Potential Nosocomial Infections by the Zika and Chikungunya Viruses in Public Health Facilities in the Metropolitan Area of Recife, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mosquito Sampling
2.3. RNA Extraction and Standard Curve Synthesis
2.4. Optimization of the Multiplex RT-qPCR Assays
2.5. Specificity and Sensitivity Analysis of the Multiplex Assays
2.6. Multiplex RT-qPCR Assay of Field-Collected Mosquitoes
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Coffey, L.L.; Forrester, N.; Tsetsarkin, K.; Vasilakis, N.; Weaver, S.C. Factors Shaping the Adaptive Landscape for Arboviruses: Implications for the Emergence of Disease. Future Microbiol. 2013, 8, 155–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldridge, B.F.; Scott, T.W.; Day, J.F.; Tabachnick, W.J. Arbovirus Diseases. In Medical Entomology: A Textbook on Public Health and Veterinary Problems Caused by Arthropods; Eldridge, B.F., Edman, J.D., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 415–460. ISBN 978-94-007-1009-2. [Google Scholar]
- Le, B.C.T.; Ekalaksananan, T.; Thaewnongiew, K.; Phanthanawiboon, S.; Aromseree, S.; Phanitchat, T.; Chuerduangphui, J.; Suwannatrai, A.T.; Alexander, N.; Overgaard, H.J.; et al. Interepidemic Detection of Chikungunya Virus Infection and Transmission in Northeastern Thailand. Am. J. Trop. Med. Hyg. 2020, 103, 1660–1669. [Google Scholar] [CrossRef]
- Martelli, C.M.T.; Siqueira, J.B.; Parente, M.P.P.D.; Zara, A.L.d.S.A.; Oliveira, C.S.; Braga, C.; Pimenta, F.G.; Cortes, F.; Lopez, J.G.; Bahia, L.R.; et al. Economic Impact of Dengue: Multicenter Study across Four Brazilian Regions. PLoS Negl. Trop. Dis. 2015, 9, e0004042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, G.G.; Rocha, M.N.; de Oliveira, M.A.; Moreira, L.A.; Andrade Filho, J.D. Detection of Yellow Fever Virus in Sylvatic Mosquitoes during Disease Outbreaks of 2017–2018 in Minas Gerais State, Brazil. Insects 2019, 10, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro Cruz, A.C.; Pinto Nunes Neto, J.; Patroca da Silva, S.; Vieira Pinto da Silva, E.; Juscely Galvão Pereira, G.; Maia Santos, M.; Antônio de Oliveira Monteiro, H.; Barreto dos Santos, F.; José de Paula Souza e Guimarães, R.; Fortes Aragão, C.; et al. Chikungunya Virus Detection in Aedes aegypti and Culex quinquefasciatus during an Outbreak in the Amazon Region. Viruses 2020, 12, 853. [Google Scholar] [CrossRef]
- De Albuquerque, M.d.F.P.M.; de Souza, W.V.; Araújo, T.V.B.; Braga, M.C.; Miranda Filho, D.d.B.; Ximenes, R.A.d.A.; de Melo Filho, D.A.; de Brito, C.A.A.; Valongueiro, S.; de Melo, A.P.L.; et al. The Microcephaly Epidemic and Zika Virus: Building Knowledge in Epidemiology. Cad. Saude Publica 2018, 34, e00069018. [Google Scholar] [CrossRef]
- Brito, C. Zika Virus: A New Chapter in the History of Medicine. Acta Med. Port. 2015, 28, 679–680. [Google Scholar] [CrossRef] [Green Version]
- De Araújo, T.V.B.; Ximenes, R.A.d.A.; Miranda-Filho, D.d.B.; Souza, W.V.; Montarroyos, U.R.; de Melo, A.P.L.; Valongueiro, S.; de Albuquerque, M.d.F.P.M.; Braga, C.; Filho, S.P.B.; et al. Association between Microcephaly, Zika Virus Infection, and Other Risk Factors in Brazil: Final Report of a Case-Control Study. Lancet Infect. Dis. 2018, 18, 328–336. [Google Scholar] [CrossRef] [Green Version]
- De Souza, W.V.; de Albuquerque, M.d.F.P.M.; Vazquez, E.; Bezerra, L.C.A.; Mendes, A.d.C.G.; Lyra, T.M.; de Araujo, T.V.B.; de Oliveira, A.L.S.; Braga, M.C.; Ximenes, R.A.d.A.; et al. Microcephaly Epidemic Related to the Zika Virus and Living Conditions in Recife, Northeast Brazil. BMC Public Health 2018, 18, 130. [Google Scholar] [CrossRef]
