Structural Drivers of Cutaneous Leishmaniasis: Examining How the Converging Effects of Displacement, Environmental Disruption, and Political Instability Reshape Epidemiology Beyond Endemic Regions
Abstract
1. Introduction
2. A Global Perspective: Cross-Regional Comparisons
3. Migration-Driven Dynamics: Geopolitical Instability and Displacement in Syria and Neighboring Regions
4. Cross-Border Epidemiological Trends
5. Clinical Relevance in Refugee Settings
6. Travel-Acquired Cutaneous Leishmaniasis: Brazil as a Hotspot
7. Climate Change as a Catalyst
8. Public Health Implications
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CL | Cutaneous leishmaniasis |
L. braziliensis | Leishmania braziliensis |
L. guyanensis | Leishmania guyanensis |
L. major | Leishmania major |
L. tropica | Leishmania tropica |
WHO | World Health Organization |
References
- World Health Organization. Leishmaniasis WHO Facts Sheets: WHO. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 18 May 2025).
- McGwire, B.S.; Satoskar, A.R. Leishmaniasis: Clinical syndromes and treatment. QJM 2014, 107, 7–14. [Google Scholar] [CrossRef]
- Berman, J.D. Human leishmaniasis: Clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin. Infect. Dis. 1997, 24, 684–703. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, G.; Rovaris, M.; Veraldi, S. Leishmaniasis: A disease with many names. JAMA Dermatol. 2014, 150, 1204. [Google Scholar] [CrossRef]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Masmoudi, A.; Hariz, W.; Marrekchi, S.; Amouri, M.; Turki, H. Old World cutaneous leishmaniasis: Diagnosis and treatment. J. Dermatol. Case Rep. 2013, 7, 31–41. [Google Scholar] [CrossRef]
- Yadav, P.; Azam, M.; Ramesh, V.; Singh, R. Unusual Observations in Leishmaniasis-An Overview. Pathogens 2023, 12, 297. [Google Scholar] [CrossRef]
- Blaizot, R.; Pasquier, G.; Kone, A.K.; Duvignaud, A.; Demar, M. Cutaneous leishmaniasis in sub-Saharan Africa: A systematic review of Leishmania species, vectors and reservoirs. Parasites Vectors 2024, 17, 318. [Google Scholar] [CrossRef]
- Ready, P.D. Leishmaniasis emergence in Europe. Euro Surveill. 2010, 15, 19505. [Google Scholar] [CrossRef]
- de Vries, H.J.C.; Schallig, H.D. Cutaneous Leishmaniasis: A 2022 Updated Narrative Review into Diagnosis and Management Developments. Am. J. Clin. Dermatol. 2022, 23, 823–840. [Google Scholar] [CrossRef] [PubMed]
- González, U.; Pinart, M.; Rengifo-Pardo, M.; Macaya, A.; Alvar, J.; Tweed, J.A. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst. Rev. 2009, 8, CD004834. [Google Scholar] [CrossRef] [PubMed]
- González, U.; Pinart, M.; Reveiz, L.; Alvar, J. Interventions for Old World cutaneous leishmaniasis. Cochrane Database Syst. Rev. 2008, CD005067. [Google Scholar] [CrossRef] [PubMed]
- Madusanka, R.K.; Silva, H.; Karunaweera, N.D. Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infect. Dis. Ther. 2022, 11, 695–711. [Google Scholar] [CrossRef]
