Physical and Chemical Characteristics of Aedes aegypti Larval Habitats in Nouakchott, Mauritania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Period
2.2. Larval Sampling and Morphological Identification of Adults
2.3. Characterization of Water Collections
2.4. Statistical Analysis
3. Results
3.1. Description of Aedes aegypti Breeding Sites
3.2. Factors Associated with the Positivity of Water Collection for Aedes aegypti Larvae
3.3. Factors Associated with the Density of Ae aegypti Larvae in Breeding Sites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aOR | adjusted odds ratio |
CI | confidence interval |
DENV | Dengue virus |
References
- Agarwal, A.; Parida, M.; Dash, P.K. Impact of Transmission Cycles and Vector Competence on Global Expansion and Emergence of Arboviruses. Rev. Med. Virol. 2017, 27, e1941. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Dengue Surveillance. Available online: https://worldhealthorg.shinyapps.io/dengue_global/ (accessed on 24 April 2025).
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global Expansion and Redistribution of Aedes-Borne Virus Transmission Risk with Climate Change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef]
- Venkatesan, P. Global upsurge in dengue in 2024. Lancet Infect. Dis. 2024, 24, e620. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Cheng, X.; Hu, H.; Guo, C.; Huang, J.; Chen, Z.; Lu, J. The Worldwide Seroprevalence of DENV, CHIKV and ZIKV Infection: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2021, 15, e0009337. [Google Scholar] [CrossRef] [PubMed]
- David, M.R.; Maciel-de-Freitas, R.; Petersen, M.T.; Bray, D.; Hawkes, F.M.; Fernández-Grandon, G.M.; Young, S.; Gibson, G.; Hopkins, R.J. Aedes aegypti Oviposition-sites Choice under Semi-field Conditions. Med. Vet. Entomol. 2023, 37, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Mint Lekweiry, K.; Ould Ahmedou Salem, M.S.; Ould Brahim, K.; Ould Lemrabott, M.A.; Brengues, C.; Faye, O.; Simard, F.; Ould Mohamed Salem Boukhary, A. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott. J. Med. Entomol. 2015, 52, 730–733. [Google Scholar] [CrossRef]
- Lima-Camara, T.N.; Urbinatti, P.R.; Chiaravalloti-Neto, F. Finding Aedes aegypti in a natural breeding site in an urban zone, Sao Paulo, Southeastern Brazil. Rev. Saude Publica 2016, 50, 3. [Google Scholar] [CrossRef]
- Barrera, R.; Amador, M.; Clark, G.G. Ecological Factors Influencing Aedes aegypti (Diptera: Culicidae) Productivity in Artificial Containers in Salinas, Puerto Rico. J. Med. Entomol. 2006, 43, 484–492. [Google Scholar] [CrossRef]
- Bentley, M.D.; Day, J.F. Chemical Ecology and Behavioral Aspects of Mosquito Oviposition. Annu. Rev. Entomol. 1989, 34, 401–421. [Google Scholar] [CrossRef]
- Harrington, L.C.; Ponlawat, A.; Edman, J.D.; Scott, T.W.; Vermeylen, F. Influence of Container Size, Location, and Time of Day on Oviposition Patterns of the Dengue Vector, Aedes aegypti, in Thailand. Vector-Borne Zoonotic Dis. 2008, 8, 415–424. [Google Scholar] [CrossRef]
- Nikookar, S.H.; Fazeli-Dinan, M.; Azari-Hamidian, S.; Mousavinasab, S.N.; Aarabi, M.; Ziapour, S.P.; Esfandyari, Y.; Enayati, A. Correlation between Mosquito Larval Density and Their Habitat Physicochemical Characteristics in Mazandaran Province, Northern Iran. PLoS Negl. Trop. Dis. 2017, 11, e0005835. [Google Scholar] [CrossRef] [PubMed]