- Deng, S.-Q.; Yang, X.; Wei, Y.; Chen, J.-T.; Wang, X.-J.; Peng, H.-J. A Review on Dengue Vaccine Development. Vaccines 2020, 8, 63. [Google Scholar] [CrossRef]
- Hadinegoro, S.R.; Arredondo-García, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Muhammad Ismail, H.I.H.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N. Engl. J. Med. 2015, 373, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Pang, T.; Gubler, D.; Goh, D.Y.T.; Ismail, Z. Asia Dengue Vaccine Advocacy Group Dengue Vaccination: A More Balanced Approach Is Needed. Lancet 2018, 391, 654. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.C.; Forrester, N.L.; Liu, J.; Vasilakis, N. Population Bottlenecks and Founder Effects: Implications for Mosquito-Borne Arboviral Emergence. Nat. Rev. Microbiol. 2021, 19, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Bugallo, G.; Piedra, L.A.; Rodriguez, M.; Bisset, J.A.; Lourenço-de-Oliveira, R.; Weaver, S.C.; Vasilakis, N.; Vega-Rúa, A.; Piedra, L.A.; Rodriguez, M.; et al. Vector-Borne Transmission and Evolution of Zika Virus. Nat. Ecol. Evol. 2019, 3, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomard, Y.; Lebon, C.; Mavingui, P.; Atyame, C.M. Contrasted Transmission Efficiency of Zika Virus Strains by Mosquito Species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island. Parasites Vectors 2020, 13, 398. [Google Scholar] [CrossRef]
- Krokovsky, L.; Paiva, M.H.S.; Guedes, D.R.D.; Barbosa, R.M.R.; de Oliveira, A.L.S.; Anastácio, D.B.; Pontes, C.R.; Ayres, C.F.J. Arbovirus Surveillance in Field-Collected Mosquitoes from Pernambuco-Brazil, During the Triple Dengue, Zika and Chikungunya Outbreak of 2015–2017. Front. Trop. Dis. 2022, 3. [Google Scholar] [CrossRef]
- Guedes, D.R.; Paiva, M.H.; Donato, M.M.; Barbosa, P.P.; Krokovsky, L.; Rocha, S.W.D.S.; Saraiva, K.L.; Crespo, M.M.; Rezende, T.M.; Wallau, G.L.; et al. Zika Virus Replication in the Mosquito Culex quinquefasciatus in Brazil. Emerg. Microbes Infect. 2017, 6, e69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizondo-Quiroga, D.; Medina-Sánchez, A.; Sánchez-González, J.M.; Eckert, K.A.; Villalobos-Sánchez, E.; Navarro-Zúñiga, A.R.; Sánchez-Tejeda, G.; Correa-Morales, F.; González-Acosta, C.; Arias, C.F.; et al. Zika Virus in Salivary Glands of Five Different Species of Wild-Caught Mosquitoes from Mexico. Sci. Rep. 2018, 8, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phumee, A.; Buathong, R.; Boonserm, R.; Intayot, P.; Aungsananta, N.; Jittmittraphap, A.; Joyjinda, Y.; Wacharapluesadee, S.; Siriyasatien, P. Molecular Epidemiology and Genetic Diversity of Zika Virus from Field-Caught Mosquitoes in Various Regions of Thailand. Pathogens 2019, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Smartt, C.T.; Shin, D.; Kang, S.; Tabachnick, W.J. Culex quinquefasciatus (Diptera: Culicidae) From Florida Transmitted Zika Virus. Front. Microbiol. 2018, 9, 768. [Google Scholar] [CrossRef]
- Maniero, V.C.; Rangel, P.S.C.; Coelho, L.M.C.; Silva, C.S.B.; Aguiar, R.S.; Lamas, C.C.; Cardozo, S.V. Identification of Zika Virus in Immature Phases of Aedes Aegypti and Aedes Albopictus: A Surveillance Strategy for Outbreak Anticipation. Braz. J. Med. Biol. Res. 2019, 52, 11. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.L.; van den Hurk, A.F.; Meyer, D.B.; Ritchie, S.A. Searching for the Proverbial Needle in a Haystack: Advances in Mosquito-Borne Arbovirus Surveillance. Parasites Vectors 2018, 11, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BRASIL. Ministério da Saúde. Boletim Epidemiologico Arboviroses—Semana Epidemiológica 52 2018, Brasília, v.50, n.4, 2019. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/edicoes (accessed on 9 September 2021).
