Spatial Risk Factors of Vector-Borne Diseases in Pacific Island Countries and Territories: A Scoping Review
Abstract
1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Data Extraction Process
2.6. Data Synthesis and Analysis
3. Results
| Environmental Factors n = 34 | Disease | Measurement | Study Design/ Location | Statistical and Modelling Approaches | Association | Outcome | Study Reference | |
|---|---|---|---|---|---|---|---|---|
| Temperature | Dengue | Daily min/max, mean | 1–2 month lag | Ecological/ New Caledonia | Spearman’s rank correlation and multivariable non-linear support vector machine (SVM) model | Positive | Incidence rate | Descloux et al. 2012 [21] |
| Dengue | Daily maximum | 3-month lag | Ecological/ New Caledonia | Effective reproduction number + SVM | Positive NL 1 | Outbreak | Ochida et al. 2022 [26] | |
| Suspected dengue | Weekly mean Min/max | No mention | Ecological/ Fiji | Generalised Linear Model (GLM) | Positive | Incidence | Nelson et al. 2022 [4] | |
| Chikungunya, Zika * | Weekly mean | 1-month lag | Retrospective comparative modelling/ French Polynesia | Time-Series Susceptible–Infected–Recovered model | Positive NS 2 | Outbreak | Riou et al. 2017 [27] | |
| Dengue | Monthly mean | No mention | Ecological/ New Caledonia | Pearson correlation + SVM | Positive | Incidence | Teurlai et al. 2015 [25] | |
| Malaria | Monthly min/max | No mention | Retrospective ecological time series/ Papua New Guinea | Linear regression | Positive | Incidence | Park et al. 2016 [20] | |
| Dengue-like illness | Monthly mean | 1-month lag | Cross sectional/ Solomon Islands | Negative binomial regression, Generalised Estimating Equations | Positive | Incidence | Andhikaputra et al. 2023 [29] | |
| Malaria | Monthly Min/max mean | 1–2-month lag | Retrospective ecological time-series/ Vanuatu | GLM and Bayesian model | Positive | Incidence | Sorenson et al. 2025 [31] | |
| Malaria | Monthly Minimum | 3-month lag | Cross-sectional/ Papua New Guinea | GLM | Positive | Incidence | Imai et al. 2016 [30] | |
| Malaria | Monthly mean | 3-month lag | Ecological/ Vanuatu | Spatial Autoregressive Model | Positive | Incidence rate | Chaves et al. 2008 [28] | |
| Rainfall | Malaria | Mean daily (mm) | No mention | Ecological/ New Caledonia | Pearson correlation + SVM | Positive | Incidence | Teurlai et al. 2015 [25] |
| Suspected dengue | Mean weekly rainfall (mm) | 1–2-month lag | Ecological/ Fiji | GLM | Positive | Incidence | Nelson et al. 2022 [4] | |
| Malaria | Monthly total rainfall (mm) | No mention | Retrospective ecological time-series/ Solomon Islands | Linear regression + bootstrap | Positive | Incidence | Smith et al. 2017 [23] | |
| Dengue-like illness | Monthly Cumulative rainfall (mm) | 1-month lag | Cross-sectional/ Solomon Islands | Negative binomial regression + Generalised Estimating Equations | Positive | Incidence | Andhikaputra et al. 2023 [29] | |
| Malaria | Annual total rainfall (mm) | No mention | Retrospective ecological time series/ Papua New Guinea | Linear regression | Positive | Incidence | Park et al. 2016 [20] | |
| Precipitation | Dengue | Mean daily (mm/day) | 2–3-month lag | Retrospective ecological modelling/ New Caledonia | Effective reproduction number + SVM | Positive NL 3 | Outbreak | Ochida et al. 2022 [26] |
