Assessing the Risk of Exotic Mosquito Incursion through an International Seaport, Newcastle, NSW, Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Mosquito Population and Habitats Surveys
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cashman, P.; Doggett, S.; Hueston, L.; Durrheim, D.; Massey, P.; Russell, R.C. Barmah Forest virus serology: Implications for diagnosis and public health action. Commun. Dis. Intell. 2008, 32, 263–266. [Google Scholar]
- Claflin, S.B.; Webb, C.E. Ross River virus: Many vectors and unusual hosts make for an unpredictable pathogen. PLoS Pathog. 2015, 11, e1005070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, C.E.; Doggett, S.L. Exotic mosquito threats require strategic surveillance and response planning. Public Health Res. Pract. 2016, 26, 1–4. [Google Scholar] [CrossRef]
- Jansen, C.C.; Beebe, N.W. The dengue vector Aedes aegypti: What comes next. Microbes Infect. 2010, 12, 272–279. [Google Scholar] [CrossRef]
- van den Hurk, A.F.; Nicholson, J.; Beebe, N.W.; Davis, J.; Muzari, O.M.; Russell, R.C.; Devine, G.J.; Ritchie, S.A. Ten years of the Tiger: Aedes albopictus presence in Australia since its discovery in the Torres Strait in 2005. One Health 2016, 2, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Darbro, J.; Halasa, Y.; Montgomery, B.; Muller, M.; Shepard, D.; Devine, G.; Mwebaze, P. An economic analysis of the threats posed by the establishment of Aedes albopictus in Brisbane, Queensland. Ecol. Econ. 2017, 142, 203–213. [Google Scholar] [CrossRef]
- Halasa, Y.A.; Shepard, D.S.; Wittenberg, E.; Fonseca, D.M.; Farajollahi, A.; Healy, S.; Gaugler, R.; Strickman, D.; Clark, G.G. Willingness-to-pay for an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey. J. Am. Mosq. Control. Assoc. 2012, 28, 225–236. [Google Scholar] [CrossRef]
- Knope, K.; Giele, C. Increasing notifications of dengue in Australia related to overseas travel, 1991 to 2012. Commun. Dis. Intell. 2013, 37, 55–59. [Google Scholar]
- Huang, X.; Yakob, L.; Devine, G.; Frentiu, F.D.; Fu, S.Y.; Hu, W. Dynamic spatiotemporal trends of imported dengue fever in Australia. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.L.; van Rooyen, A.R.; Chung, J.; Endersby-Harshman, N.M.; Griffin, P.C.; Sly, A.; Hoffmann, A.A.; Weeks, A.R. Tracking genetic invasions: Genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports. Evol. Appl. 2019, 12, 1136–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, B.H.; Fanning, I.D.; Marks, E.N.; Ives, W.A.; Whelan, P.I.; Barker-Hudson, P. Is Aedes albopictus in Australia? Med. J. Aust. 1990, 153, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Derraik, J.G. Exotic mosquitoes in New Zealand: A review of species intercepted, their pathways and ports of entry. Aust. NZ J. Public Health. 2004, 28, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Whelan, P.I.; Kurucz, N.; Pettit, W.J.; Krause, V. Elimination of Aedes aegypti in northern Australia, 2004–2006. J. Vector Ecol. 2020, 45, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Ammar, S.E.; Mclntyre, M.; Swan, T.; Kasper, J.; Derraik, J.G.; Baker, M.G.; Hales, S. Intercepted mosquitoes at New Zealand’s Ports of Entry, 2001 to 2018: Current status and future concerns. Trop. Med. Infect. Dis. 2019, 4, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, S.A.; Williams, C.R.; Russell, R.C.; Sutherst, R.W. Aedes (Stegomyia) albopictus-a dengue threat for southern Australia? Comm. Dis. Intell. 2005, 29, 296–298. [Google Scholar]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector-borne Zoonot. Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, M.U.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef]
- Schmidt, T.; Chung, J.; van Rooyen, A.; Sly, A.; Weeks, A.; Hoffmann, A.A. Incursion pathways of the Asian tiger mosquito (Aedes albopictus) into Australia contrast sharply with those of the yellow fever mosquito (Aedes aegypti). Pest. Manag. Sci. 2020, 76, 4202–4209. [Google Scholar] [CrossRef]
