1. Introduction
The devastating impact of coronavirus disease 2019 (COVID-19) pandemic has been manifested by the latest World Health Organization statistics, which reported more than 590 million confirmed cases with more than 6.4 million deaths as a result of the disease [
1]. Large-scale vaccination against COVID-19 is regarded as the most promising approach to achieve population immunity, considering the currently limited effective medication options and the incessantly increasing economic burden of the pandemic [
2,
3].
With the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with high transmissibility, such as the Omicron variant, many countries expedited vaccination with booster doses and extended immunization campaigns towards children and adolescents [
4]. Individuals younger than 20 years of age who have been infected with SARS-CoV-2 represented up to 21% of national COVID-19 caseloads across 103 countries as of March 2022 [
5].
Vaccination against SARS-CoV-2 infection has been debatable for adolescents aged 12–15 years and even more controversial for children under 12 years of age [
6]. Despite the large number of cases among children and adolescents in some countries, COVID-19 generally poses a minor risk to this age group, with less than 2% of symptomatic cases requiring hospitalization [
7,
8,
9]. As for mortality figures, age-disaggregated data reported to the WHO as of October 2021 showed that children and young adolescents aged 5–14 years accounted for 0.1% of the total global deaths from COVID-19 [
10]. However, there are several arguments in favor of vaccinating children and adolescents. For example, vaccination can protect against prolonged COVID-19 symptoms, referred to as “long COVID-19”, which can develop even after mild or moderate SARS-CoV-2 infections [
11,
12,
13]. It can also guard against pediatric inflammatory, multisystem syndrome temporarily associated with SARS-CoV-2 (PIMS-TS), a hyperinflammatory condition that can complicate recovery from COVID-19 [
14,
15]. Vaccinating children can further help to avoid the closure of educational facilities, which is beneficial since lockdowns were shown to detrimentally impact children’s physical and mental health [
16]. Possible advantages of COVID-19 vaccination in children extend to involve the establishment of population immunity with reduction in virus circulation and lower possibility of emergence of virus variants [
17]. Nevertheless, disadvantages of COVID-19 vaccination in children should be considered, including: limited vaccine supplies in some countries with importance of prioritizing high-risk groups; possible adverse events following vaccination in children; and lower incidence of infection, severe disease, and mortality among children [
17].
Several widely used COVID-19 vaccines have been granted emergency use authorization or full approval for children under 18 years of age in at least one country [
18]. These include the U.S.-based Pfizer-BioNTech COVID-19 vaccine for children aged 5 years or older [
19], Moderna (Spikevax) COVID-19 vaccine for children aged 12 years or older [
20], China-based Sinopharm BBIBP and Sinovac-CoronaVac COVID-19 vaccines for children as young as 3 years [
21], and India-based Covaxin for children aged 12–18 years [
21].
Immunizing children and adolescents largely depend on their parents’ or guardians’ decision. Findings of meta-analyses suggest that parents’ willingness to have their children receive a COVID-19 vaccine (61%) is lower than the general population’s intention to get vaccinated (73–75%) [
22,
23,
24]. Higher rates of COVID-19 vaccine hesitancy have been associated with the following variables: younger age, low income, low educational level, high reliance on social media as a source of information regarding the vaccines, low perceived risk from COVID-19 (high levels of complacency), low trust in scientists (low levels of confidence), and belief in conspiracy theories [
24,
25,
26]. The investigated factors that were linked to parents’ decision not to vaccinate their children against COVID-19 fall along the same lines [
22].
The current and previous evidence points to the high prevalence of COVID-19 vaccine hesitancy in a majority of Arab countries in the Middle East and North Africa (MENA) region [
27,
28]. For example, a study conducted across 13 Arab countries showed that only 27% of the respondents were confident regarding COVID-19 vaccines [
29]. Nevertheless, there is a shortage of studies evaluating parental attitudes towards COVID-19 vaccination in children in the Arab-speaking countries, which suggests a further need for such studies in the region. A strong predictor of parents’ acceptance to vaccinate their child against COVID-19 is their intention to receive the vaccine themselves [
22,
30]. The current COVID-19 immunization figures in the MENA region are relatively low, with <50% of the population having received full vaccination [
31]. Therefore, this observation is expected to be reflected upon the figures relating to acceptance of COVID-19 children vaccination in the region.
In Egypt, about 36% of the adult population completed their initial vaccination, while 12% are only partially vaccinated [
32]. The Egyptian national vaccination program began in January 2021, and the following vaccines were used: Pfizer-BioNTech, Oxford–AstraZeneca, Moderna, Johnson & Johnson’s Janssen COVID-19 Vaccine, Sputnik V, Sinopharm, and Sinovac, with the request from the public to register on an Egyptian government website to get vaccinated (
www.egcovac.mohp.gov.eg, accessed on 7 September 2022). Egypt approved Pfizer-BioNTech COVID-19 vaccine for children aged 12 to 15 on 28 November 2021.