- Garza-Tovar, T.F.; Sacriste-Hernández, M.I.; Juárez-Durán, E.R.; Arenas, R. An overview of the treatment of cutaneous leishmaniasis. Fac. Rev. 2020, 9, 28. [Google Scholar] [CrossRef]
- Heras-Mosteiro, J.; Monge-Maillo, B.; Pinart, M.; Lopez Pereira, P.; Reveiz, L.; Garcia-Carrasco, E.; Campuzano Cuadrado, P.; Royuela, A.; Mendez Roman, I.; López-Vélez, R. Interventions for Old World cutaneous leishmaniasis. Cochrane Database Syst. Rev. 2017, 11, CD005067. [Google Scholar] [CrossRef]
- Kevric, I.; Cappel, M.A.; Keeling, J.H. New World and Old World Leishmania Infections: A Practical Review. Dermatol. Clin. 2015, 33, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2021; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2022. [Google Scholar]
- Mitropoulos, P.; Konidas, P.; Durkin-Konidas, M. New World cutaneous leishmaniasis: Updated review of current and future diagnosis and treatment. J. Am. Acad. Dermatol. 2010, 63, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Bizri, N.A.; Alam, W.; Khoury, M.; Musharrafieh, U.; Ghosn, N.; Berri, A.; Bizri, A.R. The Association Between the Syrian Crisis and Cutaneous Leishmaniasis in Lebanon. Acta Parasitol. 2021, 66, 1240–1245. [Google Scholar] [CrossRef]
- Curtin, J.M.; Aronson, N.E. Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity. Microorganisms 2021, 9, 578. [Google Scholar] [CrossRef]
- Haar, R.; Rayes, D.; Tappis, H.; Rubenstein, L.; Rihawi, A.; Hamze, M.; Almhawish, N.; Wais, R.; Alahmad, H.; Burbach, R.; et al. The cascading impacts of attacks on health in Syria: A qualitative study of health system and community impacts. PLoS Glob. Public Health 2024, 4, e0002967. [Google Scholar] [CrossRef]
- Saroufim, M.; Charafeddine, K.; Issa, G.; Khalifeh, H.; Habib, R.H.; Berry, A.; Ghosn, N.; Rady, A.; Khalifeh, I. Ongoing epidemic of cutaneous leishmaniasis among Syrian refugees, Lebanon. Emerg. Infect. Dis. 2014, 20, 1712–1715. [Google Scholar] [CrossRef]
- Ghatee, M.A.; Taylor, W.R.; Karamian, M. The Geographical Distribution of Cutaneous Leishmaniasis Causative Agents in Iran and Its Neighboring Countries, A Review. Front. Public Health 2020, 8, 11. [Google Scholar] [CrossRef]
- Rehman, K.; Walochnik, J.; Mischlinger, J.; Alassil, B.; Allan, R.; Ramharter, M. Leishmaniasis in Northern Syria during Civil War. Emerg. Infect. Dis. 2018, 24, 1973–1981. [Google Scholar] [CrossRef]
- Al-Salem, W.S.; Pigott, D.M.; Subramaniam, K.; Haines, L.R.; Kelly-Hope, L.; Molyneux, D.H.; Hay, S.I.; Acosta-Serrano, A. Cutaneous Leishmaniasis and Conflict in Syria. Emerg. Infect. Dis. 2016, 22, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Salam, N.; Al-Shaqha, W.M.; Azzi, A. Leishmaniasis in the middle East: Incidence and epidemiology. PLoS Neglected Trop. Dis. 2014, 8, e3208. [Google Scholar] [CrossRef]
- World Health Organization. Lebanon EPI Monitor Eastern Mediterranean Region World Health Organization. 2022. Available online: https://www.emro.who.int/lbn/information-resources/epi-monitor.html (accessed on 18 May 2025).