- Barker-Hudson, P.; Jones, R.; Kay, B.H. Categorization of domestic breeding habitats of Aedes aegypti (Diptera: Culicidae) in Northern Queensland, Australia. J. Med. Entomol. 1988, 25, 178–182. [Google Scholar] [CrossRef]
- Heersink, D.K.; Meyers, J.; Caley, P.; Barnett, G.; Trewin, B.; Hurst, T.; Jansen, C. Statistical modeling of a larval mosquito population distribution and abundance in residential Brisbane. J. Pest. Sci. 2016, 89, 267–279. [Google Scholar] [CrossRef]
- Mainali, S.; Lamichhane, R.; Clark, K.; Beatty, S.; Fatouros, M.; Neville, P.; Oosthuizen, J. “Looking over the backyard fence”: Householders and mosquito control. Int. J. Environ. Res. Public Health 2017, 14, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janes, R.; Jardine, A.; Neville, P.J.; Nicholson, J.; Lindsay, M.D. Mosquito (Diptera: Culicidae) communities of metropolitan Perth, Western Australia, and implications for managing pest and public health risks. Austral. Entomol. 2018, 57, 324–332. [Google Scholar] [CrossRef]
- World Health Organization. International Health Regulations (2005), 3rd ed.; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- NSW Health Notifiable Conditions Information Management System. Communicable Diseases Branch and Centre for Epidemiology and Evidence, NSW Health. Available online: https://www.health.nsw.gov.au/Infectious/Pages/data.aspx (accessed on 23 December 2020).
- Ewald, B.D.; Webb, C.E.; Durrheim, D.N.; Russell, R.C. Is there a risk of malaria transmission in NSW? NSW Public Health Bull. 2008, 19, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.C. Mosquito-borne disease and climate change in Australia: Time for a reality check. Aust. J. Entomol. 2009, 48, 1–7. [Google Scholar] [CrossRef]
- Webb, C.E.; Doggett, S.L.; Russell, R.C. A Guide to the Mosquitoes of Australia; CSIRO Publishing: Victoria, Australia, 2016. [Google Scholar]
- Russell, R.C.; Currie, B.J.; Lindsay, M.D.; Mackenzie, J.S.; Ritchie, S.A.; Whelan, P.I. Dengue and climate change in Australia: Predictions for the future should incorporate knowledge from the past. Med. J. Aust. 2009, 190, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Beebe, N.W.; Cooper, R.D.; Mottram, P.; Sweeney, A.W. Australia’s dengue risk driven by human adaptation to climate change. PLoS Neg. Trop. Dis. 2009, 3, e429. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W.P.; Williams, C.; Ritchie, S.; Hoffmann, A.A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: The dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 2009, 23, 528–538. [Google Scholar] [CrossRef]
- Eritja, R.; Palmer, J.R.; Roiz, D.; Sanpera-Calbet, I.; Bartumeus, F. Direct evidence of adult Aedes albopictus dispersal by car. Sci. Rep. 2017, 7, 14399. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.C.; Webb, C.E.; Williams, C.R.; Ritchie, S.A. Mark–release–recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Med. Vet. Entomol. 2005, 19, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Vavassori, L.; Saddler, A.; Müller, P. Active dispersal of Aedes albopictus: A mark-release-recapture study using self-marking units. Parasit. Vect. 2019, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.C. Vector Monitoring Risk Assessment of First Ports of Entry; Department of Agriculture and Water Resources, Australian Government: Canberra, Australia, 2015.
- Australian Bureau of Statistics. 2016 Census QuickStats: Carrington (Newcastle-NSW). Available online: https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/SSC10830 (accessed on 23 December 2020).
- Port of Newcastle 2019 Trade Report. Board of Port of Newcastle Operations Pty Limited, NSW, Australia. Available online: https://www.portofnewcastle.com.au/wp-content/uploads/2020/05/Port-of-Newcastle-Annual-Trade-Report-2019.pdf (accessed on 23 December 2020).
- Queensland Health. Queensland Dengue Management Plan 2015–2020; State of Queensland (Queensland Health): Queensland, QLD, Australia, 2015.