| Chikungunya, Zika | Mean weekly (cm) | 1–2-week/5-week lag | Retrospective comparative modelling/French Polynesia | Time-Series Susceptible–Infected–Recovered model | Negative/ positive | Outbreak | Riou et al. 2017 [27] | |
| Malaria | Mean monthly (mm/month) | 0–2-month lag | Cross-sectional/ Papua New Guinea (Madang) | GLM | Positive | Incidence | Imai et al. 2016 [30] | |
| Zika | Mean monthly (mm/month) | No mention | Retrospective mathematical modelling/ French Polynesia | Mathematical transmission model | Negative | Outbreak | He et al. 2017 [37] | |
| Malaria (P. falciparum) | Mean monthly (mm/month) | Cross-sectional/Papua New Guinea | GLM and Bayesian Decision Network (BDN) Modelling | Positive | Prevalence | Cleary et al. 2021 [33] | ||
| Malaria | Total monthly (mm/day) | 1-month lag | Retrospective ecological time-series/ Vanuatu | GLM | Negative NS | Incidence | Sorenson et al. 2025 [31] | |
| 2-month lag | Bayesian model | Positive | ||||||
| Humidity | Dengue | Maximal relative humidity (%) | Ecological/ New Caledonia | Spearman’s rank correlation + multivariable non-linear SVM model | Positive | Incidence rate | Descloux et al. 2012 [21] | |
| Southern Oscillation Index (SOI) | Dengue | El Nino Southern Oscillation (ENSO) | Mixed ecological/ 14 South Pacific Islands | Pearson correlation | Positive | Incidence | Hales et al. 1999 [38] | |
| Malaria | Retrospective ecological time-series/ Solomon Islands | Linear regression + bootstrap | Positive | Incidence | Smith et al. 2017 [23] | |||
| Flooding | Dengue, Chikungunya, Zika | Flooding | Cross-sectional/ Fiji | Logistic regression | Negative NS 4 | Seroprevalence/Incidence | Rosser et al. 2025 [32] | |
| Landcover | Lymphatic filariasis | Cropland | Cross-sectional/ American Samoa | Bayesian geostatistical logistic regression | Positive NS 5 | Prevalence | Cadavid Restrepo et al. 2023 [15] | |
| Built/Urban | Positive NS 6 | |||||||
| Tree coverage | Positive NS 7 | |||||||
| Lymphatic filariasis | Built/Urban | Cross-sectional/ American Samoa | Multivariable Poisson regression model | Strong Positive | Seroprevalence | Lemin et al. 2022 [16] | ||
| Tree coverage | ||||||||
| Rangeland | ||||||||
| Dengue | Vegetation coverage | Ecological/ New Caledonia | Univariable regression analysis | Positive | Incidence | Zellweger et al. 2017 [24] | ||
| Elevation | Malaria | >1700 m (altitude) | Retrospective ecological time- series/ Papua New Guinea | Linear regression | Negative NS 8 | Incidence | Park et al. 2016 [20] | |
| 1500–1699 m | Positive | |||||||
| Lymphatic filariasis | Mean 77.72 (m) | Cross-sectional/ American Samoa | Bayesian geostatistical logistic regression | Positive NS 9 | Prevalence | Cadavid Restrepo et al. 2023 [15] | ||
| Malaria (P. vivax) | Above sea level | Cross-sectional/ Papua New Guinea | GLM | Negative | Prevalence | Cleary et al. 2021 [33] | ||
| Malaria | Per 10 m | Cross-sectional/ Papua New Guinea | Multivariable logistic regression | Negative | Prevalence | Myers et al. 2009 [34] | ||
| Lymphatic filariasis | Slope gradient (degrees) | Cross-sectional/ American Samoa | Multivariable Poisson regression model | Negative | Seroprevalence | Lemin et al. 2022 [16] | ||
| Demographic Factors n = 7 | Disease | Measurement | Study Design/ Location | Statistical Measure | Association | Outcome | Study Reference |
|---|---|---|---|---|---|---|---|
| Population density | Lymphatic Filariasis | persons/km2 | Cross-sectional/ American Samoa | Multivariable Poisson regression model | Negative | Seroprevalence | Lemin et al. 2023 [16] |
