Artemether and Praziquantel: Origin, Mode of Action, Impact, and Suggested Application for Effective Control of Human Schistosomiasis
Abstract
:1. Background
2. Pharmacological Aspects
2.1. The Artemisinins
2.2. Praziquantel
2.3. Combination Treatment
3. Drug Resistance
3.1. Artemether
3.2. Praziquantel
4. Trials and Community-based Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases. Available online: http://www.who.int/neglected_diseases/NTD_RoadMap_2012_Fullversion.pdf (accessed on 3 December 2018).
- WHO. Schistosomiasis Fact Sheet of 20 February 2018. Available online: http://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 20 August 2018).
- Hotez, P.J.; Asojo, O.A.; Adesina, A.M. Nigeria: “Ground Zero” for the high prevalence neglected tropical diseases. PLoS Negl. Trop. Dis. 2012, 6, e1600. [Google Scholar] [CrossRef]
- Barakat, R.; El Morshedy, H. Efficacy of two praziquantel treatments among primary school children in an area of high Schistosoma mansoni endemicity, Nile Delta, Egypt. Parasitology 2011, 138, 440–446. [Google Scholar] [CrossRef]
- El-Khoby, T.; Galal, N.; Fenwick, A.; Barakat, R.; El-Hawey, A.; Nooman, Z.; Habib, M.; Abdel-Wahab, F.; Gabr, N.S.; Hammam, H.M.; et al. The epidemiology of schistosomiasis in Egypt: Summary findings in nine governorates. Am. J. Trop. Med. Hyg. 2000, 62, 88–99. [Google Scholar] [CrossRef]
- Gryseels, B. Schistosomiasis. Infect. Dis. Clin. N. Am. 2012, 26, 383–397. [Google Scholar] [CrossRef]
- Sow, S.; de Vlas, S.J.; Stelma, F.; Vereecken, K.; Gryseels, B.; Polman, K. The contribution of water contact behavior to the high Schistosoma mansoni Infection rates observed in the Senegal River Basin. BMC Infect. Dis. 2011, 11, 198. [Google Scholar] [CrossRef]
- Davis, A.; Wegner, D.H. Multicentre trials of praziquantel in human schistosomiasis: Design and techniques. Bull. World Health Organ. 1979, 57, 767–771. [Google Scholar]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.N.; Bergquist, R.; Leonardo, L.; Yang, G.J.; Yang, K.; Sudomo, M.; Olveda, R. Schistosomiasis japonica control and research needs. Adv. Parasitol. 2010, 72, 145–178. [Google Scholar] [CrossRef]
- King, C.H. Parasites and poverty: The case of schistosomiasis. Acta Trop. 2010, 113, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Hay, S.I.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1260–1344. [Google Scholar] [CrossRef]
- Murray, C.J.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Bergquist, R.; Li, S.Z.; Zhou, X.N. “Farewell to the God of Plague”: The Importance of Political Commitment Towards the Elimination of Schistosomiasis. Trop. Med. Infect. Dis. 2018, 3, 108. [Google Scholar] [CrossRef]
- Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 2011, 17, 1217–1220. [Google Scholar] [CrossRef]
- Tu, Y. The development of the antimalarial drugs with new type of chemical structure–qinghaosu and dihydroqinghaosu. Southeast Asian J. Trop. Med. Publ. Health 2004, 35, 250–251. [Google Scholar]
- Faurant, C. From bark to weed: The history of artemisinin. Parasite 2011, 18, 215–218. [Google Scholar] [CrossRef]
- Miller, L.H.; Su, X. Artemisinin: Discovery from the Chinese herbal garden. Cell 2011, 146, 855–858. [Google Scholar] [CrossRef]
- Klayman, D.L. Qinghaosu (artemisinin): An antimalarial drug from China. Science 1985, 228, 1049–1055. [Google Scholar] [CrossRef]
- Gardner, B. A present from Chairman Mao. Welcome News Supplement 6: Research Directions in Malaria. Wellcome Trust 2002, 25 Suppl. 6. [Google Scholar]