- Tun-Lin, W.; Kay, B.H.; Barnes, A. The premise condition index: A tool for streamlining surveys of Aedes aegypti. Am. J. Trop. Med. Hyg. 1995, 53, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Kay, B.H.; Watson, T.M.; Ryan, P.A. Definition of productive Aedes notoscriptus (Diptera: Culicidae) habitats in western Brisbane, and a strategy for their control. Aust. J. Entomol. 2008, 47, 142–148. [Google Scholar] [CrossRef]
- Russell, R.C. Mosquitoes and Mosquito-Borne Disease in Southeastern Australia; Westmead Hospital: Westmead, NSW, Australia, 1993. [Google Scholar]
- Trewin, B.J.; Kay, B.H.; Darbro, J.M.; Hurst, T.P. Increased container-breeding mosquito risk owing to drought-induced changes in water harvesting and storage in Brisbane, Australia. Int. Health 2013, 5, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, B.L.; Ritchie, S.A. Roof gutters: A key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am. J. Trop. Med. Hyg. 2002, 67, 244–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halasa, Y.A.; Shepard, D.S.; Fonseca, D.M.; Farajollahi, A.; Healy, S.; Gaugler, R.; Bartlett-Healy, K.; Strickman, D.A.; Clark, G.G. Quantifying the impact of mosquitoes on quality of life and enjoyment of yard and porch activities in New Jersey. PLoS ONE 2014, 9, e89221. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, R.S.; Neville, P.J.; Oosthuizen, J.; Clark, K.; Mainali, S.; Fatouros, M.; Beatty, S. The highs and lows of making a bucket list-Quantifying potential mosquito breeding habitats in metropolitan backyards. Front. Public Health 2017, 5, 292. [Google Scholar] [CrossRef] [Green Version]
- Warchot, A.; Whelan, P.; Brown, J.; Vincent, T.; Carter, J.; Kurucz, N. The removal of subterranean stormwater drain sumps as mosquito breeding sites in Darwin, Australia. Trop. Med. Infect. Dis. 2020, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Tun-Lin, W.; Kay, B.H.; Barnes, A.; Forsyth, S. Critical examination of Aedes aegypti indices: Correlations with abundance. Am. J. Trop. Med. Hyg. 1996, 54, 543–547. [Google Scholar] [CrossRef]
- Focks, D.A.; Chadee, D.D. Pupal survey: An epidemiologically significant surveillance method for Aedes aegypti: An example using data from Trinidad. Am. J. Trop. Med. Hyg. 1997, 56, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Peres, R.C.; Rego, R.; Maciel-de-Freitas, R. The use of the Premise Condition Index (PCI) to provide guidelines for Aedes aegypti surveys. J. Vector Ecol. 2013, 38, 190–192. [Google Scholar] [CrossRef]
- Johnson, B.J.; Brosch, D.; Christiansen, A.; Wells, E.; Wells, M.; Bhandoola, A.F.; Milne, A.; Garrison, S.; Fonseca, D.M. Neighbors help neighbors control urban mosquitoes. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Potter, A.; Jardine, A.; Neville, P.J. A survey of knowledge, attitudes, and practices in relation to mosquitoes and mosquito-borne disease in Western Australia. Front. Public Health 2016, 4, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassim, N.A.F.; Webb, C.E.; Wang, Q.; Russell, R.C. Australian distribution, genetic status and seasonal abundance of the exotic mosquito Culex molestus (Forskal) (Diptera: Culicidae). Aust. J. Entomol. 2013, 52, 185–198. [Google Scholar] [CrossRef]
- Williams, C.R. The Asian tiger mosquito (Aedes albopictus) invasion into Australia: A review of likely geographic range and changes to vector-borne disease risk. Trans. Royal Soc. South. Aust. 2012, 136, 128–136. [Google Scholar] [CrossRef]
- Williams, C.R.; Mincham, G.; Ritchie, S.A.; Viennet, E.; Harley, D. Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: Implications for dengue outbreaks. Parasit. Vect. 2014, 7, 447. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.; Ritchie, S.A.; Russell, R.C.; Zalucki, M.P.; van den Hurk, A.F. Ability for Aedes albopictus (Diptera: Culicidae) to survive at the climatic limits of its potential range in eastern Australia. J. Med. Entomol. 2014, 51, 948–957. [Google Scholar] [CrossRef]
- Office of Environment and Heritage 2014. NSW Climate Change Snapshot. Available online: file:///C:/Users/20011791/AppData/Local/Temp/NSWSnapshot.pdf (accessed on 23 December 2020).