- Amr, Z.S.; Kanani, K.; Shadfan, B.; Hani, R.B. Cutaneous Leishmaniasis among Syrian Refugees in Jordan: A Retrospective Study. Bull. Soc. Pathol. Exot. 2018, 111, 295–300. [Google Scholar] [CrossRef]
- Yentur Doni, N.; Gurses, G.; Dikme, R.; Aksoy, M.; Yildiz Zeyrek, F.; Simsek, Z.; Satoskar, A.R.; Varikuty, S.; Yesilova, Y. Cutaneous Leishmaniasis due to Three Leishmania Species Among Syrian Refugees in Sanliurfa, Southeastern Turkey. Acta Parasitol. 2020, 65, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Bailey, F.; Mondragon-Shem, K.; Hotez, P.; Ruiz-Postigo, J.A.; Al-Salem, W.; Acosta-Serrano, Á.; Molyneux, D.H. A new perspective on cutaneous leishmaniasis-Implications for global prevalence and burden of disease estimates. PLoS Neglected Trop. Dis. 2017, 11, e0005739. [Google Scholar] [CrossRef]
- Karimi, T.; Sharifi, I.; Aflatoonian, M.R.; Aflatoonian, B.; Mohammadi, M.A.; Salarkia, E.; Babaei, Z.; Zarinkar, F.; Sharifi, F.; Hatami, N.; et al. A long-lasting emerging epidemic of anthroponotic cutaneous leishmaniasis in southeastern Iran: Population movement and peri-urban settlements as a major risk factor. Parasites Vectors 2021, 14, 122. [Google Scholar] [CrossRef]
- Mosawi, S.H.; Dalimi, A. Molecular detection of Leishmania spp. isolated from cutaneous lesions of patients referred to Herat regional hospital, Afghanistan. East. Mediterr. Health J. 2016, 21, 878–884. [Google Scholar] [CrossRef]
- Mirahmadi, H.; Salimi Khorashad, A.; Sohrabnahad, A.; Heydarian, P.; Bizhani, N. Species Identification and Molecular Typing of Leishmania Spp. Using Targeting HSP70 Gene in Suspected Patients of Cutaneous Leishmaniasis from Sistan and Baluchestan Province, Southeast Iran. Iran. J. Parasitol. 2016, 11, 489–498. [Google Scholar] [PubMed]
- Akhavan, A.A.; Yaghoobi-Ershadi, M.R.; Khamesipour, A.; Mirhendi, H.; Alimohammadian, M.H.; Rassi, Y.; Arandian, M.H.; Jafari, R.; Abdoli, H.; Shareghi, N.; et al. Dynamics of Leishmania infection rates in Rhombomys opimus (Rodentia: Gerbillinae) population of an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Bull. Soc. Pathol. Exot. 2010, 103, 84–89. [Google Scholar] [CrossRef]
- Karamian, M.; Ghatee, M.A.; Shayesteh, M.; Taylor, W.R.; Mohebi-Nejad, S.; Taheri, G.; Jamavar, M.R. The effect of geo-climatic determinants on the distribution of cutaneous leishmaniasis in a recently emerging focus in eastern Iran. Parasites Vectors 2021, 14, 538. [Google Scholar] [CrossRef]
- Mozafari, O.; Sofizadeh, A.; Shoraka, H.R. Distribution of Leishmania Infection in Humans, Animal Reservoir Hosts and Sandflies in Golestan Province, Northeastern Iran: A Systematic Review and Meta-Analysis. Iran. J. Public Health 2020, 49, 2308–2319. [Google Scholar] [CrossRef]
- Medina-Morales, D.A.; Machado-Duque, M.E.; Machado-Alba, J.E. Epidemiology of Cutaneous Leishmaniasis in a Colombian Municipality. Am. J. Trop. Med. Hyg. 2017, 97, 1503–1507. [Google Scholar] [CrossRef]
