Multicenter Study of the Risk Factors and Outcomes of Bloodstream Infections Caused by Carbapenem-Non-Susceptible Acinetobacter baumannii in Indonesia
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Setting and Patients
2.2. Blood Culture and Antibiotic Resistance Test
2.3. Study Variables and Definitions
2.4. Statistical Analysis
3. Results
3.1. Risk Factors Associated with CNSAB Bacteremia
3.2. Risk Factors Associated with the Mortality of CNSAB and CSAB Bacteremia
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowak, P.; Paluchowska, P. Acinetobacter baumannii: Biology and drug resistance—Role of carbapenemases. Folia Histochem. Cytobiol. 2016, 54, 61–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.C.B.; Werlang, M.H.B.; Vandresen, D.F.; Fortes, P.C.N.; Pascotto, C.R.; Lúcio, L.C.; Ferreto, L.E.D. Genetic, antimicrobial resistance profile and mortality rates of Acinetobacter baumannii infection in Brazil: A systematic review. Narra J. 2022, 2, e68. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Tal-Jasper, R.; Katz, D.E.; Amrami, N.; Ravid, D.; Avivi, D.; Zaidenstein, R.; Lazarovitch, T.; Dadon, M.; Kaye, K.S.; Marchaim, D. Clinical and epidemiological significance of carbapenem resistance in Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 2016, 60, 3127–3131. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Q.; Zhao, C.; Chen, H.; Li, H.; Wang, H.; Cares Network, O. Prospective multi-center evaluation on risk factors, clinical characteristics and outcomes due to carbapenem resistance in Acinetobacter baumannii complex bacteraemia: Experience from the Chinese Antimicrobial Resistance Surveillance of Nosocomial Infections (CARES) Network. J. Med. Microbiol. 2020, 69, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.H.; Liao, C.H.; Lauderdale, T.L.; Ko, W.C.; Chen, Y.S.; Liu, J.W.; Lau, Y.J.; Wang, L.H.; Liu, K.S.; Tsai, T.Y.; et al. A multicenter study of risk factors and outcome of hospitalized patients with infections due to carbapenem-resistant Acinetobacter baumannii. Int. J. Infect. Dis. 2010, 14, e764-9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metan, G.; Sariguzel, F.; Sumerkan, B. Factors influencing survival in patients with multi-drug-resistant Acinetobacter bacteraemia. Eur. J. Intern. Med. 2009, 20, 540–544. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, S.I.; Hong, K.W.; Kim, Y.R.; Park, Y.J.; Kang, M.W. Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: Impact of appropriate antimicrobial therapy. J. Korean Med. Sci. 2012, 27, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Xue, W.; Tang, D.; Ding, J.; Zhao, B. Risk factors and outcomes of hospitalized patients with blood infections caused by multidrug-resistant Acinetobacter baumannii complex in a hospital of Northern China. Am. J. Infect. Control 2016, 44, e37–e39. [Google Scholar] [CrossRef]
- Lemos, E.V.; de la Hoz, F.P.; Einarson, T.R.; McGhan, W.F.; Quevedo, E.; Castaneda, C.; Kawai, K. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2014, 20, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Piperaki, E.T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef]
- Anggraini, D.; Santosaningsih, D.; Dwi Endraswari, P.; Moehario, L.; Riezke, C.V.; Enty, E.; Marindra, F.; Verbrugh, H.A. Epidemiology study of Acinetobacter spp. isolated from blood culture in Indonesia. Int. J. Infect. Dis. 2020, 101, 62–63. [Google Scholar] [CrossRef]
- Anggraini, D.; Kuntaman, K.; Karuniawati, A.; Santosaningsih, D.; Saptawati, L.; Cahyarini; Puspandari, N.; Haryadi, B. Surveilans Resistansi Antibiotik Rumah Sakit Kelas Dan B Indonesia Tahun 2020; Puspandari, N., Ed.; Deepublish: Yogyakarta, Indoneisa, 2020. [Google Scholar]
