Environmental and Household-Based Spatial Risks for Tungiasis in an Endemic Area of Coastal Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Area
- Inclusion and exclusion criteria
2.2. Tungiasis Infection and Household Information
2.3. Ecological Factors
2.3.1. Normalized Difference Vegetation Index (NDVI) and Yearly Land Cover in 2011
2.3.2. Topographic Wetness Index (TWI)
2.3.3. Elevation Data
2.3.4. Soil Properties
2.3.5. Distance from Households to the National Reserve or the Elephant Sanctuary
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Spatial Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldmeier, H.; Heukelbach, J.; Ugbomoiko, U.S.; Sentongo, E.; Mbabazi, P.; von Samson-Himmelstjerna, G.; Krantz, I.; International Expert Group for Tungiasis. Tungiasis—A neglected disease with many challenges for global public health. PLoS Negl. Trop. Dis. 2014, 8, e3133. [Google Scholar] [CrossRef] [Green Version]
- Heukelbach, J.; De Oliveira, F.A.S.; Hesse, G.; Feldmeier, H. Tungiasis: A neglected health problem of poor communities. Trop. Med. Int. Health 2001, 6, 267–272. [Google Scholar] [CrossRef]
- Nagy, N.; Abari, E.; D’Haese, J.; Calheiros, C.; Heukelbach, J.; Mencke, N.; Feldmeier, H.; Mehlhorn, H. Investigations on the life cycle and morphology of Tunga penetrans in Brazil. Parasitol. Res. 2007, 101 (Suppl. S2), 233–242. [Google Scholar] [CrossRef]
- Eisele, M.; Heukelbach, J.; Van Marck, E.; Mehlhorn, H.; Meckes, O.; Franck, S.; Feldmeier, H. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: I. Natural history of tungiasis in man. Parasitol. Res. 2003, 90, 87–99. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Tungiasis. Available online: https://www.who.int/news-room/fact-sheets/detail/tungiasis (accessed on 1 August 2021).
- Deka, M.A. Mapping the Geographic Distribution of Tungiasis in Sub-Saharan Africa. Trop. Med. Infect. Dis. 2020, 5, 122. [Google Scholar] [CrossRef]
- Wiese, S.; Elson, L.; Reichert, F.; Mambo, B.; Feldmeier, H. Prevalence, intensity and risk factors of tungiasis in Kilifi County, Kenya: I. Results from a community-based study. PLoS Negl. Trop. Dis. 2017, 11, e0005925. [Google Scholar] [CrossRef] [Green Version]
- Muehlen, M.; Heukelbach, J.; Wilcke, T.; Winter, B.; Mehlhorn, H.; Feldmeier, H. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil. II. Prevalence, parasite load and topographic distribution of lesions in the population of a traditional fishing village. Parasitol. Res. 2003, 90, 449–455. [Google Scholar] [CrossRef]
- Muehlen, M.; Feldmeier, H.; Wilcke, T.; Winter, B.; Heukelbach, J. Identifying risk factors for tungiasis and heavy infestation in a resource-poor community in northeast Brazil. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 371–380. [Google Scholar] [CrossRef]
- Wilcke, T.; Heukelbach, J.; Moura, R.C.S.; Kerr-Pontes, L.R.S.; Feldmeier, H. High prevalence of tungiasis in a poor neighbourhood in Fortaleza, Northeast Brazil. Acta Trop. 2002, 83, 255–258. [Google Scholar] [CrossRef]
- Ugbomoiko, U.S.; Ariza, L.; Ofoezie, I.E.; Heukelbach, J. Risk factors for tungiasis in Nigeria: Identification of targets for effective intervention. PLoS Negl. Trop. Dis. 2007, 1, e87. [Google Scholar] [CrossRef] [Green Version]
- Nyangacha, R.M.; Odongo, D.; Oyieke, F.; Bii, C.; Muniu, E.; Chasia, S.; Ochwoto, M. Spatial distribution, prevalence and potential risk factors of Tungiasis in Vihiga County, Kenya. PLoS Negl. Trop. Dis. 2019, 13, e0007244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wafula, S.T.; Ssemugabo, C.; Namuhani, N.; Musoke, D.; Ssempebwa, J.; Halage, A.A. Prevalence and risk factors associated with tungiasis in Mayuge district, Eastern Uganda. Pan Afr. Med. J. 2016, 24, 77. [Google Scholar] [CrossRef]