- Hashiguchi, Y.; Gomez, E.A.L.; Cáceres, A.G.; Velez, L.N.; Villegas, N.V.; Hashiguchi, K.; Mimori, T.; Uezato, H.; Kato, H. Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: The causative Leishmania parasites and clinico-epidemiological features. Acta Trop. 2018, 177, 135–145. [Google Scholar] [CrossRef]
- Nepal, B.; McCormick-Baw, C.; Patel, K.; Firmani, S.; Wetzel, D.M. Cutaneous Leishmania mexicana infections in the United States: Defining strains through endemic human pediatric cases in northern Texas. mSphere 2024, 9, e0081423. [Google Scholar] [CrossRef]
- Reis, E.S.D.; Paz, W.S.; Santos Ramos, R.E.; Nunes Ribeiro, C.J.; Biano, L.S.; Bezerra-Santos, M.; de Oliveira, C.I.; Lipscomb, M.W.; de Moura, T.R. Spatial and temporal modeling of the global burden of Cutaneous Leishmaniasis in Brazil: A 21-year ecological study. PLoS Neglected Trop. Dis. 2024, 18, e0012668. [Google Scholar] [CrossRef]
- Menezes, R.C.; Campos, M.P.; Popielarczyk, M.; Kiupel, M. Cutaneous Leishmaniosis caused by Leishmania martiniquensis in a Horse in Florida. J. Comp. Pathol. 2019, 173, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Reuss, S.M.; Dunbar, M.D.; Calderwood Mays, M.B.; Owen, J.L.; Mallicote, M.F.; Archer, L.L.; Wellehan, J.F., Jr. Autochthonous Leishmania siamensis in horse, Florida, USA. Emerg. Infect. Dis. 2012, 18, 1545–1547. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed]
- Kassi, M.; Kassi, M.; Afghan, A.K.; Rehman, R.; Kasi, P.M. Marring leishmaniasis: The stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan. PLoS Neglected Trop. Dis. 2008, 2, e259. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.M.; Lockwood, D.N. Leishmaniasis. Clin. Med. 2011, 11, 492–497. [Google Scholar] [CrossRef]
- Lindner, A.K.; Richter, J.; Gertler, M.; Nikolaus, M.; Equihua Martinez, G.; Müller, K.; Harms, G. Cutaneous leishmaniasis in refugees from Syria: Complex cases in Berlin 2015–2020. J. Travel Med. 2020, 27, taaa161. [Google Scholar] [CrossRef]
- Poloni, A.; Giacomelli, A.; Corbellino, M.; Grande, R.; Nebuloni, M.; Rizzardini, G.; Ridolfo, A.L.; Antinori, S. Delayed diagnosis among patients with cutaneous and mucocutaneous leishmaniasis. Travel Med. Infect. Dis. 2023, 55, 102637. [Google Scholar] [CrossRef]
- Ekemen, S.; Nalcaci, M.; Toz, S.; Sanjoba, C.; Demirkesen, C.; Cetin, E.D.; Tecimer, T.; Yildiz, P.; Gursel, M.; Ince, U.; et al. Diagnostic challenges in cutaneous leishmaniasis due to atypical Leishmania infantum: Pathologists’ insights from re-emergence zones. Front. Med. 2024, 11, 1453211. [Google Scholar] [CrossRef]
- Gurel, M.S.; Tekin, B.; Uzun, S. Cutaneous leishmaniasis: A great imitator. Clin. Dermatol. 2020, 38, 140–151. [Google Scholar] [CrossRef]