- Ng, T.M.; Teng, C.B.; Lye, D.C.; Apisarnthanarak, A. A multicenter case-case control study for risk factors and outcomes of extensively drug-resistant Acinetobacter baumannii bacteremia. Infect. Control Hosp. Epidemiol. 2014, 35, 49–55. [Google Scholar] [CrossRef]
- Smolyakov, R.; Borer, A.; Riesenberg, K.; Schlaeffer, F.; Alkan, M.; Porath, A.; Rimar, D.; Almog, Y.; Gilad, J. Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: Risk factors and outcome with ampicillin-sulbactam treatment. J. Hosp. Infect. 2003, 54, 32–38. [Google Scholar] [CrossRef]
- Du, X.; Xu, X.; Yao, J.; Deng, K.; Chen, S.; Shen, Z.; Yang, L.; Feng, G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am. J. Infect. Control 2019, 47, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, T.; Marchaim, D.; Awali, R.A.; Krishna, A.; Johnson, P.; Tansek, R.; Chaudary, K.; Lephart, P.; Slim, J.; Hothi, J.; et al. Epidemiology of bloodstream infections caused by Acinetobacter baumannii and impact of drug resistance to both carbapenems and ampicillin-sulbactam on clinical outcomes. Antimicrob. Agents Chemother. 2013, 57, 6270–6275. [Google Scholar] [CrossRef] [Green Version]
- Routsi, C.; Pratikaki, M.; Platsouka, E.; Sotiropoulou, C.; Nanas, S.; Markaki, V.; Vrettou, C.; Paniara, O.; Giamarellou, H.; Roussos, C. Carbapenem-resistant versus carbapenem-susceptible Acinetobacter baumannii bacteremia in a Greek intensive care unit: Risk factors, clinical features and outcomes. Infection 2010, 38, 173–180. [Google Scholar] [CrossRef]
- Liu, Q.; Li, W.; Du, X.; Li, W.; Zhong, T.; Tang, Y.; Feng, Y.; Tao, C.; Xie, Y. Risk and Prognostic Factors for Multidrug-Resistant Acinetobacter Baumannii Complex Bacteremia: A Retrospective Study in a Tertiary Hospital of West China. PLoS ONE 2015, 10, e0130701. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.C.; Chiu, S.K.; Hsueh, P.R.; Wang, N.C.; Wang, C.C.; Fang, C.T. Risk factors for healthcare-associated extensively drug-resistant Acinetobacter baumannii infections: A case-control study. PLoS ONE 2014, 9, e85973. [Google Scholar] [CrossRef]
- Kumar, A.; Randhawa, V.S.; Nirupam, N.; Rai, Y.; Saili, A. Risk factors for carbapenem-resistant Acinetobacter baumanii blood stream infections in a neonatal intensive care unit, Delhi, India. J. Infect. Dev. Ctries. 2014, 8, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Jung, J.Y.; Kang, Y.A.; Lim, J.E.; Kim, E.Y.; Lee, S.K.; Park, S.C.; Chung, K.S.; Park, B.H.; Kim, Y.S.; et al. Risk factors for occurrence and 30-day mortality for carbapenem-resistant Acinetobacter baumannii bacteremia in an intensive care unit. J. Korean Med. Sci. 2012, 27, 939–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, T.; Xiao, T.; Guo, L.; Yu, W.; Chen, Y.; Zheng, B.; Huang, C.; Yu, X.; Xiao, Y. Retrospective comparative analysis of risk factors and outcomes in patients with carbapenem-resistant Acinetobacter baumannii bloodstream infections: Cefoperazone-sulbactam associated with resistance and tigecycline increased the mortality. Infect. Drug Resist. 2018, 11, 2021–2030. [Google Scholar] [CrossRef] [Green Version]
- Anggraini, D.; Santosaningsih, D.; Saharman, Y.R.; Endraswari, P.D.; Cahyarini, C.; Saptawati, L.; Hayati, Z.; Farida, H.; Siregar, C.; Pasaribu, M. Distribution of carbapenemase genes among carbapenem-non-susceptible Acinetobacter baumanii blood isolates in Indonesia: A Multicenter Study. Antibiotics 2022, 11, 366. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS): Guide to Enrolment for Antimicrobial Resistance National Focal Points. Available online: https://apps.who.int/iris/handle/10665/251556 (accessed on 27 May 2022).