The Parent Attitudes about Childhood Vaccines (PACV) is a valid tool that has been successfully used in many countries to delineate the parental vaccine hesitancy [
33,
34,
35,
36,
37]. It is a useful tool to predict under-immunization, particularly for children with parents having high PACV scores. Our study aimed to develop a validated Arabic version of the PACV survey instrument to collect COVID-19-related vaccination data in the Arab world. Since COVID-19 vaccination has been authorized for children aged 12 years and above in many Arabic countries [
38,
39], we aimed to use the survey to determine the extent of parents’ hesitancy towards vaccinating their children against COVID-19 in the Arab region.
4. Discussion
To the best of our knowledge, an Arabic-validated instrument that can evaluate parental hesitancy towards COVID-19 vaccination in the Arab world does not exist. In this paper, we validated the PACV questionnaire in Arabic. The differences between populations and cultures necessitate the assessment of the reliability and validity of survey instruments [
41].
Arab populations have different dialects; however, standard Arabic is the official written language regardless of the geographical location. Therefore, we used standard Arabic to translate and validate the PACV questionnaire among Egyptians. This Arabic tool is the first to undergo a thorough cross-cultural adaptation, translation, and validation process based on recommended guidelines [
42]. In the United Arab Emirates (UAE), Al Suwaidi et al. developed an Arabic version of the PACV tool; however, they only conducted forward and backward translations and calculated the Cronbach’s alpha for the Arabic PACV scores [
48].
During the forward and backward validation process, most questions were clear and easy to understand except for the word “shot”, which we replaced with the words “vaccination doses”. In addition, in question 6, we replaced “to get a shot” with “rather than getting vaccinated” to avoid any confusion. Finally, in question 7, the phrase “to get fewer vaccines” was not fully understood, so we added the word “doses” to alter the phrase into “to get fewer doses of vaccines”. To check for translation quality and the practical aspects of test administration, the translated scale was then pilot-tested with an Arabic-speaking individual, who deemed it functional and the information suitable. We faced challenges in translating sentences such as “children get more shots than are good for them” and “it is better for children to get fewer vaccines at the same time”, as they had no typical Arabic equivalent. Some participants commented on the question, “I am able to openly discuss my concerns about shots with my child’s doctor” with the information that they were not following up with a pediatrician anymore.
In this study, the Arabic version of PACV—made up of 15 questions—was organized into three factor domains: “Attitudes”, “Safety and efficacy”, and “Behavior”. This is identical to the original questionnaire, which had 15 items divided into three categories [
34]. The psychometric results of the Arabic version of the PACV were close to the values of the corresponding items in the Malay-validated version [
49]. Overall, the value of Cronbach’s alpha was 0.799, which meant it was stable and reliable over time. A low value for Cronbach’s alpha was obtained from the behavior sub-scale (0.573), which was still acceptable; however, the Arabic version of the questionnaire showed a high Cronbach’s alpha (0.74) for the attitude sub-scale and safety and efficacy (0.82). Similarly, in the Malay version, the value of Cronbach’s alpha was 0.77 and 0.54, 0.77, and 0.81 for each domain separately. The relatively low value of the behavior domain may be explained by the different context in which we tested the PACV tool. Furthermore, while the original PACV was tested before the era of the COVID-19 pandemic, our questionnaire was peculiarly validated for COVID-19 vaccination purposes. The debate about the different vaccines’ efficacy and safety have influenced the Arab population’s acceptance. In addition, the vaccines are not widely administered to all children in all countries due to different policies regarding the eligibility and stock availability.
In this study, the number of latent constructs (3) discovered through factor analysis that corresponded to these sub-domains was comparable to the number of PACV content domains identified a priori [
48]. However, during content validation, two items from the “Behavior” subdomain were identified as items with formative scale and excluded from EFA but retained as part of the demography. Three items were deleted due to poor factor loading of <0.3. Therefore, the validated final PACV-Malay version consisted of 12 items framed within three factor domains (a novel item was added) [
49]. Another large study conducted in three languages (Italian, French, and German) to identify the subdomains of the PACV using CFA and Moken scale analysis found that the German tool had 13 items, the French had 14 items, and the Italian tool had 11 items loaded on a single factor [
47].