- BRASIL. Ministério da Saúde. BRASIL. Ministério da Saúde. Boletim Epidemiologico Arboviroses—Semana Epidemiológica 52 2017, Brasília, v.49, n.2, 2018. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/edicoes (accessed on 22 July 2021).
- Kong, Y.Y.; Thay, C.H.; Tin, T.C.; Devi, S. Rapid Detection, Serotyping and Quantitation of Dengue Viruses by TaqMan Real-Time One-Step RT-PCR. J Virol. Methods 2006, 138, 123–130. [Google Scholar] [CrossRef]
- Magalhaes, T.; Braga, C.; Cordeiro, M.T.; Oliveira, A.L.S.; Castanha, P.M.S.; Maciel, A.P.R.; Amancio, N.M.L.; Gouveia, P.N.; Peixoto-da-Silva, V.J.; Peixoto, T.F.L.; et al. Zika Virus Displacement by a Chikungunya Outbreak in Recife, Brazil. PLoS Negl. Trop. Dis. 2017, 11, e0006055. [Google Scholar] [CrossRef] [Green Version]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya Virus in US Travelers Returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef]
- Nunes, V.N. Avaliação da Metodologia de Aspiração de Mosquitos Adultos para Monitoramento da Infestação por Aedes aegypti em Área Endêmica de Dengue em Recife/PE. Ph.D. Thesis, Centro de Pesquisas Aggeu Magalhaes, Recife, Pernambuco, Brazil, 2013. [Google Scholar]
- Brown, R.; Hing, C.T.; Fornace, K.; Ferguson, H.M. Evaluation of Resting Traps to Examine the Behaviour and Ecology of Mosquito Vectors in an Area of Rapidly Changing Land Use in Sabah, Malaysian Borneo. Parasites Vectors 2018, 11, 346. [Google Scholar] [CrossRef]
- Maciel-de-Freitas, R.; Eiras, A.E.; Lourenço-de-Oliveira, R. Field Evaluation of Effectiveness of the BG-Sentinel, a New Trap for Capturing Adult Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 2006, 101, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Ayres, C.F.J.; Guedes, D.R.D.; Paiva, M.H.S.; Morais-Sobral, M.C.; Krokovsky, L.; Machado, L.C.; Melo-Santos, M.A.V.; Crespo, M.; Oliveira, C.M.F.; Ribeiro, R.S.; et al. Zika Virus Detection, Isolation and Genome Sequencing through Culicidae Sampling during the Epidemic in Vitória, Espírito Santo, Brazil. Parasites Vectors 2019, 12, 220. [Google Scholar] [CrossRef] [Green Version]
- Lutomiah, J.; Mulwa, F.; Mutisya, J.; Koskei, E.; Langat, S.; Nyunja, A.; Koka, H.; Konongoi, S.; Chepkorir, E.; Ofula, V.; et al. Probable Contribution of Culex quinquefasciatus Mosquitoes to the Circulation of Chikungunya Virus during an Outbreak in Mombasa County, Kenya, 2017–2018. Parasites Vectors 2021, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.P. Infection Control—A Problem for Patient Safety. N. Engl. J. Med. 2003, 348, 651–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittet, D.; Allegranzi, B.; Storr, J.; Bagheri Nejad, S.; Dziekan, G.; Leotsakos, A.; Donaldson, L. Infection Control as a Major World Health Organization Priority for Developing Countries. J. Hosp. Infect. 2008, 68, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Garza-González, E.; Mendoza-Olazarán, S.; Roman-Campos, R.; Téllez-Marroquín, R.; Saldívar-Rodríguez, D.; Soria-López, J.A.; Guzman, A.; Flores-Treviño, S.; Camacho-Ortiz, A. Rapid Spread of an Ongoing Outbreak of Zika Virus Disease in Pregnant Women in a Mexican Hospital. Braz. J. Infect. Dis. 2017, 21, 554–556. [Google Scholar] [CrossRef] [PubMed]
- WHO—World Health Organization. Report on the Burden of Endemic Health Care Associated Infection Worldwide. 2011. Available online: https://apps.who.int/iris/handle/10665/80135 (accessed on 21 October 2022).