- Paterson, D.L.; Ko, W.C.; Von Gottberg, A.; Mohapatra, S.; Casellas, J.M.; Goossens, H.; Mulazimoglu, L.; Trenholme, G.; Klugman, K.P.; Bonomo, R.A.; et al. International prospective study of Klebsiella pneumoniae bacteremia: Implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann. Intern. Med. 2004, 140, 26–32. [Google Scholar] [CrossRef]
- Henderson, H.; Luterbach, C.L.; Cober, E.; Richter, S.S.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; Kaye, K.S.; Evans, S. The Pitt bacteremia score predicts mortality in nonbacteremic infections. Clin. Infect. Dis. 2020, 70, 1826–1833. [Google Scholar] [CrossRef]
- Oltean, S.; Ţăţulescu, D.; Bondor, C.; Slavcovici, A.; Cismaru, C.; Lupşe, M.; Muntean, M.; Jianu, C.; Marcu, C.; Oltean, M. Charlson’s weighted index of comorbidities is useful in assessing the risk of death in septic patients. J. Crit. Care 2012, 27, 370–375. [Google Scholar] [CrossRef]
- Johnson, S.W.; Anderson, D.J.; May, D.B.; Drew, R.H. Utility of a clinical risk factor scoring model in predicting infection with extended-spectrum β-lactamase-producing enterobacteriaceae on hospital admission. Infect. Control Hosp. Epidemiol. 2013, 34, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Klompas, M.; Branson, R.; Eichenwald, E.C.; Greene, L.R.; Howell, M.D.; Lee, G.; Magill, S.S.; Maragakis, L.L.; Priebe, G.P.; Speck, K.; et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals: 2014 update. Infect. Control. Hosp. Epidemiol. 2014, 35 (Suppl. 2), S133–S154. [Google Scholar] [CrossRef] [Green Version]
- Marschall, J.; Mermel, L.A.; Fakih, M.; Hadaway, L.; Kallen, A.; O’Grady, N.P.; Pettis, A.M.; Rupp, M.E.; Sandora, T.; Maragakis, L.L.; et al. Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 2014, 35 (Suppl. 2), S89–S107. [Google Scholar] [CrossRef] [Green Version]
- O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the prevention of intravascular catheter-related infections. Clin. Infect. Dis. 2011, 52, e162–e193. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021. [Google Scholar]
- Hampshire, P.A.; Guha, A.; Strong, A.; Parsons, D.; Rowan, P. An evaluation of the Charlson co-morbidity score for predicting sepsis after elective major surgery. Indian J. Crit. Care Med. 2011, 15, 30–36. [Google Scholar] [CrossRef] [Green Version]
Variable | Bacteremia | Total | OR (95% CI) | p-Value | |
---|---|---|---|---|---|
CNSAB (n = 72) n (%) | CSAB (n = 72) n (%) | ||||
Sex | 1.59 (0.81–3.11) | 0.170 | |||
Male | 39 (54.2) | 47 (65.3) | 86 (59.7) | ||
Female | 33 (45.8) | 25 (34.7) | 58 (40.3) | ||
Age, median (IQR) a | 41 (1–57) | 40 (4–56) | 40 (3–56) | 0.810 | |
Ward | 2.35 (1.06–5.19) | 0.033 * | |||
Intensive care unit | 60 (83.3) | 49 (68.1) | 109 (75.7) | ||
Non-intensive care unit | 12 (16.7) | 23 (31.9) | 35 (24.3) | ||
Referred from another hospital | 40 (55.6) | 35 (48.6) | 75 (52.1) | 1.32 (0.69–2.55) | 0.400 |
Origin of isolate | |||||
Hospital | 53 (73.6) | 57 (79.2) | 110 (76.4) | 0.73 (0.34–1.59) | 0.430 |
Community | 19 (26.4) | 15 (20.8) | 34 (23.6) | ||