- Girma, M.; Astatkie, A.; Asnake, S. Prevalence and risk factors of tungiasis among children of Wensho district, southern Ethiopia. BMC Infect. Dis. 2018, 18, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nsanzimana, J.; Karanja, S.; Kayongo, M.; Nyirimanzi, N.; Umuhoza, H.; Murangwa, A.; Muganga, R.; Musafili, A. Factors associated with tungiasis among primary school children: A cross-sectional study in a rural district in Rwanda. BMC Public Health 2019, 19, 1192. [Google Scholar] [CrossRef]
- Elson, L.; Wiese, S.; Feldmeier, H.; Fillinger, U. Prevalence, intensity and risk factors of tungiasis in Kilifi County, Kenya II: Results from a school-based observational study. PLoS Negl. Trop. Dis. 2019, 13, e0007326. [Google Scholar] [CrossRef]
- Larson, P.S.; Ono, M.; Changoma, M.; Goto, K.; Kaneko, S.; Moji, K.; Minakawa, N. Presence of dogs and proximity to a wildlife reserve increase household level risk of tungiasis in Kwale, Kenya. Trop. Med. Health 2021, 49, 54. [Google Scholar] [CrossRef]
- Linardi, P.M.; Calheiros, C.M.; Campelo-Junior, E.B.; Duarte, E.M.; Heukelbach, J.; Feldmeier, H. Occurrence of the off-host life stages of Tunga penetrans (Siphonaptera) in various environments in Brazil. Ann. Trop. Med. Parasitol. 2010, 104, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; K’Opiyo, J.; Kiche, I.; Wanyua, S.; Goto, K.; Tanaka, J.; Changoma, M.; Ndemwa, M.; Komazawa, O.; Karama, M.; et al. Health and Demographic Surveillance System in the Western and coastal areas of Kenya: An infrastructure for epidemiologic studies in Africa. J. Epidemiol. 2012, 22, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Pampiglione, S.; Trentini, M.; Fioravanti, M.L.; Onore, G.; Rivasi, F. Additional description of a new species of Tunga (Siphonaptera) from Ecuador. Parasite 2003, 10, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Ngunjiri, J.; Keiyoro, P. Soil Factors Influencing the Occurrence of Tunga penetrans in Kenya: Investigation of Soil Factors Influencing the Prevalence of the Tunga penetrans (Jigger Flea) in Muranga County—Kenya; LAMBERT Academic Publishing: Chisinau, Moldova, 2011. [Google Scholar]
- QGIS Organization. QGIS Geographic Information System; QGIS Association: Zurich, Switzerland, 2021. [Google Scholar]
- Earth Engine Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/ (accessed on 17 February 2021).
- Gruber, S.; Peckham, S. Chapter 7 Land-Surface Parameters and Objects in Hydrology. In Geomorphometry—Concepts, Software, Applications; Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 171–194. [Google Scholar]
- Kopecky, M.; Macek, M.; Wild, J. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 2021, 757, 143785. [Google Scholar] [CrossRef]
- Earthdata Search. Available online: https://search.earthdata.nasa.gov/search (accessed on 3 March 2021).
- Freeman, T.G. Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 1991, 17, 413–422. [Google Scholar] [CrossRef]
- Haralick, R.M. Ridges and valleys on digital images. Comput. Vis. Graph. Image Process. 1983, 22, 28–38. [Google Scholar] [CrossRef]
- ALOS Global Digital Surface Model. Available online: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm (accessed on 18 March 2021).
- ISRIC Data Hub. Available online: https://data.isric.org/geonetwork/srv/eng/catalog.search#/home (accessed on 20 March 2021).
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hengl, T.; Leenaars, J.G.B.; Shepherd, K.D.; Walsh, M.G.; Heuvelink, G.B.M.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; et al. Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycl. Agroecosyst. 2017, 109, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Heukelbach, J. Tungiasis. Available online: http://www.orpha.net/data/patho/GB/uk-Tungiasis.pdf (accessed on 26 October 2021).