- Vega-López, F. Diagnosis of cutaneous leishmaniasis. Curr. Opin. Infect. Dis. 2003, 16, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Douba, M.D.; Abbas, O.; Wali, A.; Nassany, J.; Aouf, A.; Tibbi, M.S.; Kibbi, A.G.; Kurban, M. Chronic cutaneous leishmaniasis, a great mimicker with various clinical presentations: 12 years experience from Aleppo. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Sadiq, A.; Din, A.U. The Increased Vulnerability of Refugee Population to Mental Health Disorders. Kans. J. Med. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Portella, T.P.; Kraenkel, R.A. Spatial-temporal pattern of cutaneous leishmaniasis in Brazil. Infect. Dis. Poverty 2021, 10, 86. [Google Scholar] [CrossRef]
- Hong, A.; Zampieri, R.A.; Shaw, J.J.; Floeter-Winter, L.M.; Laranjeira-Silva, M.F. One Health Approach to Leishmaniases: Understanding the Disease Dynamics through Diagnostic Tools. Pathogens 2020, 9, 809. [Google Scholar] [CrossRef]
- Heeren, S.; Sanders, M.; Shaw, J.J.; Pinto Brandão-Filho, S.; Côrtes Boité, M.; Motta Cantanhêde, L.; Chourabi, K.; Maes, I.; Llanos-Cuentas, A.; Arevalo, J.; et al. Evolutionary genomics of Leishmania braziliensis across the neotropical realm. Commun. Biol. 2024, 7, 1587. [Google Scholar] [CrossRef]
- Mansueto, P.; Seidita, A.; Vitale, G.; Cascio, A. Leishmaniasis in travelers: A literature review. Travel Med. Infect. Dis. 2014, 12 Pt A, 563–581. [Google Scholar] [CrossRef]
- Tonelli, G.B.; Tanure, A.; Rego, F.D.; Carvalho, G.M.L.; Stumpp, R.; Ássimos, G.R.; Campos, A.M.; Lima, A.; Gontijo, C.M.F.; Paz, G.F.; et al. Leishmania (Viannia) braziliensis infection in wild small mammals in ecotourism area of Brazil. PLoS ONE 2017, 12, e0190315. [Google Scholar] [CrossRef]
- Claborn, D.M. The biology and control of leishmaniasis vectors. J. Glob. Infect. Dis. 2010, 2, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, Z.; Sun, J.; Huang, Y.; Hanif, Q.; Liao, Y.; Lei, C. Identification of Genomic Characteristics and Selective Signals in a Du’an Goat Flock. Animals 2020, 10, 994. [Google Scholar] [CrossRef]
- Boggild, A.K.; Caumes, E.; Grobusch, M.P.; Schwartz, E.; Hynes, N.A.; Libman, M.; Connor, B.A.; Chakrabarti, S.; Parola, P.; Keystone, J.S.; et al. Cutaneous and mucocutaneous leishmaniasis in travellers and migrants: A 20-year GeoSentinel Surveillance Network analysis. J. Travel Med. 2019, 26, taz055. [Google Scholar] [CrossRef] [PubMed]
- Demers, E.; Forrest, D.M.; Weichert, G.E. Cutaneous leishmaniasis in a returning traveller. CMAJ 2013, 185, 681–683. [Google Scholar] [CrossRef]
- Riebenbauer, K.; Czerny, S.; Egg, M.; Urban, N.; Kinaciyan, T.; Hampel, A.; Fidelsberger, L.; Karlhofer, F.; Porkert, S.; Walochnik, J.; et al. The changing epidemiology of human leishmaniasis in the non-endemic country of Austria between 2000 to 2021, including a congenital case. PLoS Neglected Trop. Dis. 2024, 18, e0011875. [Google Scholar] [CrossRef]
- Meng, Z.; Fan, P.W.; Fan, Z.X.; Chen, S.; Jiang, H.; Shi, Y.; Yao, L.; Yao, J.Y.; Wang, Y.P.; Hao, M.M.; et al. Environmental change increases the transmission risk of visceral leishmaniasis in central China around the Taihang mountains. Environ. Health 2025, 24, 27. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.G.A.; Sousa, J.D.B.; Dias, Á.L.B.; Monteiro, W.M.; Sampaio, V.S. The role of deforestation on American cutaneous leishmaniasis incidence: Spatial-temporal distribution, environmental and socioeconomic factors associated in the Brazilian Amazon. Trop. Med. Int. Health 2019, 24, 348–355. [Google Scholar] [CrossRef]