Length of onset, median (IQR) a | 6 (3–12) | 6 (3–10) | 6 (3–11) | 0.980 | |
Length of stay, median (IQR) a | 17 (9–28) | 13 (7–23) | 14 (8–26) | 0.150 | |
Days to mortality, median (IQR) a | 4 (2–8) | 2 (1–8) | 3 (1–8) | 0.150 | |
Outcome | 1.39 (0.72–2.69) | 0.320 | |||
Recovered | 31 (43.1) | 37 (51.4) | 68 (47.2) | ||
Died | 41 (56.9) | 35 (48.6) | 76 (52.8) | ||
Bacteremia source | 3.18 (0.62–16.33) | 0.220 | |||
Primary | 2 (2.8) | 6 (8.3) | 8 (5.6) | ||
Secondary | 70 (97.2) | 66 (97.1) | 136 (94.5) | ||
Bacteremia source | 3.49 (1.73–7.03) | <0.001 ** | |||
Primary or another secondary | 19 (26.4) | 40 (55.6) | 59 (41.0) | ||
Secondary-lower respiratory tract | 53 (73.6) | 32 (44.4) | 85 (59.0) | ||
Pitt Bacteremia Score, median (IQR) a | 2 (2–6) | 2 (0–6) | 2 (0–6) | 0.390 | |
Pitt Bacteremia Score ≥ 4 | 29 (40.3) | 30 (41.7) | 59 (41.0) | 0.94 (0.49–1.84) | 0.870 |
Fever | 13 (18.1) | 17 (23.6) | 30 (20.8) | 0.71 (0.32–1.60) | 0.410 |
Hypotension | 19 (26.4) | 12 (16.7) | 31 (21.5) | 1.79 (0.80–4.04) | 0.160 |
Use of mechanical ventilator | 48 (66.7) | 36 (50.0) | 84 (58.3) | 2.00 (1.02–3.92) | 0.043 * |
Cardiac arrest | 8 (11.1) | 9 (12.5) | 17 (11.8) | 0.88 (0.32–2.41) | 0.800 |
State of consciousness | 0.89 (0.46–1.72) | 0.740 | |||
Alert | 40 (55.6) | 38 (52.8) | 78 (54.2) | ||
Disturbance | 32 (44.4) | 34 (47.2) | 66 (45.8) | ||
Charlson Comorbidity Index, median (IQR) a | 1 (0–3) | 1 (0–2) | 1 (0–2) | 0.740 | |
Charlson Comorbidity Index ≥ 4 | 18 (25.0) | 15 (20.8) | 33 (22.9) | 1.27 (0.58–2.76) | 0.550 |
Diabetes mellitus | 19 (26.4) | 6 (8.3) | 25 (17.4) | 3.94 (1.47–10.58) | 0.004 * |
Use of central venous catheter | 42 (58.3) | 24 (33.3) | 66 (45.8) | 2.80 (1.42–5.52) | 0.003 * |
Previous use of antibiotics history | 45 (62.5) | 36 (50.0) | 81 (56.3) | 1.67 (0.86–3.24) | 0.130 |
Surgical history | 34 (47.2) | 36 (50.0) | 70 (48.6) | 0.90 (0.47–1.72) | 0.740 |
Immunosuppressant therapy history | 4 (5.6) | 6 (8.3) | 10 (6.9) | 0.65 (0.18–2.40) | 0.510 |
Hospital treatment history | 34 (47.2) | 37 (51.4) | 71 (49.3) | 0.85 (0.44–1.63) | 0.620 |
Variable | aOR | 95% CI | p-Value |
---|---|---|---|
Source of infection-lower respiratory tract | 3.24 | 1.58–6.63 | 0.001 * |
Use of central venous catheter | 2.56 | 1.27–5.18 | 0.009 * |
Variable | Death (n = 41) n (%) | Recovered (n = 31) n (%) | Total (n = 72) n (%) | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Sex | 0.60 (0.23–1.55) | 0.290 | |||
Male | 20 (48.8) | 19 (61.3) | 39 (54.2) | ||
Female | 21 (51.2 | 12 (38.7) | 33 (45.8) | ||
Age, median (IQR) a | 48 (22–59) | 18 (0–47) | 41 (1–57) | 0.018 * | |
Ward | 0.61 (0.17–2.25) | 0.460 | |||
Intensive care unit | 33 (80.5) | 27 (87.1) | 60 (83.3) | ||
Non-intensive care unit | 8 (20.0) | 4 (12.9) | 12 (16.7) | ||
Days to mortality, median (IQR) a | 4 (2–8) | 4 (2–8) | NA | ||
Other hospital referrals, median (IQR) a | 24 (58.5) | 16 (51.6) | 40 (55.6) | 1.32 (0.52–3.39) | 0.560 |
Origin of isolate | |||||
Hospital | 32 (78.0) | 21 (67.7) | 53 (73.6) | 1.69 (0.59–4.87) | 0.330 |