- Winter, B.; Oliveira, F.A.; Wilcke, T.; Heukelbach, J.; Feldmeier, H. Tungiasis-related knowledge and treatment practices in two endemic communities in northeast Brazil. J. Infect. Dev. Ctries. 2009, 3, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Chadee, D.D. Tungiasis among five communities in south-western Trinidad, West Indies. Ann. Trop. Med. Parasitol. 1998, 92, 107–113. [Google Scholar] [CrossRef]
- Webster, T.; Vieira, V.; Weinberg, J.; Aschengrau, A. Method for mapping population-based case-control studies: An application using generalized additive models. Int. J. Health Geogr. 2006, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Bartell, S.; Bliss, R.; Vieira, V. MapGAM: Mapping Smoothed Effect Estimates from Individual-Level Data, R package version 1.2-5.; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hastie, T. gam: Generalized Additive Models, R package version 1.20; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Hastie, T.; Tibshirani, R. Generalized Additive Models. Statist. Sci. 1986, 1, 297–310. [Google Scholar] [CrossRef]
- Hoffman, K.; Aschengrau, A.; Webster, T.F.; Bartell, S.M.; Vieira, V.M. Associations between residence at birth and mental health disorders: A spatial analysis of retrospective cohort data. BMC Public Health 2015, 15, 688. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, K.; Weisskopf, M.G.; Roberts, A.L.; Raz, R.; Hart, J.E.; Lyall, K.; Hoffman, E.M.; Laden, F.; Vieira, V.M. Geographic Patterns of Autism Spectrum Disorder among Children of Participants in Nurses’ Health Study II. Am. J. Epidemiol. 2017, 186, 834–842. [Google Scholar] [CrossRef]
- Bristow, R.E.; Chang, J.; Ziogas, A.; Anton-Culver, H.; Vieira, V.M. Spatial analysis of adherence to treatment guidelines for advanced-stage ovarian cancer and the impact of race and socioeconomic status. Gynecol. Oncol. 2014, 134, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, A.I.; Santos, A.C.; Vieira, V.M.; Barros, H. Hotspots of childhood obesity in a large metropolitan area: Does neighbourhood social and built environment play a part? Int. J. Epidemiol. 2020, 49, 934–943. [Google Scholar] [CrossRef]
- Vieira, V.M.; VoPham, T.; Bertrand, K.A.; James, P.; DuPre, N.; Tamimi, R.M.; Laden, F.; Hart, J.E. Contribution of socioeconomic and environmental factors to geographic disparities in breast cancer risk in the Nurses’ Health Study II. Environ. Epidemiol. 2020, 4, e080. [Google Scholar] [CrossRef]
- Vieira, V.M.; Fabian, M.P.; Webster, T.F.; Levy, J.I.; Korrick, S.A. Spatial Variability in ADHD-Related Behaviors among Children Born to Mothers Residing Near the New Bedford Harbor Superfund Site. Am. J. Epidemiol. 2017, 185, 924–932. [Google Scholar] [CrossRef] [Green Version]
- Vieira, V.; Webster, T.; Weinberg, J.; Aschengrau, A.; Ozonoff, D. Spatial analysis of lung, colorectal, and breast cancer on Cape Cod: An application of generalized additive models to case-control data. Environ. Health 2005, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Gillen, D.L.; Bartell, S.M.; Vieira, V.M. Mapping Smoothed Spatial Effect Estimates from Individual-Level Data: MapGAM. R J. 2020, 12, 32. [Google Scholar] [CrossRef]
- Young, R.L.; Weinberg, J.; Vieira, V.; Ozonoff, A.; Webster, T.F. Generalized Additive Models and Inflated Type I Error Rates of Smoother Significance Tests. Comput. Stat. Data Anal. 2011, 55, 366–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadisa, E.; Jote, K. Prevalence and factors associated with intestinal parasitic infection among under-five children in and around Haro Dumal Town, Bale Zone, Ethiopia. BMC Pediatrics 2019, 19, 385. [Google Scholar] [CrossRef]
- Pampiglione, S.; Fioravanti, M.L.; Gustinelli, A.; Onore, G.; Mantovani, B.; Luchetti, A.; Trentini, M. Sand flea (Tunga spp.) infections in humans and domestic animals: State of the art. Med. Vet. Entomol. 2009, 23, 172–186. [Google Scholar] [CrossRef]