- Medeiros-Sousa, A.R.; De Oliveira-Christe, R.; Camargo, A.A.; Scinachi, C.A.; Milani, G.M.; Urbinatti, P.R.; Natal, D.; Ceretti-Junior, W.; Marrelli, M.T. Influence of Water’s Physical and Chemical Parameters on Mosquito (Diptera: Culicidae) Assemblages in Larval Habitats in Urban Parks of São Paulo, Brazil. Acta Trop. 2020, 205, 105394. [Google Scholar] [CrossRef] [PubMed]
- Maciel-de-Freitas, R.; Marques, W.A.; Peres, R.C.; Cunha, S.P.; Lourenço-de-Oliveira, R. Variation in Aedes aegypti (Diptera: Culicidae) Container Productivity in a Slum and a Suburban District of Rio de Janeiro during Dry and Wet Seasons. Mem. Inst. Oswaldo Cruz 2007, 102, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Diallo, D.; Diagne, C.T.; Hanley, K.A.; Sall, A.A.; Buenemann, M.; Ba, Y.; Dia, I.; Weaver, S.C.; Diallo, M. Larval Ecology of Mosquitoes in Sylvatic Arbovirus Foci in Southeastern Senegal. Parasit. Vectors 2012, 5, 286. [Google Scholar] [CrossRef]
- Ould Lemrabott, M.A.; Briolant, S.; Gomez, N.; Basco, L.; Ould Mohamed Salem Boukhary, A. First Report of Kdr Mutations in the Voltage-Gated Sodium Channel Gene in the Arbovirus Vector, Aedes aegypti, from Nouakchott, Mauritania. Parasit. Vectors 2023, 16, 464. [Google Scholar] [CrossRef]
- Egid, B.R.; Coulibaly, M.; Dadzie, S.K.; Kamgang, B.; McCall, P.J.; Sedda, L.; Toe, K.H.; Wilson, A.L. Review of the Ecology and Behaviour of Aedes aegypti and Aedes albopictus in Western Africa and Implications for Vector Control. Curr. Res. Parasitol. Vector-Borne Dis. 2022, 2, 100074. [Google Scholar] [CrossRef]
- McGregor, B.L.; Connelly, C.R. A Review of the Control of Aedes aegypti (Diptera: Culicidae) in the Continental United States. J. Med. Entomol. 2020, 58, 10–25. [Google Scholar] [CrossRef]
- Ngugi, H.N.; Mutuku, F.M.; Ndenga, B.A.; Musunzaji, P.S.; Mbakaya, J.O.; Aswani, P.; Irungu, L.W.; Mukoko, D.; Vulule, J.; Kitron, U.; et al. Characterization and Productivity Profiles of Aedes aegypti (L.) Breeding Habitats across Rural and Urban Landscapes in Western and Coastal Kenya. Parasit. Vectors 2017, 10, 331. [Google Scholar] [CrossRef]
- Ferede, G.; Tiruneh, M.; Abate, E.; Kassa, W.J.; Wondimeneh, Y.; Damtie, D.; Tessema, B. Distribution and Larval Breeding Habitats of Aedes Mosquito Species in Residential Areas of Northwest Ethiopia. Epidemiol. Health 2018, 40, e2018015. [Google Scholar] [CrossRef] [PubMed]
- Zahouli, J.B.Z.; Koudou, B.G.; Müller, P.; Malone, D.; Tano, Y.; Utzinger, J. Urbanization Is a Main Driver for the Larval Ecology of Aedes Mosquitoes in Arbovirus-Endemic Settings in South-Eastern Côte d’Ivoire. PLoS Negl. Trop. Dis. 2017, 11, e0005751. [Google Scholar] [CrossRef]
- Mint Mohamed Lemine, A.; Ould Lemrabott, M.A.; Hasni Ebou, M.; Mint Lekweiry, K.; Ould Ahmedou Salem, M.S.; Ould Brahim, K.; Ouldabdallahi Moukah, M.; Ould Bouraya, I.N.; Brengues, C.; Trape, J.-F.; et al. Mosquitoes (Diptera: Culicidae) in Mauritania: A Review of Their Biodiversity, Distribution and Medical Importance. Parasit. Vectors 2017, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- El Ghassem, A.; Abdoullah, B.; Deida, J.; Ould Lemrabott, M.A.; Ouldabdallahi Moukah, M.; Ould Ahmedou Salem, M.S.; Briolant, S.; Basco, L.K.; Ould Brahim, K.; Ould Mohamed Salem Boukhary, A. Arthropod-Borne Viruses in Mauritania: A Literature Review. Pathogens 2023, 12, 1370. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Strategy for Dengue Prevention and Control 2012–2020. 2012. Available online: https://www.mdpi.com/2075-4450/16/3/288 (accessed on 10 March 2025).