- González, C.; Wang, O.; Strutz, S.E.; González-Salazar, C.; Sánchez-Cordero, V.; Sarkar, S. Climate change and risk of leishmaniasis in north america: Predictions from ecological niche models of vector and reservoir species. PLoS Neglected Trop. Dis. 2010, 4, e585. [Google Scholar] [CrossRef]
- Senanayake, S.C.; Liyanage, P.; Pathirage, D.R.K.; Siraj, M.F.R.; De Silva, B.; Karunaweera, N.D. Impact of climate and land use on the temporal variability of sand fly density in Sri Lanka: A 2-year longitudinal study. PLoS Neglected Trop. Dis. 2024, 18, e0012675. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Morales, D.; Suarez Daza, F.; Franco Betancur, O.; Martinez Guevara, D.; Liscano, Y. The Impact of Climatological Factors on the Incidence of Cutaneous Leishmaniasis (CL) in Colombian Municipalities from 2017 to 2019. Pathogens 2024, 13, 462. [Google Scholar] [CrossRef]
- Bounoua, L.; Kahime, K.; Houti, L.; Blakey, T.; Ebi, K.L.; Zhang, P.; Imhoff, M.L.; Thome, K.J.; Dudek, C.; Sahabi, S.A.; et al. Linking climate to incidence of zoonotic cutaneous leishmaniasis (L. major) in pre-Saharan North Africa. Int. J. Environ. Res. Public. Health 2013, 10, 3172–3191. [Google Scholar] [CrossRef]
- Balaska, S.; Calzolari, M.; Grisendi, A.; Scremin, M.; Dottori, M.; Mavridis, K.; Bellini, R.; Vontas, J. Monitoring of Insecticide Resistance Mutations and Pathogen Circulation in Sand Flies from Emilia-Romagna, a Leishmaniasis Endemic Region of Northern Italy. Viruses 2023, 15, 148. [Google Scholar] [CrossRef]
- Vaselek, S. Systematic Review: Re-emergence of human leishmaniasis in the Balkans. Trop. Med. Int. Health 2021, 26, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, A.F.; Zampieri, R.A.; Souza, E.A.; Carneiro, A.C.G.; Barroso, E.P.; Ávila, M.M.; Melchior, L.A.K.; Souza, J.L.; Oliveira, E.S.; Pinto, M.C.G.; et al. Preliminary observations of the urbanization and domiciliation of the American cutaneous leishmaniasis in Rio Branco, Acre, Western Amazon. Rev. Soc. Bras. Med. Trop. 2022, 55, e0359-2022. [Google Scholar] [CrossRef]
- Vadmal, G.M.; Glidden, C.K.; Han, B.A.; Carvalho, B.M.; Castellanos, A.A.; Mordecai, E.A. Data-driven predictions of potential Leishmania vectors in the Americas. PLoS Neglected Trop. Dis. 2023, 17, e0010749. [Google Scholar] [CrossRef]
- Shahryari, A.; Charkazi, A.; Rajabi, A. Environmental factors and building conditions for risk of cutaneous leishmaniasis in the northeast of Iran: A population-based case-control study. Trans. R. Soc. Trop. Med. Hyg. 2023, 117, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Ardic, I.N.; Ardic, N. A minor emphasis on the outbreak of cutaneous leishmaniasis after devastating earthquakes in Turkey. Asian Pac. J. Trop. Med. 2023, 16, 97–98. [Google Scholar] [CrossRef]