- Li, Y.; Wu, Y.L. How Chinese scientists discovered qinghaosu (artemisinin) and developed its derivatives? What are the future perspectives? Med. Trop. Rev. Corps Sante Colonial 1998, 58, 9–12. [Google Scholar]
- Ansari, M.T.; Saify, Z.S.; Sultana, N.; Ahmad, I.; Saeed-Ul-Hassan, S.; Tariq, I.; Khanum, M. Malaria and artemisinin derivatives: An updated review. Mini Rev. Med. Chem. 2013, 13, 1879–1902. [Google Scholar] [CrossRef]
- Tu, Y. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angew. Chem. 2016, 55, 10210–10226. [Google Scholar] [CrossRef] [PubMed]
- Tambo, E.; Khater, E.I.; Chen, J.H.; Bergquist, R.; Zhou, X.N. Nobel prize for the artemisinin and ivermectin discoveries: A great boost towards elimination of the global infectious diseases of poverty. Infec. Dis. Poverty 2015, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.J.; Fu, L.F.; Shao, P.P.; Wu, F.Z.; Fan, C.Z.; Shu, H.; Ren, C.X.; Sheng, X.L. Experimental studies on antischistosomal activity of qinghaosu. Chin. Med. J. 1980, 60, 422–425. [Google Scholar]
- Xiao, S.H.; Sun, J. Schistosoma hemozoin and its possible roles. Int. J. Parasitol. 2017, 47, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Pagola, S.; Stephens, P.W.; Bohle, D.S.; Kosar, A.D.; Madsen, S.K. The structure of malaria pigment beta-haematin. Nature 2000, 404, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Homewood, C.A.; Jewsbury, J.M. Comparison of malarial and schistosome pigment. Trans. R. Soc. Trop. Med. Hyg. 1972, 66, 1–2. [Google Scholar] [CrossRef]
- Meunier, B.; Robert, A. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc. Chem. Res. 2010, 43, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Creek, D.J.; Charman, W.N.; Chiu, F.C.; Prankerd, R.J.; Dong, Y.; Vennerstrom, J.L.; Charman, S.A. Relationship between antimalarial activity and heme alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials. Antimicrob. Agents Chemother. 2008, 52, 1291–1296. [Google Scholar] [CrossRef]
- Xiao, S.H.; Keiser, J.; Chollet, J.; Utzinger, J.; Dong, Y.; Endriss, Y.; Vennerstrom, J.L.; Tanner, M. In vitro and in vivo activities of synthetic trioxolanes against major human schistosome species. Antimicrob. Agents Chemother. 2007, 51, 1440–1445. [Google Scholar] [CrossRef]
- Pradines, V.; Portela, J.; Boissier, J.; Cosledan, F.; Meunier, B.; Robert, A. Trioxaquine PA1259 alkylates heme in the blood-feeding parasite Schistosoma mansoni. Antimicrob. Agents Chemother. 2011, 55, 2403–2405. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, X.; Kamaraj, S.; Bulbule, V.J.; Chiu, F.C.; Chollet, J.; Dhanasekaran, M.; Hein, C.D.; Papastogiannidis, P.; Morizzi, J.; et al. Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439). J. Med. Chem. 2017, 60, 2654–2668. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wang, X.; Dong, Y.; Vennerstrom, J.L.; Xiao, S.H. Effect of ozonide OZ418 against Schistosoma japonicum harbored in mice. Parasitol. Res. 2014, 113, 3259–3266. [Google Scholar] [CrossRef]
- Liu, R.; Dong, H.F.; Guo, Y.; Zhao, Q.P.; Jiang, M.S. Efficacy of praziquantel and artemisinin derivatives for the treatment and prevention of human schistosomiasis: A systematic review and meta-analysis. Parasites Vectors 2011, 4, 201. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev. 2010, 39, 435–454. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.H.; Mei, J.Y.; Jiao, P.Y. Schistosoma japonicum-infected hamsters (Mesocricetus auratus) used as a model in experimental chemotherapy with praziquantel, artemether, and OZ compounds. Parasitol. Res. 2011, 108, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Chollet, J.; Utzinger, J.; Matile, H.; Mei, J.; Tanner, M. Artemether administered together with haemin damages schistosomes in vitro. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 67–71. [Google Scholar] [PubMed]