- Prasad, P.; Lata, S.; Gupta, S.K.; Kumar, P.; Saxena, R.; Arya, D.K.; Singh, H. Aedes Aegypti Container Preference for Oviposition and Its Possible Implications for Dengue Vector Surveillance in Delhi, India. Epidemiol. Health 2023, 45, e2023073. [Google Scholar] [CrossRef] [PubMed]
- Salem, O.A.S.M.; Khadijetou, M.L.; Moina, M.H.; Lassana, K.; Sébastien, B.; Ousmane, F.; Ali, O.M.S.B. Characterization of Anopheline (Diptera: Culicidae) Larval Habitats in Nouakchott, Mauritania. J. Vector Borne Dis. 2013, 50, 302–306. [Google Scholar]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, C.; Casanova, J.L. Detecting Areas Vulnerable to Sand Encroachment Using Remote Sensing and GIS Techniques in Nouakchott, Mauritania. Remote Sens. 2018, 10, 1541. [Google Scholar] [CrossRef]
- Jensen, A.; Hajej, M. The Road of Hope: Control of Moving Sand Dunes in Mauritania. Unasylva 2001, 56, 31–36. [Google Scholar]
- Agence Nationale de la Statistique et de l’Analyse Démographique et Economique. Localités Habitées En Mauritanie. 2024. Available online: https://ansade.mr/fr/localites-habitees-en-mauritanie/ (accessed on 22 November 2024).
- Service, M.W. Mosquito Ecology. In Field Sampling Methods; Elsevier Science Publishers Ltd. Customer Service Department P.O. Box 211: Amsterdam, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Robert, V.; Ndiaye, E.; Rahola, N.; Le Goff, G.; Boussès, P.; Diallo, D.; Le Goff, V.; Mariamé, L.; Diallo, M. Clés Dichotomiques Illustrées D’identification Des Femelles et Des Larves de Moustiques (Diptera: Culicidae) Du Burkina Faso, Cap-Vert, Gambie, Mali, Mauritanie, Niger, Sénégal et Tchad. 2022. Available online: https://mosquito-taxonomic-inventory.myspecies.info/sites/mosquito-taxonomic-inventory.info/files/Robert%20et%20al%202022.pdf (accessed on 19 December 2024).
- Huang, Y.-M.; Rueda, L.M. A pictorial key to the species of Aedes (Ochlerotatus and Coetzeemyia) in the Afrotropical Region (Diptera: Culicidae). Zootaxa 2014, 3754, 592–600. [Google Scholar] [CrossRef]
- Nebbak, A.; Willcox, A.C.; Koumare, S.; Berenger, J.-M.; Raoult, D.; Parola, P.; Fontaine, A.; Briolant, S.; Almeras, L. Longitudinal Monitoring of Environmental Factors at Culicidae Larval Habitats in Urban Areas and Their Association with Various Mosquito Species Using an Innovative Strategy. Pest. Manag. Sci. 2019, 75, 923–934. [Google Scholar] [CrossRef]
- Papierok, B.; Croset, H.; Rioux, J. Estimation de l’effectif Des Populations Larvaires d’Aedes Cataphylla Dyar, 1916 (Diptera, Culicidae) II: Méthode Utilisant Le Coup de Louche Ou Dipping. Cah. ORSTOM Sér. Entomol. Médicale Parasitol. 1975, 13, 47–51. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 3 October 2023).