| Lymphatic Filariasis | people/m2 | Cross-sectional/ American Samoa | Bayesian geostatistical logistic regression | Negative | Prevalence | Cadavid Restrepo et al. 2023 [15] | |
| Dengue | N° of inhabitants/km2 | Ecological/ New Caledonia | Univariable regression analysis | Negative | Incidence | Zellweger et al. 2017 [24] | |
| Human density | Dengue | People per household | Ecological/ New Caledonia | Pearson correlation + SVM 1 | Strongly positive | Incidence | Teurlai et al., 2015 [25] |
| Dengue | Ecological/ New Caledonia | Univariable regression analysis | Negative | Incidence | Zellweger et al. 2017 [24] | ||
| Born in the Pacific | Dengue | Not applicable | Ecological/ New Caledonia | Univariable regression analysis | Positive | Incidence | Zellweger et al. 2017 [24] |
| Other factors | Malaria | (G6PD) 2 | Observational/ Vanuatu | Spearman’s rank Correlation | Positive | Incidence/Prevalence | Kaneko et al. 1998 [35] |
| Socioeconomic Factors n = 6 | Disease | Measurement | Study Design/ Location | Statistical Measure | Association | Outcome | Study Reference |
|---|---|---|---|---|---|---|---|
| Income | Lymphatic Filariasis | Low income | Ecological/ American Samoa | Multivariable logistic regression | Positive | Seroprevalence | Graves et al. 2020 [36] |
| Employment | Dengue | Unemployment | Ecological/ New Caledonia | Pearson correlation + SVM 1 | Positive | Incidence | Teurlai et al. 2015 [25] |
| Dengue | Ecological/ New Caledonia | Univariable regression analysis | Positive | Incidence | Zellweger et al. 2017 [24] | ||
| Educational level | Dengue | low education | Ecological/ New Caledonia | Univariable regression analysis | Positive | Incidence | Zellweger et al. 2017 [24] |
| Dengue | No mention | Ecological/ New Caledonia | Pearson correlation + SVM | Positive NS * | Incidence | Teurlai et al. 2015 [25] | |
| Infrastructure | Dengue | Old buildings/cement lodgings | Ecological/ New Caledonia | Univariable regression analysis | Positive | Incidence | Zellweger et al. 2017 [24] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Britannica. Countries, Map, & Facts. Pacific Islands. Available online: https://www.britannica.com/place/Pacific-Islands (accessed on 19 August 2025).
- Craig, A.T.; Kama, M.; Samo, M.; Vaai, S.; Matanaicake, J.; Joshua, C.; Kolbe, A.; Durrheim, D.N.; Paterson, B.J.; Biaukula, V.; et al. Early warning epidemic surveillance in the Pacific island nations: An evaluation of the Pacific syndromic surveillance system. Trop. Med. Int. Health 2016, 21, 917–927. [Google Scholar] [CrossRef]
- Craig, A.T.; Kaldor, J.; Schierhout, G.; Rosewell, A.E. Surveillance strategies for the detection of disease outbreaks in the Pacific islands: Meta-analysis of published literature, 2010–2019. Trop. Med. Int. Health TM IH 2020, 25, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.; Jenkins, A.; Jupiter, S.D.; Horwitz, P.; Mangubhai, S.; Abimbola, S.; Ratu, A.; Naivalulevu, T.; Negin, J. Predicting climate-sensitive water-related disease trends based on health, seasonality and weather data in Fiji. J. Clim. Change Health 2022, 6, 100112. [Google Scholar] [CrossRef]