- Sharifi, I.; Poursmaelian, S.; Aflatoonian, M.R.; Ardakani, R.F.; Mirzaei, M.; Fekri, A.R.; Khamesipour, A.; Parizi, M.H.; Harandi, M.F. Emergence of a new focus of anthroponotic cutaneous leishmaniasis due to Leishmania tropica in rural communities of Bam district after the earthquake, Iran. Trop. Med. Int. Health 2011, 16, 510–513. [Google Scholar] [CrossRef]
- Aflatoonian, M.; Sharifi, I.; Aflatoonian, B.; Salarkia, E.; Khosravi, A.; Tavakoli Oliaee, R.; Bamorovat, M.; Aghaei Afshar, A.; Babaei, Z.; Sharifi, F.; et al. Fifty years of struggle to control cutaneous leishmaniasis in the highest endemic county in Iran: A longitudinal observation inferred with interrupted time series model. PLoS Neglected Trop. Dis. 2022, 16, e0010271. [Google Scholar] [CrossRef] [PubMed]
- Ambraseys, N.N. Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophys. J. Int. 2001, 145, 471–485. [Google Scholar] [CrossRef]
- Alharazi, T.H.; Haouas, N.; Al-Mekhlafi, H.M. Knowledge and attitude towards cutaneous leishmaniasis among rural endemic communities in Shara’b district, Taiz, southwestern Yemen. BMC Infect. Dis. 2021, 21, 269. [Google Scholar] [CrossRef]
- Rocha, R.; Pereira, A.; Maia, C. Non-Endemic Leishmaniases Reported Globally in Humans between 2000 and 2021-A Comprehensive Review. Pathogens 2022, 11, 921. [Google Scholar] [CrossRef]
- Sunyoto, T.; Verdonck, K.; El Safi, S.; Potet, J.; Picado, A.; Boelaert, M. Uncharted territory of the epidemiological burden of cutaneous leishmaniasis in sub-Saharan Africa-A systematic review. PLoS Neglected Trop. Dis. 2018, 12, e0006914. [Google Scholar] [CrossRef]
- Pasquier, G.; Demar, M.; Lami, P.; Zribi, A.; Marty, P.; Buffet, P.; Desbois-Nogard, N.; Gangneux, J.P.; Simon, S.; Blaizot, R.; et al. Leishmaniasis epidemiology in endemic areas of metropolitan France and its overseas territories from 1998 to 2020. PLoS Neglected Trop. Dis. 2022, 16, e0010745. [Google Scholar] [CrossRef]
- Okwor, I.; Uzonna, J. Social and Economic Burden of Human Leishmaniasis. Am. J. Trop. Med. Hyg. 2016, 94, 489–493. [Google Scholar] [CrossRef]
- Maia-Elkhoury, A.N.S.; Yadón, Z.E.; Díaz, M.I.S.; de Araújo Lucena, F.d.F.; Castellanos, L.G.; Sanchez-Vazquez, M.J. Exploring Spatial and Temporal Distribution of Cutaneous Leishmaniasis in the Americas, 2001–2011. PLoS Neglected Trop. Dis. 2016, 10, e0005086. [Google Scholar] [CrossRef] [PubMed]
- Maia-Elkhoury, A.N.S.; SY, O.B.V.; Puppim-Buzanovsky, L.; Rocha, F.; Sanchez-Vazquez, M.J. SisLeish: A multi-country standardized information system to monitor the status of Leishmaniasis in the Americas. PLoS Neglected Trop. Dis. 2017, 11, e0005868. [Google Scholar] [CrossRef] [PubMed]
- Mikhail Ejov, D.D. Strategic framework for leishmaniasis control in the WHO European Region 2014–2020. Available online: https://iris.who.int/bitstream/handle/10665/329477/9789289050166-eng.pdf?sequence=1&isAllowed=y (accessed on 18 May 2025).