- Haidy Massa, M.; Ould Lemrabott, M.A.; Gomez, N.; Ould Mohamed Salem Boukhary, A.; Briolant, S. Insecticide Resistance Status of Aedes aegypti Adults and Larvae in Nouakchott, Mauritania. Insects 2025, 16, 288. [Google Scholar] [CrossRef]
- Ouédraogo, W.M.; Toé, K.H.; Sombié, A.; Viana, M.; Bougouma, C.; Sanon, A.; Weetman, D.; McCall, P.J.; Kanuka, H.; Badolo, A. Impact of Physicochemical Parameters of Aedes aegypti Breeding Habitats on Mosquito Productivity and the Size of Emerged Adult Mosquitoes in Ouagadougou City, Burkina Faso. Parasit. Vectors 2022, 15, 478. [Google Scholar] [CrossRef] [PubMed]
- Adjobi, C.N.; Zahouli, J.Z.B.; Guindo-Coulibaly, N.; Ouattara, A.F.; Vavassori, L.; Adja, M.A. Assessing the ecological patterns of Aedes aegypti in areas with high arboviral risks in the large city of Abidjan, Côte d’Ivoire. PLoS Negl. Trop. Dis. 2024, 18, e0012647. [Google Scholar] [CrossRef] [PubMed]
- Padonou, G.G.; Konkon, A.K.; Salako, A.S.; Zoungbédji, D.M.; Ossè, R.; Sovi, A.; Azondekon, R.; Sidick, A.; Ahouandjinou, J.M.; Adoha, C.J.; et al. Distribution and Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Benin, West Africa. Trop. Med. Infect. Dis. 2023, 8, 439. [Google Scholar] [CrossRef] [PubMed]
- Herath, J.M.M.K.; De Silva, W.A.P.P.; Weeraratne, T.C.; Karunaratne, S.H.P.P. Breeding Habitat Preference of the Dengue Vector Mosquitoes Aedes aegypti and Aedes albopictus from Urban, Semiurban, and Rural Areas in Kurunegala District, Sri Lanka. J. Trop. Med. 2024, 2024, 4123543. [Google Scholar] [CrossRef]
- Ali, E.O.M.; Babalghith, A.O.; Bahathig, A.O.S.; Toulah, F.H.S.; Bafaraj, T.G.; Al-Mahmoudi, S.M.Y.; Alhazmi, A.M.F.; Abdel-Latif, M.E. Prevalence of Larval Breeding Sites and Seasonal Variations of Aedes aegypti Mosquitoes (Diptera: Culicidae) in Makkah Al-Mokarramah, Saudi Arabia. Int. J. Environ. Res. Public Health 2021, 18, 7368. [Google Scholar] [CrossRef]
- Mbanzulu, K.M.; Mboera, L.E.G.; Wumba, R.; Engbu, D.; Bojabwa, M.M.; Zanga, J.; Mitashi, P.M.; Misinzo, G.; Kimera, S.I. Physicochemical Characteristics of Aedes Mosquito Breeding Habitats in Suburban and Urban Areas of Kinshasa, Democratic Republic of the Congo. Front. Trop. Dis. 2022, 2, 789273. [Google Scholar] [CrossRef]
- Getachew, D.; Tekie, H.; Gebre-Michael, T.; Balkew, M.; Mesfin, A. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia. Interdiscip. Perspect. Infect. Dis. 2015, 2015, 706276. [Google Scholar] [CrossRef]
- Abílio, A.P.; Abudasse, G.; Kampango, A.; Candrinho, B.; Sitoi, S.; Luciano, J.; Tembisse, D.; Sibindy, S.; De Almeida, A.P.G.; Garcia, G.A.; et al. Distribution and Breeding Sites of Aedes aegypti and Aedes albopictus in 32 Urban/Peri-Urban Districts of Mozambique: Implication for Assessing the Risk of Arbovirus Outbreaks. PLoS Negl. Trop. Dis. 2018, 12, e0006692. [Google Scholar] [CrossRef]