Our research also revealed intriguing findings concerning parental views about childhood vaccination. We discovered that a higher number of parent respondents (92.4%) had denied or delayed the recommended COVID-19 vaccines. In the same way, Chen et al. conducted a meta-analysis on 29 studies (N = 68,327 people) chosen from 452 identified records [
22]. The estimated global vaccine acceptance rate was 61.4% (95% CI: 53.56–68.69%, I2 = 99.3%), with countries and regions ranging from 21.0% to 91.4 % [
22]. Our analysis showed that parents who contracted COVID-19 tended not to vaccinate their children against COVID-19, and this may be justified by the perception of severity for people who became infected and had no symptoms and thus felt there was no need to give the COVID-19 vaccine to their children. Interestingly our findings also showed that parents with university education tended not to give the vaccine to their children, and this was also related to the perception of severity and efficacy. Our findings further support the notion that an increasing overall score on the 15-item PACV is related to increased under-immunization. As a result, the improved PACV appears to accurately assess the underlying construct of vaccination reluctance.
Studies on parental attitude towards COVID-19 vaccination were conducted recently in the Arab countries of the MENA region. A noteworthy finding by Khatatbeh et al. was that according to the parent-reported coverage of COVID-19 vaccination in children, 32% vaccinated their children against COVID-19 [
50]. This result reported in eight MENA countries (Iraq, Jordan, Kuwait, Lebanon, Palestine, Qatar, Saudi Arabia, and the United Arab Emirates (UAE)) was much higher than the estimated proportion of non-hesitant parents reported in this study (8%). Likewise, Almalki et al. investigated parental COVID-19 vaccine hesitancy using the health belief model [
51]. The study that was conducted in Saudi Arabia reported parental vaccine hesitancy for children aged 5 to 11 years at a rate of 62%, which was lower compared to the findings of the current study (92%). Low confidence in vaccine safety or efficacy were the most relevant factors to be associated with parental COVID-19 vaccine hesitancy in the Saudi study [
51]. On the other hand, a lower rate of parental vaccine hesitancy was reported by Al Suwaidi et al. in the UAE, with only 12% of parents classified in the hesitant group [
48].
The literature addressing the determinants of COVID-19 vaccine hesitancy developed at a swift rate, which helped to understand the possible determinants of this concerning phenomenon [
27,
52,
53,
54,
55,
56]. Indeed, promoting vaccination against COVID-19 necessitates understanding whether people are willing to be vaccinated, the factors associated with their attitude toward COVID-19 vaccination, and the most trusted sources of information in their decision making [
52]. Interestingly, our findings showed that parents with university education and postgraduates tended not to give the vaccine to their children. This finding is consistent with a previous study, which found that undergraduate parents are more enthusiastic about vaccinating their children than higher-educated parents [
50]. Conflicting results were reported regarding the role of educational level in parental willingness to vaccinate their children against COVID-19, which mandates future studies to understand the role of education in parental attitude towards COVID-19 vaccination [
57,
58,
59].
In this study, neither age nor sex of the parents were significant determinants of COVID-19 vaccine hesitancy. To the contrary, children’s vaccination was found to be significantly related to the age of the parents in the recent study by Khatatbeh et al., with older participants showing lower levels of vaccine hesitancy [
50]. On the other hand, the study by Almalki et al. showed that females were more hesitant to vaccinate their children against COVID-19 [
51]. Therefore, a better depiction of the role of age and sex of the parents should be considered in any future work addressing parental vaccine hesitancy.
Strengths and Limitations
Our study’s strength is that it is the first to validate the PACV questionnaire for utilization in assessing COVID-19 vaccination hesitancy. In addition, we performed confirmatory factor analysis that confirmed the loading of different variable on the domain. Other similar studies that validated the PACV did not conduct CFA, even including the original study that developed this tool.
We recognize, however, that there are a few limitations that should be considered as follows: First, the study was carried out in the form of a web-based survey, which may have led to selection or non-response bias. It was, nevertheless, in line with the study objectives since it supervised the large-scale survey administration during a time when restrictions were in place. This strategy protected both interviewers and interviewees. Because of the prolonged lockdown and limited access to community members, this was the best option. Second, because the study was cross-sectional, it did not allow for an assessment of changes in COVID-19 vaccine acceptability over time, following broad efforts to persuade people to obtain the vaccination. However, we assumed that it would have no effect on the stability of replies because the Arabic version of PACV showed good dependability. Third, we did not assess the validity of the PACV questionnaire among Arabs residing in other Arab nations; nonetheless, as previously stated, formal Arabic is the most extensively spoken language in the area. Finally, we employed a non-random sampling strategy (convenient sampling method) to include the research population; nonetheless, due to the limited access to community members, this method was the most suitable.
Future work assessing vaccine hesitancy in general and parental vaccine hesitancy in particular is recommended to assess the religious, spiritual, and ethical aspects involved. This comes in light of previous evidence of their discernible role as determinants of vaccination hesitancy [
60,
61].