- Xiao, S.H.; You, J.Q.; Yang, Y.Q.; Wang, C.Z. Experimental studies on early treatment of schistosomal infection with artemether. Southeast Asian J. Trop. Med. Publ. Health 1995, 26, 306–318. [Google Scholar]
- Djimde, A.; Lefevre, G. Understanding the pharmacokinetics of Coartem. Malar. J. 2009, 8 (Suppl. 1), S4. [Google Scholar] [CrossRef]
- Chan, J.D.; Zarowiecki, M.; Marchant, J.S. Ca2+ channels and praziquantel: A view from the free world. Parasitol. Int. 2013, 62, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Binggui, S.; Chollet, J.; Tanner, M. Tegumental changes in 21-day-old Schistosoma mansoni harboured in mice treated with artemether. Acta Trop. 2000, 75, 341–348. [Google Scholar] [CrossRef]
- Cupit, P.M.; Cunningham, C. What is the mechanism of action of praziquantel and how might resistance strike? Future Med. Chem. 2015, 7, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Bais, S.; Greenberg, R.M. TRP channels as potential targets for antischistosomals. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.X.; Liu, G.J.; Zhang, M.M.; Wang, Q.; Ni, J.; Wei, J.F.; Zhou, L.K.; Duan, X.; Chen, X.Y.; Zheng, J.; et al. Systematic review of benefits and harms of artemisinin-type compounds for preventing schistosomiasis. Zhonghua Yi Xue Za Zhi 2003, 83, 1219–1224. [Google Scholar] [PubMed]
- Shuhua, X.; Chollet, J.; Weiss, N.A.; Bergquist, R.N.; Tanner, M. Preventive effect of artemether in experimental animals infected with Schistosoma mansoni. Parasitol. Int. 2000, 49, 19–24. [Google Scholar] [CrossRef]
- Sabah, A.A.; Fletcher, C.; Webbe, G.; Doenhoff, M.J. Schistosoma mansoni: Chemotherapy of infections of different ages. Exp. Parasitol. 1986, 61, 294–303. [Google Scholar] [CrossRef]
- Gonnert, R.; Andrews, P. Praziquantel, a new board-spectrum antischistosomal agent. Zeitschrift fur Parasitenkunde 1977, 52, 129–150. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.H.; Yue, W.J.; Yang, Y.Q.; You, J.Q. Susceptibility of Schistosoma japonicum to different developmental stages to praziquantel. Chin. Med. J. 1987, 100, 759–768. [Google Scholar]
- Wu, W.; Wang, W.; Huang, Y.X. New insight into praziquantel against various developmental stages of schistosomes. Parasitol. Res. 2011, 109, 1501–1507. [Google Scholar] [CrossRef]
- Botros, S.; Pica-Mattoccia, L.; William, S.; El-Lakkani, N.; Cioli, D. Effect of praziquantel on the immature stages of Schistosoma haematobium. Int. J. Parasitol. 2005, 35, 1453–1457. [Google Scholar] [CrossRef]
- Xiao, S.U.; Utzinger, J.; Shen, B.G.; Tanner, M.; Chollet, J. Ultrastructural alterations of adult Schistosoma haematobium harbored in mice following artemether administration. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2006, 24, 321–328. [Google Scholar]
- Shu-Hua, X.; Utzinger, J.; Chollet, J.; Tanner, M. Effect of artemether administered alone or in combination with praziquantel to mice infected with Plasmodium berghei or Schistosoma mansoni or both. Int. J. Parasitol. 2006, 36, 957–964. [Google Scholar] [CrossRef] [PubMed]
- WHO. Q&A on artemisinin resistance. 2018. Available online: https://www.who.int/malaria/media/artemisinin_resistance_qa/en/ (accessed on 11 November 2018).