- Russell, R.C.; Lee, D.J.; Stanislas, Y. Aedes aegypti (L.) (Diptera: Culicidae) in New South Wales. Gen. Appl. Entomol. 1984, 16, 9. [Google Scholar]
- Russell, R.C.; Bryan, J.H. A survey of domestic container-breeding mosquitoes in New South Wales for the presence of Aedes aegypti (L.), the vector of dengue fever. Aust. J. Entomol 1985, 24, 193–194. [Google Scholar] [CrossRef]
- Russell, R.C. Larval competition between the introduced vector of dengue fever in Australia, Aedes aegypti (L), and a native container-breeding mosquito, Aedes notoscriptus (Skuse) (Diptera, Culicidae). Aust. J. Zool. 1986, 34, 527–534. [Google Scholar] [CrossRef]
- Nicholson, J.; Ritchie, S.A.; Russell, R.C.; Webb, C.E.; Cook, A.; Zalucki, M.P.; Williams, C.R.; Ward, P.; van den Hurk, A.F. Effects of cohabitation on the population performance and survivorship of the invasive mosquito Aedes albopictus and the resident mosquito Aedes notoscriptus (Diptera: Culicidae) in Australia. J. Med. Entomol. 2015, 52, 375–385. [Google Scholar] [CrossRef]
- Hill, M.P.; Axford, J.K.; Hoffmann, A.A. Predicting the spread of Aedes albopictus in Australia under current and future climates: Multiple approaches and datasets to incorporate potential evolutionary divergence. Aust. Ecol. 2014, 39, 469–478. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasit. 2013, 29, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, B.L.; Connelly, C.R. A Review of the Control of Aedes aegypti (Diptera: Culicidae) in the Continental United States. J. Med. Entomol. 2020, tjaa157. [Google Scholar] [CrossRef] [PubMed]
- Whelan, P.; Nguyen, H.; Hajkowicz, K.; Davis, J.; Smith, D.; Pyke, A.; Krause, V.; Markey, P. Evidence in Australia for a case of airport dengue. PLoS Neg. Trop. Dis. 2012, 6, e1619. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, M.D.; Jardine, A.; Giele, C.; Armstrong, P.; McCarthy, S.; Whittle, A.; Pal, N.; Lyttle, H.; Harrington, S.; Nicholson, J.; et al. Investigation of the first case of dengue virus infection acquired in Western Australia in seven decades: Evidence of importation of infected mosquitoes? PLoS Neg. Trop. Dis. 2015, 9, e0004114. [Google Scholar] [CrossRef]
- Schaffner, F.; Medlock, J.M.; Van Bortel, A.W. Public health significance of invasive mosquitoes in Europe. Clin. Micro. Inf. 2013, 19, 685–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaffner, F.; Kaufmann, C.; Hegglin, D.; Mathis, A. The invasive mosquito Aedes japonicus in Central Europe. Med. Vet. Entomol. 2009, 23, 448–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, M.G.; Fonseca, D.M. Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Ann. Rev. Entomol. 2014, 59, 31–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Versteirt, V.; De Clercq, E.M.; Fonseca, D.M.; Pecor, J.; Schaffner, F.; Coosemans, M.; Van Bortel, W. Bionomics of the established exotic mosquito species Aedes koreicus in Belgium, Europe. J. Med. Entomol. 2014, 49, 1226–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, L.F.; Friberg, M.D. Aedes albopictus and Aedes flavopictus (Diptera: Culicidae) pre-imaginal abundance patterns are associated with different environmental factors along an altitudinal gradient. Current Res. Insect Sci. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Wilke, A.B.; Benelli, G.; Beier, J.C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Neg. Trop. Dis. 2020, 14, e0007864. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.F. Globally invasive, withdrawing at home: Aedes albopictus and Aedes japonicus facing the rise of Aedes flavopictus. Intern. J. Biometeorol. 2016, 60, 1727–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staunton, K.M.; Yeeles, P.; Townsend, M.; Nowrouzi, S.; Paton, C.J.; Trewin, B.; Pagendam, D.; Bondarenco, A.; Devine, G.J.; Snoad, N.; et al. Trap location and premises condition influences on Aedes aegypti (Diptera: Culicidae) catches using Biogents Sentinel traps during a ‘rear and release’ program: Implications for designing surveillance programs. J. Med. Entomol. 2019, 56, 1102–1111. [Google Scholar] [CrossRef]