- Almeida-Nunes, J.; Marcilio, I.; Oliveira, M.S.; Gonçalves, E.M.N.; Batista, M.V.; Mendrone, A.; Levi, J.E.; Costa, S.F.; Levin, A.S. Hospital-Acquired Vector-Transmitted Dengue Fever: An Overlooked Problem? Infect. Control Hosp. Epidemiol. 2016, 37, 1387–1389. [Google Scholar] [CrossRef] [PubMed]
- Cotteaux-Lautard, C.; Berenger, J.-M.; Fusca, F.; Chardon, H.; Simon, F.; Pagès, F. A New Challenge for Hospitals in Southeast France: Monitoring Local Populations of Aedes albopictus to Prevent Nosocomial Transmission of Dengue or Chikungunya. J. Am. Mosq. Control Assoc. 2013, 29, 81–83. [Google Scholar] [CrossRef] [PubMed]
Health Care Facility | City | Coordinates |
---|---|---|
Hospital das Clínicas | Recife | −8.0476, −34.9461 |
Hospital da Restauração | −8.0538, −34.8978 | |
Hospital Ulysses Pernambucano | −8.0332, −34.9022 | |
Hospital Barão de Lucena | −8.0393, −34.9395 | |
Hospital Agamenon Magalhães | −8.0304, −34.9075 | |
Hospital Otávio de Freitas | −8.0871, −34.9615 | |
Hospital Getúlio Vargas | −8.0512, −34.9217 | |
Hospital Geral de Areias | −8.0100, −34.9265 | |
UPA Curado | −8.0806, −34.9967 | |
UPA Torrões | −8.0634, −34.9346 | |
UPA Imbiribeira | −8.1207, −34.9137 | |
UPA Caxangá | −8.0299, −34.9579 | |
Secretaria de Saúde (FUSAM) | −8.0539, −34.8811 | |
UPA Olinda | Olinda | −7.9710, −34.8661 |
UPA São Lourenço da Mata | São Lourenço da Mata | −7.9911, −35.0490 |
UPA Jaboatão dos Guararapes | Jaboatão dos Guararapes | −8.1109, −35.0067 |
Period | Species | Number of Individuals | Number of Pools (Total) | Non-Blood Fed Pools | Blood Fed Pools | |
---|---|---|---|---|---|---|
January | A. aegypti | 16 | (21) | 3 | 1 | 2 |
C. quinquefasciatus | 78 | 18 | 9 | 9 | ||
February | A. aegypti | 42 | (23) | 7 | 0 | 7 |
C. quinquefasciatus | 92 | 16 | 8 | 8 | ||
March | A. aegypti | 42 | (33) | 8 | 0 | 8 |
C. quinquefasciatus | 141 | 25 | 11 | 14 | ||
April | A. aegypti | 125 | (46) | 17 | 4 | 13 |
C. quinquefasciatus | 211 | 29 | 9 | 20 | ||
May | A. aegypti | 33 | (43) | 9 | 2 | 7 |
C. quinquefasciatus | 325 | 34 | 28 | 6 | ||
June | A. aegypti | 114 | (32) | 14 | 2 | 12 |
C. quinquefasciatus | 111 | 18 | 10 | 8 | ||
July | A. aegypti | 43 | (25) | 6 | 0 | 6 |
C. quinquefasciatus | 84 | 19 | 8 | 11 | ||
August | A. aegypti | 115 | (23) | 14 | 2 | 12 |
C. quinquefasciatus | 34 | 9 | 3 | 6 | ||
September | A. aegypti | 21 | (36) | 5 | 1 | 4 |
C. quinquefasciatus | 163 | 31 | 14 | 17 | ||
October | A. aegypti | 74 | (29) | 11 | 1 | 10 |
C. quinquefasciatus | 117 | 18 | 9 | 9 | ||
November | A. aegypti | 41 | (30) | 6 | 0 | 6 |
C. quinquefasciatus | 183 | 24 | 9 | 15 | ||
December | A. aegypti | 46 | (16) | 6 | 0 | 6 |
C. quinquefasciatus | 70 | 10 | 4 | 6 | ||
Total | A. aegypti | 712 | (357) | 106 | 13 | 93 |
C. quinquefasciatus | 1609 | 251 | 122 | 129 |
Pool ID | Individuals Per Pool | Species | Collection Period | Healthcare Unit | Feeding Status | Viral Detection | Cq Mean Run 1 | No of Copies Run 2 |
---|---|---|---|---|---|---|---|---|
1640 | 10 | A. aegypti | February | Hospital das Clínicas | BF | ZIKV | 35.95 | 7.68 × 107 |
1655 | 2 | C. quinquefasciatus | UPA Curado | BF | 35.75 | 1.88 × 107 | ||
1666 | 10 | C. quinquefasciatus | UPA Olinda | NBF | 35.9 | N.D. | ||