- Areola, O. Soils. In The Physical Geography of Africa; Adams, W., Goudie, A.S., Orme, A.R., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 134–147. [Google Scholar]
- Fookes, P.G. Tropical Residual Soils, a Geological Society Engineering Group Working Party Revised Report; The Geological Society: London, UK, 1997. [Google Scholar]
- Ghosh, S.; Guchhait, S.K. Introduction to Laterite Study. In Laterites of the Bengal Basin: Characterization, Geochronology and Evolution; Ghosh, S., Guchhait, S.K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar]
- Bayliak, M.M.; Lylyk, M.P.; Gospodaryov, D.V.; Kotsyubynsky, V.O.; Butenko, N.V.; Storey, K.B.; Lushchak, V.I. Protective effects of alpha-ketoglutarate against aluminum toxicity in Drosophila melanogaster. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 217, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Du, Y.; Xue, H.; Wu, Y.; Zhou, B. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol. Aging 2012, 33, 199.e1–199.e12. [Google Scholar] [CrossRef] [PubMed]
- Kijak, E.; Rosato, E.; Knapczyk, K.; Pyza, E. Drosophila melanogaster as a model system of aluminum toxicity and aging. Insect Sci. 2014, 21, 189–202. [Google Scholar] [CrossRef]
- Anand, A.S.; Gahlot, U.; Prasad, D.N.; Kohli, E. Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 2019, 13, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qian, X.; Chao, M.; Zhao, Y.; Huang, J.; Wang, T.; Sun, F.; Ling, E.; Song, H. Aluminum toxicity related to SOD and expression of presenilin and CREB in Bombyx mori. Arch. Insect Biochem. Physiol. 2018, 99, e21480. [Google Scholar] [CrossRef] [PubMed]
- Harvey, T.V.; Linardi, P.M.; Carlos, R.S.A.; Heukelbach, J. Tungiasis in domestic, wild, and synanthropic animals in Brazil. Acta Trop. 2021, 222, 106068. [Google Scholar] [CrossRef]
- Krstic, D.; Djalovj, I.; Nikezic, D.; Bjelj, D. Aluminium in Acid Soils: Chemistry, Toxicity and Impact on Maize Plants. In Food Production Approaches, Challenges and Tasks; Intech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation. Soil Sci. Plant Nutr. 2019, 65, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Heukelbach, J.; Costa, A.M.L.; Wilcke, T.; Mencke, N.; Feldmeier, H. The animal reservoir of Tunga penetrans in severely affected communities of north-east Brazil. Med. Vet. Entomol. 2004, 18, 329–335. [Google Scholar] [CrossRef]
- Mutebi, F.; Krucken, J.; Feldmeier, H.; Waiswa, C.; Mencke, N.; Sentongo, E.; von Samson-Himmelstjerna, G. Animal Reservoirs of Zoonotic Tungiasis in Endemic Rural Villages of Uganda. PLoS Negl. Trop. Dis. 2015, 9, e0004126. [Google Scholar] [CrossRef] [Green Version]
- Mutebi, F.; Krucken, J.; Feldmeier, H.; Waiswa, C.; Mencke, N.; von Samson-Himmelstjerna, G. Tungiasis-associated morbidity in pigs and dogs in endemic villages of Uganda. Parasites Vectors 2016, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Calheiros, C.M.L. Aspectos Biológicos e Ecológicos de Tunga penetrans (L., 1758) (Siphonaptera Tungidae) em Áreas Endêmicas Brasileiras. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 2007. [Google Scholar]
- Heukelbach, J.; Wilcke, T.; Harms, G.; Feldmeier, H. Seasonal variation of tungiasis in an endemic community. Am. J. Trop. Med. Hyg. 2005, 72, 145–149. [Google Scholar] [CrossRef]
- Mwangi, J.N.; Ozwara, H.S.; Gicheru, M.M. Epidemiology of tunga penetrans infestation in selected areas in Kiharu constituency, Murang’a County, Kenya. Trop. Dis. Travel Med. Vaccines 2015, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldmeier, H.; Sentongo, E.; Krantz, I. Tungiasis (sand flea disease): A parasitic disease with particular challenges for public health. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 19–26. [Google Scholar] [CrossRef]
- Kimani, B.; Nyagero, J.; Ikamari, L. Knowledge, attitude and practices on jigger infestation among household members aged 18 to 60 years: Case study of a rural location in Kenya. Pan Afr. Med. J. 2012, 13 (Suppl. S1), 7. [Google Scholar] [PubMed]