- Tilley, L.; Straimer, J.; Gnadig, N.F.; Ralph, S.A.; Fidock, D.A. Artemisinin Action and Resistance in Plasmodium falciparum. Trends Parasitol. 2016, 32, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, R.; Utzinger, J.; Keiser, J. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infect. Dis. Poverty 2017, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Cioli, D.; Valle, C.; Angelucci, F.; Miele, A.E. Will new antischistosomal drugs finally emerge? Trends Parasitol. 2008, 24, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, W.M.; Hishmat, M.G.; El Nashar, A.S.; Abu El Einin, H.M. Evaluation of a method for induction of praziquantel resistance in Schistosoma mansoni. Pharm. Biol. 2015, 53, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Couto, F.F.; Coelho, P.M.; Araujo, N.; Kusel, J.R.; Katz, N.; Jannotti-Passos, L.K.; Mattos, A.C. Schistosoma mansoni: A method for inducing resistance to praziquantel using infected Biomphalaria glabrata snails. Mem. Inst. Oswaldo Cruz 2011, 106, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Metwally, A.; Farghaly, A.; Bruce, J.; Tao, L.F.; Bennett, J.L. Characterization of isolates of Schistosoma mansoni from Egyptian villagers that tolerate high doses of praziquantel. Am. J. Trop. Med. Hyg. 1996, 55, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Fallon, P.G.; Doenhoff, M.J. Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hug. 1994, 51, 83–88. [Google Scholar] [CrossRef]
- Mwangi, I.N.; Sanchez, M.C.; Mkoji, G.M.; Agola, L.E.; Runo, S.M.; Cupit, P.M.; Cunningham, C. Praziquantel sensitivity of Kenyan Schistosoma mansoni isolates and the generation of a laboratory strain with reduced susceptibility to the drug. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 296–300. [Google Scholar] [CrossRef]
- Melman, S.D.; Steinauer, M.L.; Cunningham, C.; Kubatko, L.S.; Mwangi, I.N.; Wynn, N.B.; Mutuku, M.W.; Karanja, D.M.; Colley, D.G.; Black, C.L.; et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl. Trop. Dis. 2009, 3, e504. [Google Scholar] [CrossRef]
- Ismail, M.; Botros, S.; Metwally, A.; William, S.; Farghally, A.; Tao, L.F.; Day, T.A.; Bennett, J.L. Resistance to praziquantel: Direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am. J. Trop. Med. Hyg. 1999, 60, 932–935. [Google Scholar] [CrossRef]
- Alonso, D.; Munoz, J.; Gascon, J.; Valls, M.E.; Corachan, M. Failure of standard treatment with praziquantel in two returned travelers with Schistosoma haematobium infection. Am. J. Trop. Med. Hyg. 2006, 74, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.M.; Thiengo, R.; Conceicao, M.J.; Rey, L.; Lenzi, H.L.; Pereira Filho, E.; Ribeiro, P.C. Therapeutic failure of praziquantel in the treatment of Schistosoma haematobium infection in Brazilians returning from Africa. Mem. Inst. Oswaldo Cruz 2005, 100, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.M.; Pereira Filho, E.; Thiengo, R.; Ribeiro, P.C.; Conceicao, M.J.; Panasco, M.; Lenzi, H.L. Schistosomiasis haematobia: Histopathological course determined by cystoscopy in a patient in whom praziquantel treatment failed. Rev. Inst. Med. Trop. São Paulo 2008, 50, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.S.; Li, H.J.; Dai, J.R.; Wang, W.; Qu, G.L.; Tao, Y.H.; Xing, Y.T.; Li, Y.Z.; Qian, K.; Wei, J.Y. Studies on resistance of Schistosoma to praziquantel XIII resistance of Schistosoma japonicum to praziquantel is experimentally induced in laboratory. Chin. J. Schistosomiasis Control 2011, 23, 605–610. [Google Scholar]
- Li, H.J.; Liang, Y.S.; Dai, J.R.; Wang, W.; Qu, G.L.; Li, Y.Z.; Xing, Y.T.; Tao, Y.H.; Qian, K.; Jia, Y.; et al. Studies on resistance of Schistosoma to praziquantel XIV experimental comparison of susceptibility to praziquantel between PZQ-resistant isolates and PZQ-susceptible isolates of Schistosoma japonicum in stages of adult worms, miracidia and cercariae. Chin. J. Schistosomiasis Control 2011, 23, 611–619. [Google Scholar]
- Ke, Q.; You-Sheng, L.; Wei, W.; Guo-Li, Q.; Hong-Jun, L.; Zhen-Kun, Y.; Zheng-Yang, Z.; Yuntian, X.; Jian-Rong, D. Studies on resistance of Schistosoma to praziquantel XVII Biological characteristics of praziquantel-resistant isolates of Schistosoma japonicum in mice. Chin. J. Schistosomiasis Control 2017, 29, 683–688. [Google Scholar] [CrossRef]
- Thomas, C.M.; Timson, D.J. The mechanism of action of praziquantel: Six hypotheses. Curr. Top. Med. Chem. 2018. [Google Scholar] [CrossRef]
- World Health Organization. Seventh Meeting of the Working Group on Monitoring of Neglected Tropical Diseases Drug Effi Cacy. Geneva, 26–27 February 2018. Available online: http://apps.who.int/iris/bitstream/handle/10665/273620/WHO-CDS-NTD-PCT-2018.06-eng.pdf?ua=1 (accessed on 3 November 2018).