- Filho, W.L.; Scheday, S.; Boenecke, J.; Gogoi, A.; Maharaj, A.; Korovou, S. Climate Change, Health and Mosquito-Borne Diseases: Trends and Implications to the Pacific Region. Int. J. Environ. Res. Public Health 2019, 16, 5114. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ryan, A.; Harding, A.B.; Moskowitz, A.F.; Passe, A.I.; Kawazu, E.C. Health risks of climate change in the 21 Pacific Island states and noted gaps in scientific evidence: A scoping review. J. Clim. Change Health 2022, 8, 100166. [Google Scholar] [CrossRef]
- Matthews, R.J.; Kaluthotage, I.; Russell, T.L.; Knox, T.B.; Horwood, P.F.; Craig, A.T. Arboviral Disease Outbreaks in the Pacific Islands Countries and Areas, 2014 to 2020: A Systematic Literature and Document Review. Pathogens 2022, 11, 74. [Google Scholar] [CrossRef]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef]
- Kharwadkar, S.; Herath, N. Clinical manifestations of dengue, Zika and chikungunya in the Pacific Islands: A systematic review and meta-analysis. Rev. Med. Virol. 2024, 34, e2521. [Google Scholar] [CrossRef]
- Mavian, C.; Dulcey, M.; Munoz, O.; Salemi, M.; Vittor, A.Y.; Capua, I. Islands as Hotspots for Emerging Mosquito-Borne Viruses: A One-Health Perspective. Viruses 2018, 11, 11. [Google Scholar] [CrossRef]
- Hosking, R.; Smurthwaite, K.; Hales, S.; Richardson, A.; Batikawai, S.; Lal, A. Climate variability and water-related infectious diseases in Pacific Island Countries and Territories, a systematic review. PLoS Clim. 2023, 2, e0000296. [Google Scholar] [CrossRef]
- Zhou, M.; He, Y.; Wu, L.; Weng, K. Trends and cross-country inequalities in dengue, 1990–2021. PLoS ONE 2025, 20, e0316694. [Google Scholar] [CrossRef]
- Molina-Guzmán, L.P.; Gutiérrez-Builes, L.A.; Ríos-Osorio, L.A. Models of spatial analysis for vector-borne diseases studies: A systematic review. Vet. World 2022, 15, 1975–1989. [Google Scholar] [CrossRef]
- Kuleshov, Y.; Wei, Y.; Inape, K.; Liu, G.-J. Spatio-temporal distribution of vector borne diseases in Australia and Papua New Guinea vis-à-vis climatic factors. J. Vector Borne Dis. 2022, 59, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Cadavid Restrepo, A.M.; Martin, B.M.; Fuimaono, S.; Clements, A.C.A.; Graves, P.M.; Lau, C.L. Spatial predictive risk mapping of lymphatic filariasis residual hotspots in American Samoa using demographic and environmental factors. PLoS Negl. Trop. Dis. 2023, 17, e0010840. [Google Scholar] [CrossRef] [PubMed]
- Lemin, M.E.; Cadavid Restrepo, A.; Mayfield, H.J.; Lau, C.L. Spatially Explicit Environmental Factors Associated with Lymphatic Filariasis Infection in American Samoa. Trop. Med. Infect. Dis. 2022, 7, 295. [Google Scholar] [CrossRef] [PubMed]
- Lau, C. Combating infectious diseases in the Pacific Islands: Sentinel surveillance, environmental health, and geospatial tools. Rev. Environ. Health 2014, 29, 113–117. [Google Scholar] [CrossRef]
- Depoux, A.; Philibert, A.; Rabier, S.; Philippe, H.-J.; Fontanet, A.; Flahault, A. A multi-faceted pandemic: A review of the state of knowledge on the Zika virus. Public Health Rev. 2018, 39, 10. [Google Scholar] [CrossRef]
- Jia, P.; Dong, W.; Yang, S.; Zhan, Z.; Tu, L.; Lai, S. Spatial Lifecourse Epidemiology and Infectious Disease Research. Trends Parasitol. 2020, 36, 235–238. [Google Scholar] [CrossRef]
- Park, J.-W.; Cheong, H.-K.; Honda, Y.; Ha, M.; Kim, H.; Kolam, J.; Inape, K.; Mueller, I. Time trend of malaria in relation to climate variability in Papua New Guinea. Environ. Health Toxicol. 2016, 31, e2016003. [Google Scholar] [CrossRef]
