salt, A.; Freeman, K.; Petersen, E.; et al. Prenatal Treatment for Serious Neurological Sequelae of Congenital Toxoplasmosis: An Observational Prospective Cohort Study. PLoS Med. 2010, 7, e1000351. [Google Scholar] [CrossRef]
- Roizen, N.; Swisher, C.N.; Stein, M.A.; Hopkins, J.; Boyer, K.M.; Holfels, E.; Mets, M.B.; Stein, L.; Patel, D.; Meier, P. Neurologic and developmental outcome in treated congenital toxoplasmosis. Pediatrics 1995, 95, 11–20. [Google Scholar]
- McAuley, J.; Boyer, K.M.; Patel, D.; Mets, M.; Swisher, C.; Roizen, N.; Wolters, C.; Stein, L.; Stein, M.; Schey, W.; et al. Early and Longitudinal Evaluations of Treated Infants and Children and Untreated Historical Patients with Congenital Toxoplasmosis: The Chicago Collaborative Treatment Trial. Clin. Infect. Dis. 1994, 18, 38–72. [Google Scholar] [CrossRef]
- Picone, O.; Fuchs, F.; Benoist, G.; Binquet, C.; Kieffer, F.; Wallon, M.; Wehbe, K.; Mandelbrot, L.; Villena, I. Toxoplasmosis screening during pregnancy in France: Opinion of an expert panel for the CNGOF. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101814. [Google Scholar] [CrossRef]
- Guerina, N.G.; Hsu, H.-W.; Meissner, H.C.; Maguire, J.H.; Lynfield, R.; Stechenberg, B.; Abroms, I.; Pasternack, M.S.; Hoff, R.; Eaton, R.B.; et al. Neonatal Serologic Screening and Early Treatment for Congenital Toxoplasma gondii Infection. N. Engl. J. Med. 1994, 330, 1858–1863. [Google Scholar] [CrossRef]
- Lebech, M.; Andersen, O.; Christensen, N.C.; Hertel, J.; Nielsen, H.E.; Peitersen, B.; Rechnitzer, C.; Larsen, S.O.; Nørgaard-Pedersen, B.; Petersen, E. Feasibility of neonatal screening for toxoplasma infection in the absence of prenatal treatment. Lancet 1999, 353, 1834–1837. [Google Scholar] [CrossRef]
- Sever, J.L.; Ellenberg, J.H.; Ley, A.C.; Madden, D.L.; A Fuccillo, D.; Tzan, N.R.; Edmonds, D.M. Toxoplasmosis: Maternal and pediatric findings in 23,000 pregnancies. Pediatrics 1988, 82, 181–192. [Google Scholar] [CrossRef]
- Setian, N.; Andrade, R.; Kuperman, H.; Della Manna, T.; Dichtchekenian, V.; Damiani, D. Precocious Puberty: An Endocrine Manifestation in Congenital Toxoplasmosis. J. Pediatr. Endocrinol. Metab. 2002, 15, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Meenken, C.; Assies, J.; van Nieuwenhuizen, O.; der Maat, W.G.H.-V.; van Schooneveld, M.J.; Delleman, W.J.; Kinds, G.; Rothova, A. Long term ocular and neurological involvement in severe congenital toxoplasmosis. Br. J. Ophthalmol. 1995, 79, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.; Kasza, K.; Jalbrzikowski, J.; Noble, A.G.; Latkany, P.; Kuo, A.; Mieler, W.; Meyers, S.; Rabiah, P.; Boyer, K.; et al. Longitudinal Study of New Eye Lesions in Children with Toxoplasmosis Who Were Not Treated During the First Year of Life. Am. J. Ophthalmol. 2008, 146, 375–384.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mets, M.B.; Holfels, E.; Boyer, K.M.; Swisher, C.N.; Roizen, N.; Stein, L.; Stein, M.; Hopkins, J.; Withers, S.; Mack, D.; et al. Eye Manifestations of Congenital Toxoplasmosis. Am. J. Ophthalmol. 1996, 122, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Wallon, M.; Kodjikian, L.; Binquet, C.; Garweg, J.; Fleury, J.; Quantin, C.; Peyron, F. Long-Term Ocular Prognosis in 327 Children With Congenital Toxoplasmosis. Pediatrics 2004, 113, 1567–1572. [Google Scholar] [CrossRef]
