Efforts to Identify and Combat Antimicrobial Resistance in Uganda: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Literature Search
2.2. Selection of Papers
2.3. Data Analysis
3. Results
Study Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, C.R. Antimicrobial Resistance. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 987–1001. [Google Scholar] [CrossRef]
- Morrison, L.; Zembower, T.R. Antimicrobial Resistance. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 619–635. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, B.M. “Nightmare” Bacteria on the Rise in US Hospitals, Long-Term Care Facilities. JAMA J. Am. Med. Assoc. 2013, 309, 1573–1574. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Toleman, M.A. The Emergence of Pan-Resistant Gram-Negative Pathogens Merits a Rapid Global Political Response. J. Antimicrob. Chemother. 2012, 67, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowitz, A.; Zhu, N. Differential Drivers of Antimicrobial Resistance across the World. Acc. Chem. Res. 2019, 52, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Byarugaba, D.K. Antimicrobial Resistance in Developing Countries and Responsible Risk Factors. Int. J. Antimicrob. Agents 2004, 24, 105–110. [Google Scholar] [CrossRef]
- UNAS. Antibiotic Resistance in Uganda: Situation Anaysis; Uganda National Academy of Sciences: Kampala, Uganda, 2015; ISBN 9789970424108. [Google Scholar]
- Odoi, R.; Joakim, M.; Resistance, A. Anti-Microbial Resistance in Uganda. AMR 2019, 28–30. Available online: https://africa-health.com/wp-content/uploads/2019/02/AH-JAN2019-28-30-AMR.pdf (accessed on 24 May 2021).
- WHO | Antimicrobial Resistance. Available online: https://www.who.int/antimicrobial-resistance/en/ (accessed on 9 March 2021).
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; American Society of Microbiology: Washington, DC, USA, 2018; Volume 6, pp. 521–547. [Google Scholar]
- Uganda | Data. Available online: https://data.worldbank.org/country/UG (accessed on 6 April 2021).
- Okech, T.C. Analytical Review of Health Care Reforms in Uganda and Its Implication on Health Equity. World J. Med. Med. Sci. Res. 2014, 2, 55–62. [Google Scholar]
- Mbonye, A.K.; Buregyeya, E.; Rutebemberwa, E.; Clarke, S.E.; Lal, S.; Hansen, K.S.; Magnussen, P.; LaRussa, P. Prescription for Antibiotics at Drug Shops and Strategies to Improve Quality of Care and Patient Safety: A Cross-Sectional Survey in the Private Sector in Uganda. BMJ Open 2016, 6, e010632. [Google Scholar] [CrossRef]
- Ikwap, K.; Erume, J.; Owiny, D.O.; Nasinyama, G.W.; Melin, L.; Bengtsson, B.; Lundeheim, N.; Fellström, C.; Jacobson, M. Salmonella Species in Piglets and Weaners from Uganda: Prevalence, Antimicrobial Resistance and Herd-Level Risk Factors. Prev. Vet. Med. 2014, 115, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Uganda National Academy of Sciences (UNAS) Antimicrobial Resistance National Action Plans. Gov. Uganda 2016, 2015, 1–16.
- World Health Organization. Joint External Evaluation of IHR Core Capacities of the Republic of Uganda: Mission Report: June 26–30; World Health Organization: Geneva, Switzerland; p. 75.