- Descloux, E.; Mangeas, M.; Menkes, C.E.; Lengaigne, M.; Leroy, A.; Tehei, T.; Guillaumot, L.; Teurlai, M.; Gourinat, A.-C.; Benzler, J.; et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl. Trop. Dis. 2012, 6, e1470. [Google Scholar] [CrossRef]
- Hales, S.; Weinstein, P.; Woodward, A. Dengue fever epidemics in the South Pacific: Driven by El Niño Southern Oscillation? Lancet 1996, 348, 1664–1665. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Tahani, L.; Bobogare, A.; Bugoro, H.; Otto, F.; Fafale, G.; Hiriasa, D.; Kazazic, A.; Beard, G.; Amjadali, A.; et al. Malaria early warning tool: Linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands. Malar. J. 2017, 16, 472. [Google Scholar] [CrossRef] [PubMed]
- Zellweger, R.M.; Cano, J.; Mangeas, M.; Taglioni, F.; Mercier, A.; Despinoy, M.; Menkès, C.E.; Dupont-Rouzeyrol, M.; Nikolay, B.; Teurlai, M. Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia. PLoS Negl. Trop. Dis. 2017, 11, e0005471. [Google Scholar] [CrossRef] [PubMed]
- Teurlai, M.; Menkès, C.E.; Cavarero, V.; Degallier, N.; Descloux, E.; Grangeon, J.-P.; Guillaumot, L.; Libourel, T.; Lucio, P.S.; Mathieu-Daudé, F.; et al. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia. PLoS Negl. Trop. Dis. 2015, 9, e0004211. [Google Scholar] [CrossRef]
- Ochida, N.; Mangeas, M.; Dupont-Rouzeyrol, M.; Dutheil, C.; Forfait, C.; Peltier, A.; Descloux, E.; Menkes, C. Modeling present and future climate risk of dengue outbreak, a case study in New Caledonia. Environ. Health Glob. Access Sci. Source 2022, 21, 20. [Google Scholar] [CrossRef]
- Riou, J.; Poletto, C.; Boëlle, P.-Y. A comparative analysis of Chikungunya and Zika transmission. Epidemics 2017, 19, 43–52. [Google Scholar] [CrossRef]
- Chaves, L.F.; Kaneko, A.; Taleo, G.; Pascual, M.; Wilson, M.L. Malaria transmission pattern resilience to climatic variability is mediated by insecticide-treated nets. Malar. J. 2008, 7, 100. [Google Scholar] [CrossRef]
- Andhikaputra, G.; Lin, Y.-H.; Wang, Y.-C. Effects of temperature, rainfall, and El Niño Southern Oscillations on dengue-like-illness incidence in Solomon Islands. BMC Infect. Dis. 2023, 23, 206. [Google Scholar] [CrossRef]
- Imai, C.; Cheong, H.-K.; Kim, H.; Honda, Y.; Eum, J.-H.; Kim, C.T.; Kim, J.S.; Kim, Y.; Behera, S.K.; Hassan, M.N.; et al. Associations between malaria and local and global climate variability in five regions in Papua New Guinea. Trop. Med. Health 2016, 44, 23. [Google Scholar] [CrossRef]
- Sorenson, J.; Watkins, A.B.; Kuleshov, Y. The Influence of Climate Variables on Malaria Incidence in Vanuatu. Climate 2025, 13, 22. [Google Scholar] [CrossRef]
- Rosser, J.I.; Openshaw, J.J.; Lin, A.; Taruc, R.R.; Tela, A.; Tamodding, N.; Abdullah, N.P.E.; Amiruddin, M.; Buyukcangaz, E.; Barker, S.F.; et al. Seroprevalence, incidence estimates, and environmental risk factors for dengue, chikungunya, and Zika infection amongst children living in informal urban settlements in Indonesia and Fiji. BMC Infect. Dis. 2025, 25, 51. [Google Scholar] [CrossRef]
- Cleary, E.; Hetzel, M.W.; Siba, P.M.; Lau, C.L.; Clements, A.C.A. Spatial prediction of malaria prevalence in Papua New Guinea: A comparison of Bayesian decision network and multivariate regression modelling approaches for improved accuracy in prevalence prediction. Malar. J. 2021, 20, 269. [Google Scholar] [CrossRef] [PubMed]