- Saadene, Y.; Salhi, A. Spatio-temporal modeling of Cutaneous Leishmaniasis under climate change scenarios in the Maghreb region (2021–2100). Acta Trop. 2025, 263, 107548. [Google Scholar] [CrossRef]
- Fournet, F.; Jourdain, F.; Bonnet, E.; Degroote, S.; Ridde, V. Effective surveillance systems for vector-borne diseases in urban settings and translation of the data into action: A scoping review. Infect. Dis. Poverty 2018, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Bamorovat, M.; Sharifi, I.; Khosravi, A.; Aflatoonian, M.R.; Agha Kuchak Afshari, S.; Salarkia, E.; Sharifi, F.; Aflatoonian, B.; Gharachorloo, F.; Khamesipour, A.; et al. Global Dilemma and Needs Assessment Toward Achieving Sustainable Development Goals in Controlling Leishmaniasis. J. Epidemiol. Glob. Health 2024, 14, 22–34. [Google Scholar] [CrossRef] [PubMed]
Driver Category | Description | Mechanism and Impact | Example |
---|---|---|---|
Population Displacement | Forced migration, refugee movements, internal displacement due to conflict and political instability | Overcrowded living conditions, poor sanitation, and open sewage in camps increase exposure to sandflies; displaced populations carry infections to new areas | Syrian refugee camps in Lebanon, Jordan, and Turkey spreading L. tropica and L. major; “leishmaniasis corridor” from Aleppo |
Political Instability & Conflict | Armed conflict and government breakdown disrupt public health and vector control systems | Collapse of healthcare infrastructure, lack of vector surveillance, increased exposure due to damaged housing and poor vector control | Syrian civil war effects resulting in rising CL cases in neighboring countries, weakened surveillance and public health |
Environmental & Climate Change | Rising temperatures, altered precipitation, deforestation, urbanization, and natural disasters impacting sand fly habitats | Expansion of sand fly habitats into previously non-endemic zones; prolonged breeding seasons and higher vector densities; insecticide resistance emergence | CL emergence in southern Europe (Italy, Spain), southern US (Texas, Florida), peri-urban sand fly adaptation |
Vector and Reservoir Ecology | Different sand fly species (e.g., Phlebotomus papatasi, P. sergenti) and animal reservoirs, including rodents and horses | Species-specific transmission cycles: urban L. tropica (human reservoir) vs. rural L. major (rodent reservoir); zoonotic cycles complicate control | Urban spread in Kabul versus rural transmission; US horse infections by Leishmania Mundinia species indicating zoonosis |
Travel and Globalization | International tourism and short-term travel to endemic regions | Travelers acquire infections and may import cases to non-endemic countries, where clinical suspicion is low, causing delayed diagnosis and treatment | Tourists acquiring CL in the Brazilian Amazon and other Latin America regions; eco-tourism increasing exposure |
Health System Limitations | Limited diagnostic capacity, provider unfamiliarity, fragmented surveillance, and resource-constrained health systems in refugee-hosting and non-endemic countries | Delayed or misdiagnosis due to overlapping symptoms and lack of PCR/culture diagnostics; overburdened refugee health services hinder timely treatment and follow-up | Delays in Lebanon, Jordan refugee camps; scarcity of antileishmanial drugs; non-notifiable status in sub-Saharan Africa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Zieneldien, T.; Ma, S.; Cohen, B.A. Structural Drivers of Cutaneous Leishmaniasis: Examining How the Converging Effects of Displacement, Environmental Disruption, and Political Instability Reshape Epidemiology Beyond Endemic Regions. Trop. Med. Infect. Dis. 2025, 10, 245. https://doi.org/10.3390/tropicalmed10090245
Kim J, Zieneldien T, Ma S, Cohen BA. Structural Drivers of Cutaneous Leishmaniasis: Examining How the Converging Effects of Displacement, Environmental Disruption, and Political Instability Reshape Epidemiology Beyond Endemic Regions. Tropical Medicine and Infectious Disease. 2025; 10(9):245. https://doi.org/10.3390/tropicalmed10090245
Chicago/Turabian StyleKim, Janice, Tarek Zieneldien, Sophia Ma, and Bernard A. Cohen. 2025. "Structural Drivers of Cutaneous Leishmaniasis: Examining How the Converging Effects of Displacement, Environmental Disruption, and Political Instability Reshape Epidemiology Beyond Endemic Regions" Tropical Medicine and Infectious Disease 10, no. 9: 245. https://doi.org/10.3390/tropicalmed10090245
APA StyleKim, J., Zieneldien, T., Ma, S., & Cohen, B. A. (2025). Structural Drivers of Cutaneous Leishmaniasis: Examining How the Converging Effects of Displacement, Environmental Disruption, and Political Instability Reshape Epidemiology Beyond Endemic Regions. Tropical Medicine and Infectious Disease, 10(9), 245. https://doi.org/10.3390/tropicalmed10090245