- Farajollahi, A.; Kesavaraju, B.; Price, D.C.; Williams, G.M.; Healy, S.P.; Gaugler, R.; Nelder, M.P. Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J. Med. Entomol. 2009, 46, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Sousa, L.B.; Fricker, S.R.; Doherty, S.S.; Webb, C.E.; Baldock, K.L.; Williams, C.R. Citizen science and smartphone e-entomology enables low-cost upscaling of mosquito surveillance. Sci. Total Environ. 2020, 704, E135349. [Google Scholar] [CrossRef]
- Montgomery, B.L.; Shivas, M.A.; Hall-Mendelin, S.; Edwards, J.; Hamilton, N.A.; Jansen, C.C.; McMahon, J.L.; Warrilow, D.; van den Hurk, A.F. Rapid Surveillance for Vector Presence (RSVP): Development of a novel system for detecting Aedes aegypti and Aedes albopictus. PLoS Neg. Trop. Dis. 2017, 11, e0005505. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Montgomery, B.L.; Adamczyk, R.; Ehlers, G.; van den Hurk, A.F.; Warrilow, D. A LAMP-based colorimetric assay to expedite field surveillance of the invasive mosquito species Aedes aegypti and Aedes albopictus. PLoS Neg. Trop. Dis. 2020, 14, e0008130. [Google Scholar] [CrossRef]
- Webb, C.E.; Russell, R.C. Dispersal of the mosquito Aedes vigilax (Diptera: Culicidae) from urban estuarine wetlands in Sydney, Australia. J. Med. Entomol. 2019, 56, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
Container Type | Total Number of Container Types Recorded across All Properties | Number Properties with at Least One Container Type | Mosquito Species Detected as Larvae from at Least One Container Type within at Least One Property |
---|---|---|---|
Roof gutters 1 | 204 | 204 | N/A |
Rainwater tank 1 | 3 | 3 | N/A |
Water barrel | 7 | 3 | Ae. notoscriptus; Cx. quinquefasciatus |
Bucket | 120 | 61 | Ae. notoscriptus; Cx. quinquefasciatus |
Drain | 16 | 14 | Cx. quinquefasciatus |
Bromeliads | 131 | 17 | Ae. notoscriptus; Cx. quinquefasciatus |
Striking bucket | 1 | 1 | Cx. quinquefasciatus |
Vase | 3 | 2 | N/A |
Bird bath | 8 | 8 | Ae. notoscriptus |
Boat/trailer | 4 | 3 | Cx. quinquefasciatus |
Pot plants | 520 | 116 | Ae. notoscriptus |
Tyre | 21 | 6 | Ae. notoscriptus |
Misc (<2 L) | 311 | 79 | Ae. notoscriptus; Cx. quinquefasciatus |
Misc (2–20 L) | 84 | 45 | Ae. notoscriptus; Cx. quinquefasciatus |
Misc (>20 L) | 29 | 24 | Cx. quinquefasciatus |
Dog bowl | 21 | 12 | N/A |
Plastic sheets | 9 | 8 | Ae. notoscriptus; Cx. quinquefasciatus |
Discarded toy | 9 | 7 | Ae. notoscriptus; Cx. quinquefasciatus |
Frog pond | 5 | 3 | Ae. notoscriptus; Cx. quinquefasciatus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webb, C.E.; Porigneaux, P.G.; Durrheim, D.N. Assessing the Risk of Exotic Mosquito Incursion through an International Seaport, Newcastle, NSW, Australia. Trop. Med. Infect. Dis. 2021, 6, 25. https://doi.org/10.3390/tropicalmed6010025
Webb CE, Porigneaux PG, Durrheim DN. Assessing the Risk of Exotic Mosquito Incursion through an International Seaport, Newcastle, NSW, Australia. Tropical Medicine and Infectious Disease. 2021; 6(1):25. https://doi.org/10.3390/tropicalmed6010025
Chicago/Turabian StyleWebb, Cameron E., Philippe G. Porigneaux, and David N. Durrheim. 2021. "Assessing the Risk of Exotic Mosquito Incursion through an International Seaport, Newcastle, NSW, Australia" Tropical Medicine and Infectious Disease 6, no. 1: 25. https://doi.org/10.3390/tropicalmed6010025
APA StyleWebb, C. E., Porigneaux, P. G., & Durrheim, D. N. (2021). Assessing the Risk of Exotic Mosquito Incursion through an International Seaport, Newcastle, NSW, Australia. Tropical Medicine and Infectious Disease, 6(1), 25. https://doi.org/10.3390/tropicalmed6010025