- Peyron, F.; Garweg, J.G.; Wallon, M.; Descloux, E.; Rolland, M.; Barth, J. Long-term Impact of Treated Congenital Toxoplasmosis on Quality of Life and Visual Performance. Pediatr. Infect. Dis. J. 2011, 30, 597–600. [Google Scholar] [CrossRef]
- Wallon, M.; Garweg, J.G.; Abrahamowicz, M.; Cornu, C.; Vinault, S.; Quantin, C.; Bonithon-Kopp, C.; Picot, S.; Peyron, F.; Binquet, C. Ophthalmic Outcomes of Congenital Toxoplasmosis Followed Until Adolescence. Pediatrics 2014, 133, e601–e608. [Google Scholar] [CrossRef] [Green Version]
- Vishnevskia-Dai, V.; Achiron, A.; Buhbut, O.; Berar, O.V.; Musika, A.A.; Elyashiv, S.M.; Hecht, I. Chorio-retinal toxoplasmosis: Treatment outcomes, lesion evolution and long-term follow-up in a single tertiary center. Int. Ophthalmol. 2020, 40, 811–821. [Google Scholar] [CrossRef]
- Lago, E.G.; Endres, M.M.; Scheeren, M.F.D.C.; Fiori, H.H. Ocular Outcome of Brazilian Patients With Congenital Toxoplasmosis. Pediatr. Infect. Dis. J. 2021, 40, e21–e27. [Google Scholar] [CrossRef]
- Felix, J.P.F.; Lira, R.P.C.; Grupenmacher, A.T.; Filho, H.L.G.D.A.; Cosimo, A.B.; Nascimento, M.A.; Arieta, C.E.L. Long-term Results of Trimethoprim-Sulfamethoxazole Versus Placebo to Reduce the Risk of Recurrent Toxoplasma gondii Retinochoroiditis. Am. J. Ophthalmol. 2020, 213, 195–202. [Google Scholar] [CrossRef]
- Saxon, S.A.; Knight, W.; Reynolds, D.W.; Stagno, S.; Alford, C.A. Intellectual deficits in children born with subclinical congenital toxoplasmosis: A preliminary report. J. Pediatr. 1973, 82, 792–797. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Stevens, H.; Pedersen, C.B.; Nørgaard-Pedersen, B.; Mortensen, P.B. Toxoplasma Infection and Later Development of Schizophrenia in Mothers. Am. J. Psychiatry 2011, 168, 814–821. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Mortensen, P.B.; Norgaard-Pedersen, B.; Postolache, T.T. Toxoplasma gondii Infection and Self-directed Violence in Mothers. Arch. Gen. Psychiatry 2012, 69, 1123–1130. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.-M.; He, Z.-H.; Xie, Y.-T.; Hide, G.; Lai, D.-H.; Lun, Z.-R. The association between Toxoplasma gondii infection and postpartum blues. J. Affect. Disord. 2019, 250, 404–409. [Google Scholar] [CrossRef]
- Foulon, W.; Naessens, A.; Lauwers, S.; De Meuter, F.; Amy, J.J. Impact of primary prevention on the incidence of toxoplasmosis during pregnancy. Obstet. Gynecol. 1988, 72, 363–366. [Google Scholar] [CrossRef]
- Oliveira, L.M.G.B.; Jones, J.L.; Azevedo-Silva, J.; Alves, C.C.; Oréfice, F.; Addiss, D.G. Highly Endemic, Waterborne Toxoplasmosis in North Rio de Janeiro State, Brazil. Emerg. Infect. Dis. 2003, 9, 55–62. [Google Scholar] [CrossRef]
- Dubey, J.P.; Kotula, A.W.; Sharar, A.; Andrews, C.D.; Lindsay, D. Effect of High Temperature on Infectivity of Toxoplasma gondii Tissue Cysts in Pork. J. Parasitol. 1990, 76, 201–204. [Google Scholar] [CrossRef]
- Lindsay, D.S.; Collins, M.V.; Holliman, D.; Flick, G.J.; Dubey, J.P. Effects of High-Pressure Processing on Toxoplasma gondii Tissue Cysts in Ground Pork. J. Parasitol. 2006, 92, 195–196. [Google Scholar] [CrossRef] [Green Version]
- Kotula, A.W.; Dubey, J.P.; Sharar, A.K.; Andrews, C.D.; Shen, S.K.; Lindsay, D. Effect of Freezing on Infectivity of Toxoplasma gondii Tissue Cysts in Pork. J. Food Prot. 1991, 54, 687–690. [Google Scholar] [CrossRef]
- Lundén, A.; Uggla, A. Infectivity of Toxoplasma gondii in mutton following curing, smoking, freezing or microwave cooking. Int. J. Food Microbiol. 1992, 15, 357–363. [Google Scholar] [CrossRef]