1715 | 6 | C. quinquefasciatus | April | Hospital Ulysses Pernambucano | NBF | ZIKV | 36.15 | 7.82 × 108 |
1803 | 10 | C. quinquefasciatus | May | Hospital Barão de Lucena | NBF | ZIKV | 33.85 | 3.38 × 107 |
1813 | 1 | A. aegypti | Hospital Getúlio Vargas | BF | 34.75 | N.D. | ||
1814 | 1 | A. aegypti | NBF | 30.00 | N.D. | |||
1840 | 10 | C. quinquefasciatus | UPA Olinda | BF | 30.85 | 2.14 × 109 | ||
1841 | 2 | C. quinquefasciatus | BF | 36.05 | 1.54 × 109 | |||
1907 | 3 | C. quinquefasciatus | July | Hospital Agamenon Magalhães | BF | ZIKV | 36.10 | 6.21 × 107 |
1939 | 2 | C. quinquefasciatus | UPA São Lourenço da Mata | BF | CHIKV | 31.90 | 2.19 × 107 | |
1948 | 10 | C. quinquefasciatus | August | Hospital Otávio de Freitas | BF | ZIKV | 30.2 | N.D. |
1966 | 1 | C. quinquefasciatus | Hospital Getúlio Vargas | NBF | 36.15 | N.D. | ||
2055 | 2 | C. quinquefasciatus | October | Hospital das Clínicas | BF | ZIKV | 34.60 | N.D. |
2064 | 3 | C. quinquefasciatus | UPA Jaboatão dos Guararapes | NBF | 35.95 | N.D. | ||
2071 | 9 | A. aegypti | Hospital das Clínicas | BF | 37.40 | N.D. | ||
2072 | 1 | C. quinquefasciatus | UPA Torrões | NBF | 35.15 | N.D. | ||
2111 | 10 | C. quinquefasciatus | November | Hospital Ulysses Pernambucano | NBF | ZIKV | 36.15 | N.D. |
2119 | 4 | C. quinquefasciatus | UPA Paulista | NBF | 36.30 | N.D. | ||
2156 | 10 | A. aegypti | December | Hospital das Clínicas | NBF | ZIKV | 37.00 | 1.95 × 107 |
2160 | 10 | A. aegypti | BF | 35.10 | N.D. | |||
2164 | 10 | C. quinquefasciatus | BF | 36.75 | N.D. | |||
2165 | 10 | C. quinquefasciatus | BF | 35.80 | N.D. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krokovsky, L.; Guedes, D.R.D.; Santos, F.C.F.; Sales, K.G.d.S.; Bandeira, D.A.; Pontes, C.R.; Leal, W.S.; Ayres, C.F.J.; Paiva, M.H.S. Potential Nosocomial Infections by the Zika and Chikungunya Viruses in Public Health Facilities in the Metropolitan Area of Recife, Brazil. Trop. Med. Infect. Dis. 2022, 7, 351. https://doi.org/10.3390/tropicalmed7110351
Krokovsky L, Guedes DRD, Santos FCF, Sales KGdS, Bandeira DA, Pontes CR, Leal WS, Ayres CFJ, Paiva MHS. Potential Nosocomial Infections by the Zika and Chikungunya Viruses in Public Health Facilities in the Metropolitan Area of Recife, Brazil. Tropical Medicine and Infectious Disease. 2022; 7(11):351. https://doi.org/10.3390/tropicalmed7110351
Chicago/Turabian StyleKrokovsky, Larissa, Duschinka Ribeiro Duarte Guedes, Fabiana Cristina Fulco Santos, Kamila Gaudêncio da Silva Sales, Daniela Anastácio Bandeira, Claudenice Ramos Pontes, Walter Soares Leal, Constância Flávia Junqueira Ayres, and Marcelo Henrique Santos Paiva. 2022. "Potential Nosocomial Infections by the Zika and Chikungunya Viruses in Public Health Facilities in the Metropolitan Area of Recife, Brazil" Tropical Medicine and Infectious Disease 7, no. 11: 351. https://doi.org/10.3390/tropicalmed7110351
APA StyleKrokovsky, L., Guedes, D. R. D., Santos, F. C. F., Sales, K. G. d. S., Bandeira, D. A., Pontes, C. R., Leal, W. S., Ayres, C. F. J., & Paiva, M. H. S. (2022). Potential Nosocomial Infections by the Zika and Chikungunya Viruses in Public Health Facilities in the Metropolitan Area of Recife, Brazil. Tropical Medicine and Infectious Disease, 7(11), 351. https://doi.org/10.3390/tropicalmed7110351