- Kimotho, S.; Miller, A.N.; Ngure, P. Managing communication surrounding tungiasis stigma in Kenya. Communicatio 2015, 41, 523–542. [Google Scholar] [CrossRef]
Household Based Variables | Tungiasis n = 7925 | Mean (SD) | Model 1 | Model 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Negative | Positive | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |||||||
n = 7653 | n = 272 | |||||||||||||
Number of children per household | 2.3 (1.9) | 1.4 | 1.3 | - | 1.5 | <0.01 | 1.4 | 1.3 | - | 1.5 | <0.01 | |||
Number of elderly per household | 0.28 (0.6) | 1.1 | 0.8 | - | 1.4 | >0.05 | 1.1 | 0.8 | - | 1.4 | >0.05 | |||
Number of males per household | 2.6 (1.8) | 1.1 | 0.97 | - | 1.2 | >0.05 | 1.1 | 0.97 | - | 1.2 | >0.05 | |||
Floor | Non-earthen | 1195 | 7 | 1.0 | 1.0 | |||||||||
Earthen | 6458 | 265 | 3.2 | 1.4 | - | 7.7 | <0.01 | 3.1 | 1.3 | - | 7.6 | <0.05 | ||
Wall | Non-earthen | 891 | 6 | 1.0 | 1.0 | |||||||||
Earthen | 6762 | 266 | 0.5 | 0.2 | - | 1.5 | >0.05 | 0.5 | 0.2 | - | 1.5 | >0.05 | ||
Roof | Non-organic | 2193 | 27 | 1.0 | 1.0 | |||||||||
Organic | 5460 | 245 | 1.7 | 1.1 | - | 2.8 | <0.05 | 1.8 | 1.1 | - | 2.9 | <0.05 | ||
Toilet | None | 4235 | 142 | 1.0 | 1.0 | |||||||||
Flush or pit latrine | 3418 | 130 | 0.9 | 0.7 | - | 1.2 | >0.05 | 0.9 | 0.7 | - | 1.2 | >0.05 | ||
Normalized Difference Vegetation Index (NDVI) | 157 (7.1) | 1.01 | 0.97 | - | 1.04 | >0.05 | 1.004 | 0.97 | - | 1.04 | >0.05 | |||
Land cover | Grasslands | 6722 | 234 | 1.0 | 1.0 | |||||||||
Croplands | 735 | 10 | 1.1 | 0.5 | - | 2.4 | >0.05 | 1.2 | 0.5 | - | 2.8 | >0.05 | ||
Savannas | 196 | 28 | 0.7 | 0.4 | - | 1.4 | >0.05 | 0.8 | 0.4 | - | 1.5 | >0.05 | ||
Topographic Wetness Index (TWI) | 6.0 (1.7) | 1.02 | 0.9 | - | 1.1 | >0.05 | 1.02 | 0.9 | - | 1.1 | >0.05 | |||
Elevation (10 m) | 24 (8.0) * | 1.2 | 1.1 | - | 1.3 | <0.01 | 1.2 | 1.1 | - | 1.3 | <0.01 | |||
Soil pH | 6.0 (0.3) | 0.9 | 0.3 | - | 2.2 | >0.05 | 0.9 | 0.3 | - | 2.2 | >0.05 | |||
Soil texture | Sandy clay loam | 5988 | 267 | 1.0 | 1.0 | |||||||||
Sandy loam | 1665 | 5 | 0.9 | 0.3 | - | 2.5 | >0.05 | 0.9 | 0.3 | - | 2.5 | >0.05 | ||
Soil organic carbon content (g/kg) | 35 (30) | 0.999 | 0.99 | - | 1.003 | >0.05 | 1.001 | 0.995 | - | 1.01 | >0.05 | |||
Aluminum content of soil (10 mg/kg) | 69 (7.2) * | 1.1 | 1.03 | - | 1.1 | <0.01 | 1.1 | 1.02 | - | 1.1 | <0.01 | |||
Iron content of soil (10 mg/kg) | 15 (1.1) * | 1.2 | 1.01 | - | 1.5 | <0.05 | 1.2 | 0.97 | - | 1.5 | >0.05 | |||
Distance to the nearest animal reserve (km) | 3.6 (3.4) | 0.6 | 0.5 | - | 0.7 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyuga, A.; Larson, P.S.; Ndemwa, M.; Muuo, S.W.; Changoma, M.; Karama, M.; Goto, K.; Kaneko, S. Environmental and Household-Based Spatial Risks for Tungiasis in an Endemic Area of Coastal Kenya. Trop. Med. Infect. Dis. 2022, 7, 2. https://doi.org/10.3390/tropicalmed7010002
Hyuga A, Larson PS, Ndemwa M, Muuo SW, Changoma M, Karama M, Goto K, Kaneko S. Environmental and Household-Based Spatial Risks for Tungiasis in an Endemic Area of Coastal Kenya. Tropical Medicine and Infectious Disease. 2022; 7(1):2. https://doi.org/10.3390/tropicalmed7010002
Chicago/Turabian StyleHyuga, Ayako, Peter S. Larson, Morris Ndemwa, Sheru W. Muuo, Mwatasa Changoma, Mohamed Karama, Kensuke Goto, and Satoshi Kaneko. 2022. "Environmental and Household-Based Spatial Risks for Tungiasis in an Endemic Area of Coastal Kenya" Tropical Medicine and Infectious Disease 7, no. 1: 2. https://doi.org/10.3390/tropicalmed7010002
APA StyleHyuga, A., Larson, P. S., Ndemwa, M., Muuo, S. W., Changoma, M., Karama, M., Goto, K., & Kaneko, S. (2022). Environmental and Household-Based Spatial Risks for Tungiasis in an Endemic Area of Coastal Kenya. Tropical Medicine and Infectious Disease, 7(1), 2. https://doi.org/10.3390/tropicalmed7010002