- Buffolano, W.; Gilbert, R.; Holland, F.J.; Fratta, D.; Palumbo, F.; Ades, A.E. Risk factors for recent toxoplasma infection in pregnant women in Naples. Epidemiol. Infect. 1996, 116, 347–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnekulasuriya, M.R.; Johnson, J.D.; Holliman, R.E. Detection of Toxoplasma gondii in cured meats. Int. J. Food Microbiol. 1998, 45, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Opsteegh, M.; Haveman, R.; Swart, A.; Mensink-Beerepoot, M.; Hofhuis, A.; Langelaar, M.; van der Giessen, J. Seroprevalence and risk factors for Toxoplasma gondii infection in domestic cats in The Netherlands. Prev. Vet. Med. 2012, 104, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, S.; Evans, A.; Bradbury, R. The efficacy of collar-mounted devices in reducing the rate of predation of wildlife by domestic cats. Appl. Anim. Behav. Sci. 2005, 94, 273–285. [Google Scholar] [CrossRef]
- Frenkel, J.K.; Pfefferkorn, E.R.; Smith, D.D.; Fishback, J.L. Prospective vaccine prepared from a new mutant of Toxoplasma gondii for use in cats. Am. J. Vet. Res. 1991, 52, 759–763. [Google Scholar]
- Buxton, D.; Thomson, K.; Maley, S.; Wright, S.; Bos, H. Vaccination of sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to challenge when pregnant. Vet. Rec. 1991, 129, 89–93. [Google Scholar] [CrossRef]
- Hotop, A.; Hlobil, H.; Gross, U. Efficacy of Rapid Treatment Initiation Following Primary Toxoplasma gondii Infection During Pregnancy. Clin. Infect. Dis. 2012, 54, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Wallon, M.; Peyron, F.; Cornu, C.; Vinault, S.; Abrahamowicz, M.; Kopp, C.B.; Binquet, C. Congenital Toxoplasma Infection: Monthly Prenatal Screening Decreases Transmission Rate and Improves Clinical Outcome at Age 3 Years. Clin. Infect. Dis. 2013, 56, 1223–1231. [Google Scholar] [CrossRef] [Green Version]
- Prusa, A.-R.; Kasper, D.C.; Pollak, A.; Gleiss, A.; Waldhoer, T.; Hayde, M. The Austrian Toxoplasmosis Register, 1992–2008. Clin. Infect. Dis. 2015, 60, e4–e10. [Google Scholar] [CrossRef] [Green Version]
- Guy, E.C.; Joynson, D.H. Potential of the polymerase chain reaction in the diagnosis of active Toxoplasma infection by detection of parasite in blood. J. Infect. Dis. 1995, 172, 319–322. [Google Scholar] [CrossRef]
Reference | No. | Observation Period (Years) | Finding(s) |
---|---|---|---|
Wallon, 2014 [47] | 477 | 10.5 | Two percent of the patients developed severe neurological abnormalities, whereas 30 percent of the treated patients developed chorioretinitis at a median age of 3.1 years. However, most of the patients in this study who had developed chorioretinitis had normal vision, with 81 percent developing unilateral lesions and 73 percent developing bilateral lesions. Less than 2 percent of these patients developed deterioration in their vision. |
Berrébi, 2010 [31] | 666 | 20 | A total of 112 (17%) infants who were born to mothers treated with either spiramycin alone or in combination with pyrimethamine-sulfadoxine were diagnosed with congenital toxoplasmosis. Among the children diagnosed with congenital toxoplasmosis, 79 children did not have symptoms of their congenital infection (74%), 28 children had chorioretinitis (26%), and one child had serious neurological symptoms. |