- King, C.H. The evolving schistosomiasis agenda 2007-2017-Why we are moving beyond morbidity control toward elimination of transmission. PLoS Negl. Trop. Dis. 2017, 11, e0005517. [Google Scholar] [CrossRef]
- Elmorshedy, H.; Tanner, M.; Bergquist, R.N.; Sharaf, S.; Barakat, R. Prophylactic effect of artemether on human schistosomiasis mansoni among Egyptian children: A randomized controlled trial. Acta Trop. 2016, 158, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Elmorshedy, H.; Bergquist, R.; El-Ela, N.E.; Eassa, S.M.; Elsakka, E.E.; Barakat, R. Can human schistosomiasis mansoni control be sustained in high-risk transmission foci in Egypt? Parasites Vectors 2015, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Inyang-Etoh, P.C.; Ejezie, G.C.; Useh, M.F.; Inyang-Etoh, E.C. Efficacy of a combination of praziquantel and artesunate in the treatment of urinary schistosomiasis in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.Y.; McManus, D.P.; Gray, D.J.; Balen, J.; Luo, X.S.; He, Y.K.; Ellis, M.; Williams, G.M.; Li, Y.S. A randomized, double-blind, placebo-controlled trial of safety and efficacy of combined praziquantel and artemether treatment for acute schistosomiasis japonica in China. Bull. World Health Organ. 2008, 86, 788–795. [Google Scholar] [CrossRef] [PubMed]
- N’Goran, E.K.; Utzinger, J.; Gnaka, H.N.; Yapi, A.; N’Guessan, N.A.; Kigbafori, S.D.; Lengeler, C.; Chollet, J.; Shuhua, X.; Tanner, M. Randomized, double-blind, placebo-controlled trial of oral artemether for the prevention of patent Schistosoma haematobium infections. Am. J. Trop. Med. Hyg. 2003, 68, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Utzinger, J.; N’Goran, E.K.; N’Dri, A.; Lengeler, C.; Xiao, S.; Tanner, M. Oral artemether for prevention of Schistosoma mansoni infection: Randomised controlled trial. Lancet 2000, 355, 1320–1325. [Google Scholar] [CrossRef]
- Perez del Villar, L.; Burguillo, F.J.; Lopez-Aban, J.; Muro, A. Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis. PLoS ONE 2012, 7, e45867. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; El Morshedy, H.; Farghaly, A. Neglected Tropical Diseases—Middle East and North Africa; McDowell, M.A., Rafati, S., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Barakat, R.M. Epidemiology of Schistosomiasis in Egypt: Travel through Time: Review. J. Adv. Res. 2013, 4, 425–432. [Google Scholar] [CrossRef]
- Barakat, R.; Farghaly, A.; El Morshedy, H.; Hassan, M.; Miller de, W. Impact of National Schistosomiasis Control Program in Kafr El-Sheikh governorate, Nile Delta, Egypt: An independent evaluation. J. Egypt. Public Health Assoc. 1998, 73, 737–753. [Google Scholar]
- Haggag, A.A.; Rabiee, A.; Abd Elaziz, K.M.; Gabrielli, A.F.; Abdel Hay, R.; Ramzy, R.M.R. Mapping of Schistosoma mansoni in the Nile Delta, Egypt: Assessment of the prevalence by the circulating cathodic antigen urine assay. Acta Trop. 2017, 167, 9–17. [Google Scholar] [CrossRef]
- Barakat, R.; Elmorshedy, H. Annual report of the project entitled: “Establishment and monitoring of cohort school children in Kafer El-Sheikh Governorate, Egypt, in preparation for schistosomiasis vaccine candidate testing when appropriate”. Vaccine Development Project (SVDP); Funded by USAID& Egyptian Ministry of Health and Population (EMHP), 1996-2001. Unpublished work.