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; Havumaki, J.; Wijegoonewardena, M.; González, I.J.; Dittrich, S. Antimicrobial Resistance in Africa: A Systematic Review. BMC Infect. Dis. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Izudi, J.; Tamwesigire, I.K.; Bajunirwe, F. Surveillance for Multi-Drug and Rifampicin Resistant Tuberculosis and Treatment Outcomes among Previously Treated Persons with Tuberculosis in the Era of GeneXpert in Rural Eastern Uganda. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 19, 100153. [Google Scholar] [CrossRef] [PubMed]
- Kigozi, E.; Kasule, G.W.; Musisi, K.; Lukoye, D.; Kyobe, S.; Katabazi, F.A.; Wampande, E.M.; Joloba, M.L.; Kateete, D.P. Prevalence and Patterns of Rifampicin and Isoniazid Resistance Conferring Mutations in Mycobacterium Tuberculosis Isolates from Uganda. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Naluyange, R.; Mboowa, G.; Komakech, K.; Semugenze, D.; Kateete, D.P.; Ssengooba, W. High Prevalence of Phenotypic Pyrazinamide Resistance and Its Association with PncA Gene Mutations in Mycobacterium Tuberculosis Isolates from Uganda. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.M.; Meshnick, S.R.; Worodria, W.; Andama, A.; Cattamanchi, A.; Davis, J.L.; Yoo, S.D.; Byanyima, P.; Kaswabuli, S.; Goodman, C.D.; et al. Low Prevalence of Pneumocystis Pneumonia (PCP) but High Prevalence of Pneumocystis Dihydropteroate Synthase (Dhps) Gene Mutations in HIV-Infected Persons in Uganda. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Nantanda, R.; Hildenwall, H.; Peterson, S.; Kaddu-Mulindwa, D.; Kalyesubula, I.; Tumwine, J.K. Bacterial Aetiology and Outcome in Children with Severe Pneumonia in Uganda. Ann. Trop. Paediatr. 2008, 28, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Odoch, T.; Sekse, C.; L’abee-Lund, T.M.; Hansen, H.C.H.; Kankya, C.; Wasteson, Y. Diversity and Antimicrobial Resistance Genotypes in Non-Typhoidal Salmonella Isolates from Poultry Farms in Uganda. Int. J. Environ. Res. Public Health 2018, 15, 324. [Google Scholar] [CrossRef]
- Afema, J.A.; Byarugaba, D.K.; Shah, D.H.; Atukwase, E.; Nambi, M.; Sischo, W.M. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Asua, V.; Conrad, M.D.; Aydemir, O.; Duvalsaint, M.; Legac, J.; Duarte, E.; Tumwebaze, P.; Chin, D.M.; Cooper, R.A.; Yeka, A.; et al. Changing Prevalence of Potential Mediators of Aminoquinoline, Antifolate, and Artemisinin Resistance Across Uganda. J. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cuu, G.; Asua, V.; Tukwasibwe, S.; Nsobya, S.L.; Nanteza, A.; Kimuda, M.P.; Mpimbaza, A.; Rosenthal, P.J. Associations between Aminoquinoline Resistance Genotypes and Clinical Presentations of Plasmodium Falciparum Infection in Uganda. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Florence, P.A.; Otim, F.; Okongo, F.; Ogwang, M.; Greco, D. The Prevalence and Antibiotics Susceptibility Pattern of Neisseria Gonorrhoeae in Patients Attending OPD Clinics at St. Mary’s Hospital Lacor Uganda. J. Prev. Med. Hyg. 2012, 53, 186–189. [Google Scholar] [CrossRef]