Peyron, 2011 [46] | 126 | Not reported | In total, 11.8% (12 patients) exhibited neurological symptoms of their infection, whereas 58.8% (60 patients) developed ocular lesions, and 12.7% (13 patients) had reduced visual function. However, the overall quality of life score was close to the general population (74.7 ± 14.2 as compared to 73.7 ± 15.3), and their visual ability was only slightly impaired. |
Vishnevskia-Dai, 2020 [48] | 22 | 2007–2016 | The ocular lesion initially reduced in size; however, there was a limited reduction in the size of the lesion thereafter. |
Lago, 2021 [49] | 77 | 1996–2017 | A lesser amount of new retinochoroidal lesions developed in patients who received treatment earlier on in the infection; 33.3% of patients who were treated before 2 months old developed these lesions, whereas those treated before 4 months old developed these lesions 77.8% of the time. |
Fernandes, 2020 [50] | 141 | 1 | Among the patients treated with a placebo as compared to trimethoprim-sulfamethoxazole for their unilateral retinochoroiditis, there was a significantly greater chance of recurrence during the 6-year long follow-up. |
McLeod, 2006 [30] | 120 | 1981–2004 | Infants without severe neurological impairment who were treated with pyrimethamine and sulfadiazine had normal cognitive and auditory outcomes, whereas the treatment of infants with moderate to severe neurological impairment resulted in normal neurological outcomes in more than 72% of patients. |
Reference | No. | Observation Period (Years) | Finding(s) |
---|---|---|---|
Saxon, 1973 [51] | 16 | Not reported | The subclinical/untreated children had a significantly lower mean intelligence quotient (IQ) compared to the uninfected children. |
Phan, 2008 [43] | 38 | 1981–2005 | Roughly 90 percent of infected children developed new-onset chorioretinitis lesions without treatment, with this risk continuing into adulthood. |
Pedersen, 2011 [52] | 45,609 | 1992–2008 | This study found a correlation between the levels of T. gondii IgG antibodies and schizophrenia, with a higher risk being associated with increasing antibody levels. |
Pedersen, 2021 [53] | 45,788 | 1992–2006 | This study found that infected mothers had an increased risk of self-directed harm compared to uninfected mothers, with a higher risk being associated with increasing antibody levels. Additionally, the risk of attempting suicide and a successful suicide were 1.81 and 2.05, respectively, suggesting an increased risk of self-directed injury among infected women. |
Gao, 2019 [54] | 475 | Not reported | This study did not find an association between infection and postpartum depression; however, the small sample size of this study may have skewed this result. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deganich, M.; Boudreaux, C.; Benmerzouga, I. Toxoplasmosis Infection during Pregnancy. Trop. Med. Infect. Dis. 2023, 8, 3. https://doi.org/10.3390/tropicalmed8010003
Deganich M, Boudreaux C, Benmerzouga I. Toxoplasmosis Infection during Pregnancy. Tropical Medicine and Infectious Disease. 2023; 8(1):3. https://doi.org/10.3390/tropicalmed8010003
Chicago/Turabian StyleDeganich, Myla, Crystal Boudreaux, and Imaan Benmerzouga. 2023. "Toxoplasmosis Infection during Pregnancy" Tropical Medicine and Infectious Disease 8, no. 1: 3. https://doi.org/10.3390/tropicalmed8010003
APA StyleDeganich, M., Boudreaux, C., & Benmerzouga, I. (2023). Toxoplasmosis Infection during Pregnancy. Tropical Medicine and Infectious Disease, 8(1), 3. https://doi.org/10.3390/tropicalmed8010003