- Doenhoff, M.J.; Cioli, D.; Utzinger, J. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 2008, 21, 659–667. [Google Scholar] [CrossRef]
- Fenwick, A.; Jourdan, P. Schistosomiasis elimination by 2020 or 2030? Int. J. Parasitol. 2016, 46, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, J.T.; N’Gbesso, Y.K.; Knopp, S.; N’Guessan, N.A.; Silue, K.D.; van Dam, G.J.; N’Goran, E.K.; Utzinger, J. Accuracy of urine circulating cathodic antigen test for the diagnosis of Schistosoma mansoni in preschool-aged children before and after treatment. PLoS Negl. Trop. Dis. 2013, 7, e2109. [Google Scholar] [CrossRef]
- Qin, Z.Q.; Jing, X.; Feng, T.; Lv, S.; Qian, Y.; Zhang, L.; Li, Y.L.; Chao, L.V.; Bergquist, R.; Li, S.Z.; Zhou, X.N. Field evaluation of a loop-mediated isothermal amplification (LAMP) platform for the detection of Schistosoma japonicum infection in Oncomelania hupensis snails. Trop. Med. Infect. Dis. 2018. [Google Scholar] [CrossRef]
- Bergquist, R.; Yang, G.J.; Knopp, S.; Utzinger, J.; Tanner, M. Surveillance and response: Tools and approaches for the elimination stage of neglected tropical diseases. Acta Trop. 2015, 141, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Ogongo, P.; Kariuki, T.M.; Wilson, R.A. Diagnosis of schistosomiasis mansoni: An evaluation of existing methods and research towards single worm pair detection. Parasitology 2018, 145, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Corstjens, P.L.; De Dood, C.J.; Kornelis, D.; Fat, E.M.; Wilson, R.A.; Kariuki, T.M.; Nyakundi, R.K.; Loverde, P.T.; Abrams, W.R.; Tanke, H.J.; et al. Tools for diagnosis, monitoring and screening of Schistosoma infections utilizing lateral-flow based assays and upconverting phosphor labels. Parasitology 2014, 141, 1841–1855. [Google Scholar] [CrossRef]
- Bergquist, R. Good things are worth waiting for. Am. J. Trop. Med. Hyg. 2013, 88, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Colley, D.G.; Andros, T.S.; Campbell, C.H., Jr. Schistosomiasis is more prevalent than previously thought: What does it mean for public health goals, policies, strategies, guidelines and intervention programs? Infect. Dis. Poverty 2017, 6, 63. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergquist, R.; Elmorshedy, H. Artemether and Praziquantel: Origin, Mode of Action, Impact, and Suggested Application for Effective Control of Human Schistosomiasis. Trop. Med. Infect. Dis. 2018, 3, 125. https://doi.org/10.3390/tropicalmed3040125
Bergquist R, Elmorshedy H. Artemether and Praziquantel: Origin, Mode of Action, Impact, and Suggested Application for Effective Control of Human Schistosomiasis. Tropical Medicine and Infectious Disease. 2018; 3(4):125. https://doi.org/10.3390/tropicalmed3040125
Chicago/Turabian StyleBergquist, Robert, and Hala Elmorshedy. 2018. "Artemether and Praziquantel: Origin, Mode of Action, Impact, and Suggested Application for Effective Control of Human Schistosomiasis" Tropical Medicine and Infectious Disease 3, no. 4: 125. https://doi.org/10.3390/tropicalmed3040125
APA StyleBergquist, R., & Elmorshedy, H. (2018). Artemether and Praziquantel: Origin, Mode of Action, Impact, and Suggested Application for Effective Control of Human Schistosomiasis. Tropical Medicine and Infectious Disease, 3(4), 125. https://doi.org/10.3390/tropicalmed3040125