- Vandepitte, J.; Hughes, P.; Matovu, G.; Bukenya, J.; Grosskurth, H.; Lewis, D.A. High Prevalence of Ciprofloxacin-Resistant Gonorrhea among Female Sex Workers in Kampala, Uganda (2008–2009). Sex. Transm. Dis. 2014, 41, 233–237. [Google Scholar] [CrossRef]
- Workneh, M.; Hamill, M.M.; Kakooza, F.; Mande, E.; Wagner, J.; Mbabazi, O.; Mugasha, R.; Kajumbula, H.; Walwema, R.; Zenilman, J.; et al. Antimicrobial Resistance of Neisseria Gonorrhoeae in a Newly Implemented Surveillance Program in Uganda: Surveillance Report. JMIR Public Health Surveill. 2020, 6, e17009. [Google Scholar] [CrossRef]
- Najjuka, C.F. Characterization of Extended Spectrum Βlactamases Elaborated in Enterobacteriaceae in Uganda; Makerere University: Kampala, Uganda, 2017. [Google Scholar]
- Manson, A.L.; Cohen, K.A.; Abeel, T.; Desjardins, C.A.; Armstrong, D.T.; Barry, C.E.; Brand, J.; Chapman, S.B.; Cho, S.N.; Gabrielian, A.; et al. Genomic Analysis of Globally Diverse Mycobacterium Tuberculosis Strains Provides Insights into the Emergence and Spread of Multidrug Resistance. Nat. Genet. 2017, 49, 395–402. [Google Scholar] [CrossRef]
- Stanley, I.J.; Kajumbula, H.; Bazira, J.; Kansiime, C.; Rwego, I.B.; Asiimwe, B.B. Multidrug Resistance among Escherichia Coli and Klebsiella Pneumoniae Carried in the Gut of Out-Patients from Pastoralist Communities of Kasese District, Uganda. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Bebell, L.M.; Ayebare, A.; Boum, Y.; Siedner, M.J.; Bazira, J.; Schiff, S.J.; Metlay, J.P.; Bangsberg, D.R.; Ttendo, S.; Firth, P.G. Prevalence and Correlates of MRSA and MSSA Nasal Carriage at a Ugandan Regional Referral Hospital. J. Antimicrob. Chemother. 2017, 72, 888–892. [Google Scholar] [CrossRef]
- Ampaire, L.; Muhindo, A.; Orikiriza, P.; Mwanga-Amumpaire, J.; Bebell, L.; Boum, Y. A Review of Antimicrobial Resistance in East Africa. Afr. J. Lab. Med. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- WHO. HIV Drug Resistance Surveillance Guidance; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Uganda AIDS Commission. Uganda Population Based HIV Impact Assessment; UAC: Kampala, Uganda, 2017; pp. 62–65. [Google Scholar]
- Sigaloff, K.C.E.; Kayiwa, J.; Musiime, V.; Calis, J.C.J.; Kaudha, E.; Mukuye, A.; Matama, C.; Nankya, I.; Nakatudde, L.; Dekker, J.T.; et al. Short Communication: High Rates of Thymidine Analogue Mutations and Dual-Class Resistance among HIV-Infected Ugandan Children Failing First-Line Antiretroviral Therapy. Aids Res. Hum. Retrovir. 2013, 29, 925–930. [Google Scholar] [CrossRef]
- WHO Unveils Plan to Tackle Rising HIV Drug Resistance in Africa | WHO | Regional Office for Africa. Available online: https://www.afro.who.int/news/who-unveils-plan-tackle-rising-hiv-drug-resistance-africa (accessed on 7 April 2021).