Community | 9 (22.0) | 10 (32.3) | 19 (26.4) | ||
Bacteremia source | NA | 0.210 | |||
Primary | 2 (4.9) | 0 (0.0) | 2 (2.8) | ||
Secondary | 34 (95.1) | 31 (100.0) | 70 (97.2) | ||
Bacteremia source | 3.07(1.03–9.11) | 0.039 * | |||
Primary + another secondary | 7 (17.1) | 12 (38.7) | 19 (26.1) | ||
Secondary-lower respiratory tract | 34 (82.9) | 19 (61.3) | 53 (73.6) | ||
Pitt Bacteremia score, median (IQR) a | 4 (2–6) | 2 (0–2) | 2 (2–6) | <0.001 ** | |
Pitt Bacteremia Score ≥ 4 | 26 (63.4) | 3 (9.7) | 29 (40.3) | 16.18 (4.20–62.38) | <0.001 ** |
Fever | 9 (22.0) | 4 (12.9) | 13 (18.1) | 1.90 (0.53–6.86) | 0.320 |
Hypotension | 16 (39.0) | 3 (9.7) | 19 (26.4) | 5.97 (1.56–22.95) | 0.005 * |
Use of mechanical ventilator | 28 (68.3) | 21 (67.7) | 49 (68.1) | 0.92 (0.34–2.48) | 0.960 |
Cardiac arrest | 8 (19.5) | 0 (0.0) | 8 (11.1) | NA | 0.009 * |
State of consciousness | 14.54 (4.2–50.19) | <0.001 ** | |||
Alert | 13 (31.7) | 27 (87.1) | 40 (55.6) | ||
Disturbance | 28 (68.3) | 4 (12.9) | 32 (44.4) | ||
Charlson Comorbidity Index, median (IQR) a | 2 (0–4) | 0 (0–2) | 1 (0–3) | <0.001 ** | |
Charlson Comorbidity Index ≥ 4 | 16 (39.0) | 2 (6.5) | 18 (25.0) | 9.28 (1.94–44.35) | 0.002 * |
Diabetes mellitus | 12 (29.3) | 7 (22.6) | 19 (26.4) | 1.41 (0.48–4.17) | 0.520 |
Liver disorder | 1 (2.4) | 0 (0.0) | 1 (1.4) | NA | 0.380 |
Use of central venous catheter | 27 (65.9) | 15 (48.4) | 42 (58.3) | 2.06 (0.79–5.35) | 0.140 |
Previous use of antibiotics history | 28 (68.3) | 17 (54.8) | 45 (62.5) | 1.77 (0.68–4.66) | 0.240 |
Surgical history | 21 (51.2) | 13 (41.9) | 34 (47.2) | 1.45 (0.57–3.72) | 0.430 |
Immunosuppressant therapy history | 3 (7.3) | 1 (3.2) | 4 (5.6) | 2.37 (0.23–23.94) | 0.450 |
Hospital treatment history | 21 (51.2) | 13 (41.9) | 34 (47.2) | 1.45 (0.57–3.72) | 0.430 |
Variable | Death (n = 35) n (%) | Recovered (n = 37) n (%) | Total (n = 72) n (%) | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Sex | 0.81 (0.31–2.15) | 0.670 | |||
Male | 22 (63%) | 25 (68%) | 47 (65%) | ||
Female | 13 (37%) | 12 (32%) | 25 (35%) | ||
Age, median (IQR) a | 51 (8–59) | 34 (4–45) | 40 (4–56) | 0.065 | |
Ward | 3.05 (1.06–8.74) | 0.035 * | |||
Intensive care unit | 28 (80%) | 21 (57%) | 49 (68%) | ||
Non-intensive care unit | 7 (20%) | 16 (43%) | 23 (32%) | ||
Days to mortality, median (IQR) a | 2 (1–8) | 2 (1–8) | |||
Other hospital referrals, median (IQR) a | 15 (43%) | 20 (54%) | 35 (49%) | 0.64 (0.21–1.62) | 0.340 |
Origin of isolate | 3.28 (0.93–11.53) | 0.056 | |||
Hospital | 31 (89%) | 26 (70%) | 57 (79%) | ||
Community | 4 (11%) | 11 (30%) | 15 (21%) | ||
Bacteremia source | 0.50 (0.09–2.92) | 0.430 | |||
Primary | 2 (6%) | 4 (11%) | 6 (8%) | ||
Secondary | 33 (94%) | 33 (89%) | 66 (92%) | ||
Bacteremia source | 1.39 (0.55–3.52) | 0.490 | |||
Primary + Other secondary | 17 (49%) | 15 (41%) | 32 (44%) | ||
Secondary-lower respiratory tract | 18 (51%) | 22 (59%) | 40 (56%) | ||
Pitt Bacteremia score, median (IQR) a | 5 (3–8) | 0 (0–2) | 2 (0–6) | <0.001 ** | |