- Myers, W.P.; Myers, A.P.; Cox-Singh, J.; Lau, H.C.; Mokuai, B.; Malley, R. Micro-geographic risk factors for malarial infection. Malar. J. 2009, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, A.; Taleo, G.; Kalkoa, M.; Yaviong, J.; Reeve, P.A.; Ganczakowski, M.; Shirakawa, C.; Palmer, K.; Kobayakawa, T.; Björkman, A. Malaria epidemiology, glucose 6-phosphate dehydrogenase deficiency and human settlement in the Vanuatu Archipelago. Acta Trop. 1998, 70, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Graves, P.M.; Sheridan, S.; Fuimaono, S.; Lau, C.L. Demographic, socioeconomic and disease knowledge factors, but not population mobility, associated with lymphatic filariasis infection in adult workers in American Samoa in 2014. Parasit. Vectors 2020, 13, 125. [Google Scholar] [CrossRef]
- He, D.; Gao, D.; Lou, Y.; Zhao, S.; Ruan, S. A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Sci. Rep. 2017, 7, 273. [Google Scholar] [CrossRef]
- Hales, S.; Weinstein, P.; Souares, Y.; Woodward, A. El Niño and the dynamics of vectorborne disease transmission. Environ. Health Perspect. 1999, 107, 99–102. [Google Scholar] [CrossRef]
- Specht, S.; Schnack, H.; Hein, A. Evaluation by accessibility index differences of the cross-border potential for general inpatient care in the Ems-Dollart Region, a Dutch-German cross-border area. Geospat. Health 2025, 20, 1381. [Google Scholar] [CrossRef]
- Han, J.; Fu, L.; Pei, T.; Zhang, T. Promoting sustainable health equity: Accessibility analysis and optimization of tertiary hospital networks in China’s metropolitan areas. Geospat. Health 2025, 20, 1414. [Google Scholar] [CrossRef]
- Lin, Y.; Hridoy, A.E.E.; Li, M.; Wang, Z.; Luo, L.; Ma, X.; Liu, Z.; John, M.; Fan, C.; Ruberto, I.; et al. Associations between rocky mountain spotted fever and veterinary care access, climatic factors and landscape in the State of Arizona, USA. Geospat. Health 2025, 20, 1390. [Google Scholar] [CrossRef]
- Huang-fu, H.-Q.; Zhang, N.; Wang, L.; Liang, H.-J.; Xian, B.-S.; Gan, X.-F.; Lai, Y. Geographical accessibility to healthcare by point-of–interest data from online maps: A comparative study. Geospat. Health 2024, 19, 1322. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nuñez Murillo, T.; Cadavid Restrepo, A.; Mayfield, H.J.; Lau, C.L.; Sartorius, B.; Kiani, B. Spatial Risk Factors of Vector-Borne Diseases in Pacific Island Countries and Territories: A Scoping Review. Trop. Med. Infect. Dis. 2026, 11, 6. https://doi.org/10.3390/tropicalmed11010006
Nuñez Murillo T, Cadavid Restrepo A, Mayfield HJ, Lau CL, Sartorius B, Kiani B. Spatial Risk Factors of Vector-Borne Diseases in Pacific Island Countries and Territories: A Scoping Review. Tropical Medicine and Infectious Disease. 2026; 11(1):6. https://doi.org/10.3390/tropicalmed11010006
Chicago/Turabian StyleNuñez Murillo, Tathiana, Angela Cadavid Restrepo, Helen J. Mayfield, Colleen L. Lau, Benn Sartorius, and Behzad Kiani. 2026. "Spatial Risk Factors of Vector-Borne Diseases in Pacific Island Countries and Territories: A Scoping Review" Tropical Medicine and Infectious Disease 11, no. 1: 6. https://doi.org/10.3390/tropicalmed11010006
APA StyleNuñez Murillo, T., Cadavid Restrepo, A., Mayfield, H. J., Lau, C. L., Sartorius, B., & Kiani, B. (2026). Spatial Risk Factors of Vector-Borne Diseases in Pacific Island Countries and Territories: A Scoping Review. Tropical Medicine and Infectious Disease, 11(1), 6. https://doi.org/10.3390/tropicalmed11010006