- Smith, K.D.; Achan, B.; Hullsiek, K.H.; McDonald, T.R.; Okagaki, L.H.; Alhadab, A.A.; Akampurira, A.; Rhein, J.R.; Meya, D.B.; Boulware, D.R.; et al. Increased Antifungal Drug Resistance in Clinical Isolates of Cryptococcus Neoformans in Uganda. Antimicrob. Agents Chemother. 2015, 59, 7197–7204. [Google Scholar] [CrossRef] [PubMed]
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal Infections in Humans: The Silent Crisis. Microbial Cell 2020, 7, 143–145. [Google Scholar] [CrossRef]
- Buregyeya, E.; Atusingwize, E.; Nsamba, P.; Musoke, D.; Naigaga, I.; Kabasa, J.D.; Amuguni, H.; Bazeyo, W. Operationalizing the One Health Approach in Uganda: Challenges and Opportunities. J. Epidemiol. Glob. Health 2020, 10, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Asiimwe, B.B.; Kiiru, J.; Mshana, S.E.; Neema, S.; Keenan, K.; Kesby, M.; Mwanga, J.R.; Sloan, D.J.; Mmbaga, B.T.; Smith, V.A.; et al. Protocol for an Interdisciplinary Cross-Sectional Study Investigating the Social, Biological and Community-Level Drivers of Antimicrobial Resistance (AMR): Holistic Approach to Unravel Antibacterial Resistance in East Africa (HATUA). BMJ Open 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.F.; Rankin, S.C.; Schurer, J.M.; Cole, S.; Conti, L.; Rabinowitz, P.; Gray, G.; Kahn, L.; Machalaba, C.; Mazet, J.; et al. Checklist for One Health Epidemiological Reporting of Evidence (COHERE). One Health 2017, 4, 14–21. [Google Scholar] [CrossRef]
Resistance Type | Number of Articles | AMR Context | Study Design | Output | |||||
---|---|---|---|---|---|---|---|---|---|
Human | Veterinary/Animal | One Health | Field Study | Lab Study | Surveillance or Susceptibility | Resistance Genes | Policy | ||
Antibacterial | 91 | 73 | 12 | 6 | 82 | 9 | 66 | 25 | 0 |
Antimalarial | 68 | 68 | 0 | 0 | 67 | 1 | 13 | 55 | 0 |
Antiviral | 3 | 3 | 0 | 0 | 3 | 0 | 0 | 3 | 0 |
Antifungal | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
Total | 163 | 145 | 12 | 6 | 153 | 10 | 80 | 83 | 0 |
Resistance Type | Target Pathogen | Number of Studies | Examples of Resistance Genes Identified |
---|---|---|---|
Antibacterial | E. coli | 7 | blaCTX-M, blaACT, arnA, integrons class 1 and 2, qnrS1, tetA, tetB, sul2, blaSHV, blaTEM |
Staphylococcus spp. | 8 | spa types t064, t037, SCCmec types I and IV, mecA, aac(6′)-Ie-aph(2′’)-Ia, aph(3′)-IIIa, ant(4′)-Ia, blaZ, mecA, vanA, vanB1 | |
Streptococcus spp. | 3 | dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR), folA and folP genes, | |
Salmonella spp. | 2 | blaTEM-1,cmlA, tetA, qnrS, sul1, dhfrI, dhfrVII | |
Mycobacterium spp. | 5 | Mutation gyrA Genotype Uganda I and II has Thr80Ala (acc/gcc), rpoB gene mutations | |
Klebsiella spp. | 1 | blaCTX-M, blaSHV, blaTEM | |
Enterococcus spp. | 1 | EBC, FOX, ACC, CIT, DHA, MOX | |
Antimalarial | Plasmodium falciparum | 55 | Pfmdr1 N86Y, Y184F and D1246Y, Pfpm2, PfKelch13, plasmepsin2 gene, pfcrt 76T, Pfdhfr, Pfdhps |
Antiviral | Hepatitis C virus | 1 | g4 and g7 strains contain nonstructural (ns) protein 3 and 5A polymorphisms associated with resistance to DAAs |
Hepatitis B virus | 1 | rtM204V/I mutations | |
HIV | 1 | Thymidine analog mutations, M184V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kivumbi, M.T.; Standley, C.J. Efforts to Identify and Combat Antimicrobial Resistance in Uganda: A Systematic Review. Trop. Med. Infect. Dis. 2021, 6, 86. https://doi.org/10.3390/tropicalmed6020086
Kivumbi MT, Standley CJ. Efforts to Identify and Combat Antimicrobial Resistance in Uganda: A Systematic Review. Tropical Medicine and Infectious Disease. 2021; 6(2):86. https://doi.org/10.3390/tropicalmed6020086
Chicago/Turabian StyleKivumbi, Mark Tefero, and Claire J. Standley. 2021. "Efforts to Identify and Combat Antimicrobial Resistance in Uganda: A Systematic Review" Tropical Medicine and Infectious Disease 6, no. 2: 86. https://doi.org/10.3390/tropicalmed6020086