Evaluation of an Online Survey for Pertussis Case Investigations in Regional Queensland: Impacts on Workload and Disease Trends
Abstract
1. Introduction
2. Materials and Methods
2.1. Online Survey Design and Implementation
2.2. Evaluation Aims and Objectives
2.3. Data Collection and Analysis
2.4. Ethical Approval
3. Results
3.1. Survey Responses
3.2. Impact on Staff Workload
3.3. Impact on Pertussis Incidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HHS | Hospital and Health Service |
ITS | Interrupted Time Series |
NoCS | Notifiable Conditions System |
PHU | Public Health Unit |
SMS | Short Message Service |
WBHHS | Wide Bay Hospital and Health Service |
WBPHU | Wide Bay Public Health Unit |
References
- Bouchez, V.; Guiso, N. Bordetella pertussis, B. parapertussis, vaccines and cycles of whooping cough. Pathog. Dis. 2015, 73, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Lau, E.H.Y.; Cowling, B.J. Waning Immunity After Receipt of Pertussis, Diphtheria, Tetanus, and Polio-Related Vaccines: A Systematic Review and Meta-analysis. J. Infect. Dis. 2022, 225, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Interim Australian Centre for Disease Control. Pertussis CDNA National Guidelines for Public Health Units; Interim Australian Centre for Disease Control: Canberra, Australia, 2024.
- Queensland Health. Notifiable Conditions Annual Reporting. Available online: https://www.health.qld.gov.au/clinical-practice/guidelines-procedures/diseases-infection/surveillance/reports/notifiable/annual (accessed on 27 August 2025).
- European Centre for Disease Prevention Control. Digital Technologies for the Surveillance, Prevention and Control of Infectious Diseases—A Scoping Review of the Research Literature—2015–2019; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2021. [Google Scholar]
- White, A.E.; Hewitson, I.; Sabourin, K.R.; Jervis, R.H.; Scallan Walter, E. Using Online Surveys for Enteric Disease Case Investigations: A Pilot Project. Foodborne Pathog. Dis. 2021, 18, 189–191. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.4.2; R Foundation for Statistical Computing: Vienna, Austria, 2025.
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Gohel, D.; Skintzos, P. Flextable: Functions for Tabular Reporting. 2025. Available online: https://davidgohel.github.io/flextable/reference/flextable-package.html (accessed on 28 August 2025).
- Oh, J.Y.; Bancroft, J.E.; Cunningham, M.C.; Keene, W.E.; Lyss, S.B.; Cieslak, P.R.; Hedberg, K. Comparison of survey methods in norovirus outbreak investigation, Oregon, USA, 2009. Emerg. Infect. Dis. 2010, 16, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- Parry, A.E.; Johnson, D.R.; Byron-Gray, K.; Raupach, J.C.; McPherson, M. Online questionnaires for outbreak investigations. Epidemiology 2011, 22, 875–876. [Google Scholar] [CrossRef] [PubMed]
- Hewitson, I.; White, A.E.; Walter, E.S.; Jervis, R.H. Using Online Surveys for Routine Campylobacter Case Investigations in Colorado, September 2020-December 2021. J. Public. Health Manag. Pract. 2024, 30, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Altamimi, I.; Altamimi, A.; Alhumimidi, A.S.; Altamimi, A.; Temsah, M.H. Artificial Intelligence (AI) Chatbots in Medicine: A Supplement, Not a Substitute. Cureus 2023, 15, e40922. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inf. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
Objectives | Data Sources | Metrics |
---|---|---|
1. Evaluate the online survey responses made by pertussis cases or their parents |
|
|
2. Assess impact of the online survey on staff workload |
|
|
3. Determine whether the survey implementation improved pertussis control in Wide Bay region |
|
|
Characteristics | Response Rate (%) |
---|---|
Sex | |
Female | 48.4 |
Male | 44.4 |
Age group | |
<1 | 0.0 |
1–5 | 25.0 |
6–10 | 45.8 |
11–15 | 48.5 |
16–20 | 19.0 |
21–30 | 30.0 |
31–40 | 61.9 |
41–50 | 47.4 |
51–60 | 66.7 |
61–70 | 63.6 |
71–80 | 77.8 |
Effect | Log Coefficient | 95% CI | Rate Ratio | % Change | p-Value |
---|---|---|---|---|---|
Level change (Intervention vs. Control) | −0.173 | (−0.561, 0.216) | 0.84 | −15.9% | 0.383 |
Trend change (Intervention vs. Control) | −0.041 | (−0.074, −0.009) | 0.96 | −4% | 0.014 |
Effect | Log Coefficient | 95% CI | Rate Ratio | % Change | p-Value |
---|---|---|---|---|---|
Level change (Intervention vs. Control) | −0.242 | (−0.61, 0.127) | 0.78 | −21.5% | 0.197 |
Trend change (Intervention vs. Control) | −0.050 | (−0.081, −0.02) | 0.95 | −4.9% | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, H.Y.; Khan, A.; O’Bryan, M.; Jones, M.; Chor, J. Evaluation of an Online Survey for Pertussis Case Investigations in Regional Queensland: Impacts on Workload and Disease Trends. Trop. Med. Infect. Dis. 2025, 10, 260. https://doi.org/10.3390/tropicalmed10090260
Lam HY, Khan A, O’Bryan M, Jones M, Chor J. Evaluation of an Online Survey for Pertussis Case Investigations in Regional Queensland: Impacts on Workload and Disease Trends. Tropical Medicine and Infectious Disease. 2025; 10(9):260. https://doi.org/10.3390/tropicalmed10090260
Chicago/Turabian StyleLam, Ho Yeung, Arifuzzaman Khan, Matthew O’Bryan, Michelle Jones, and Josette Chor. 2025. "Evaluation of an Online Survey for Pertussis Case Investigations in Regional Queensland: Impacts on Workload and Disease Trends" Tropical Medicine and Infectious Disease 10, no. 9: 260. https://doi.org/10.3390/tropicalmed10090260
APA StyleLam, H. Y., Khan, A., O’Bryan, M., Jones, M., & Chor, J. (2025). Evaluation of an Online Survey for Pertussis Case Investigations in Regional Queensland: Impacts on Workload and Disease Trends. Tropical Medicine and Infectious Disease, 10(9), 260. https://doi.org/10.3390/tropicalmed10090260