Pitt Bacteremia Score ≥ 4 | 25 (71%) | 5 (14%) | 30 (42%) | 16.00 (4.85–52.82) | <0.001 ** |
Fever | 12 (34%) | 5 (14%) | 17 (24%) | 3.34 (1.03–10.79) | 0.038 * |
Hypotension | 10 (29%) | 2 (5%) | 12 (17%) | 7.00 (1.41–34.76) | 0.008 * |
Use of mechanical ventilator | 25 (71%) | 11 (30%) | 36 (50%) | 5.91 (2.14–16.34) | <0.001 ** |
Cardiac arrest | 9 (26%) | 0 (0%) | 9 (13%) | NA | <0.001 ** |
State of consciousness | 14.46 (4.63–45.22) | <0.001 ** | |||
Alert | 27 (77%) | 7 (19%) | 34 (47%) | ||
Disturbance | 8 (23%) | 30 (81%) | 38 (53%) | ||
Charlson Comorbidity Index, median (IQR) a | 1 (0–3) | 0 (0–2) | 1 (0–2) | 0.057 | |
Charlson Comorbidity Index ≥ 4 | 9 (26%) | 6 (16%) | 15 (21%) | 1.79 (0.56–5.69) | 0.320 |
Diabetes mellitus | 4 (11%) | 2 (5%) | 6 (8%) | 2.26 (0.39–13.19) | 0.360 |
Use of central venous catheter | 17 (49%) | 7 (19%) | 24 (33%) | 4.05 (1.41–11.64) | 0.008 * |
Previous use of antibiotics history | 23 (66%) | 13 (35%) | 36 (50%) | 3.54 (1.34–9.34) | 0.009 * |
Surgical history | 17 (49%) | 19 (51%) | 36 (50%) | 0.90 (0.36–2.26) | 0.810 |
Immunosuppressant therapy history | 2 (6%) | 4 (11%) | 6 (8%) | 0.50 (0.09–2.92) | 0.430 |
Hospital treatment history | 21 (60%) | 16 (43%) | 37 (51%) | 1.97 (0.77–5.03) | 0.160 |
Variable | aOR | 95% CI | p-Value |
---|---|---|---|
CNSAB | |||
Pitt Bacteremia Score ≥ 4 | 13.29 | 3.31–53.33 | <0.001 ** |
Charlson Comorbidity Index ≥ 4 | 6.44 | 1.17–35.38 | 0.032 * |
CSAB | |||
Pitt Bacteremia Score | 1.87 | 1.41–2.47 | <0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anggraini, D.; Santosaningsih, D.; Endraswari, P.D.; Jasmin, N.; Siregar, F.M.; Hadi, U.; Kuntaman, K. Multicenter Study of the Risk Factors and Outcomes of Bloodstream Infections Caused by Carbapenem-Non-Susceptible Acinetobacter baumannii in Indonesia. Trop. Med. Infect. Dis. 2022, 7, 161. https://doi.org/10.3390/tropicalmed7080161
Anggraini D, Santosaningsih D, Endraswari PD, Jasmin N, Siregar FM, Hadi U, Kuntaman K. Multicenter Study of the Risk Factors and Outcomes of Bloodstream Infections Caused by Carbapenem-Non-Susceptible Acinetobacter baumannii in Indonesia. Tropical Medicine and Infectious Disease. 2022; 7(8):161. https://doi.org/10.3390/tropicalmed7080161
Chicago/Turabian StyleAnggraini, Dewi, Dewi Santosaningsih, Pepy Dwi Endraswari, Novira Jasmin, Fajri Marindra Siregar, Usman Hadi, and Kuntaman Kuntaman. 2022. "Multicenter Study of the Risk Factors and Outcomes of Bloodstream Infections Caused by Carbapenem-Non-Susceptible Acinetobacter baumannii in Indonesia" Tropical Medicine and Infectious Disease 7, no. 8: 161. https://doi.org/10.3390/tropicalmed7080161
APA StyleAnggraini, D., Santosaningsih, D., Endraswari, P. D., Jasmin, N., Siregar, F. M., Hadi, U., & Kuntaman, K. (2022). Multicenter Study of the Risk Factors and Outcomes of Bloodstream Infections Caused by Carbapenem-Non-Susceptible Acinetobacter baumannii in Indonesia. Tropical Medicine and Infectious Disease, 7(8), 161. https://doi.org/10.3390/tropicalmed7080161