- Padonou, G.G.; Ossè, R.; Salako, A.S.; Aikpon, R.; Sovi, A.; Kpanou, C.; Sagbohan, H.; Akadiri, Y.; Lamine, B.M.; Akogbeto, M.C. Entomological assessment of the risk of dengue outbreak in Abomey-Calavi Commune, Benin. Trop. Med. Health 2020, 48, 20. [Google Scholar] [CrossRef]
- Flaibani, N.; Pérez, A.A.; Barbero, I.M.; Burroni, N.E. Different Approaches to Characterize Artificial Breeding Sites of Aedes aegypti Using Generalized Linear Mixed Models. Infect. Dis. Poverty 2020, 9, 107. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Das, M.; Baruah, I.; Veer, V.; Dutta, P. Physicochemical Characteristics of Habitats in Relation to the Density of Container-Breeding Mosquitoes in Asom, India. J. Vector Borne Dis. 2013, 50, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Haque, C.E.; Hossain, S.; Rochon, K. Role of Container Type, Behavioural, and Ecological Factors in Aedes Pupal Production in Dhaka, Bangladesh: An Application of Zero-Inflated Negative Binomial Model. Acta Trop. 2019, 193, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Verdonschot, P.F.M.; Besse-Lototskaya, A.A. Flight Distance of Mosquitoes (Culicidae): A Metadata Analysis to Support the Management of Barrier Zones around Rewetted and Newly Constructed Wetlands. Limnologica 2014, 45, 69–79. [Google Scholar] [CrossRef]
- Matthews, B.J.; Younger, M.A.; Vosshall, L.B. The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 2019, 8, e43963. [Google Scholar] [CrossRef]
Breeding Site | Number of Observations | Type of Water Collection | pH 1 | Salinity 1 (g/L) | Turbidity 1 (ppm) | Temperature 1 (°C) | Conductivity 1 (µs/cm) |
---|---|---|---|---|---|---|---|
G1 | 12 | Well water storage | 8.6, 0.2 | 0.19, 0.03 | 219, 33 | 27.7, 0.8 | 425, 75 |
G2 | 8 | Stagnant rainwaterand groundwater | 8.3, 0.1 | 0.90, 0.33 | 920, 361 | 26.9, 0.9 | 1700, 629 |
G7 | 14 | agricultural wastewater puddle | 8.3, 0.1 | 0.98, 0.07 | 902, 61 | 27.8, 1.2 | 1810, 122 |
G10 | 7 | agricultural wastewater puddle | 8.2, 0.2 | 0.68, 0.17 | 642, 157 | 33.0, 0.6 | 1283, 313 |
G15 | 7 | Pipe leak | 8.3, 0.2 | 0.23, 0.07 | 222, 70 | 31.1, 1.6 | 443, 139 |
G19 | 6 | Fountain bollard drain | 7.9, 0.2 | 0.66, 0.09 | 632, 73 | 32.2, 1.2 | 1266, 147 |
G23 | 13 | Plastic tank | 7.6, 0.2 | 0.09, 0.01 | 87, 9 | 28.2, 0.8 | 175, 18 |
G24 | 13 | Plastic tank | 7.5, 0.2 | 0.09, 0.01 | 96, 7 | 28.0, 0.7 | 193, 14 |
G25 | 1 | Plastic tank | 8.0, ND | 0.11, ND | 119, ND | 33.2, ND | 238, ND |
G29 | 2 | Plastic tank | 8.5, 0.2 | 0.14, 0.06 | 135, 56 | 27.4, 1.2 | 270, 112 |
G30 | 5 | Plastic tank | 8.1, 0.2 | 0.10, 0.05 | 119, 46 | 27.7, 1.3 | 247, 95 |
G32 | 8 | Plastic tank | 7.7, 0.3 | 1.17, 1.09 | 80, 12 | 27.9, 1.4 | 159, 24 |
G33 | 2 | Barrel | 8.0, 1.3 | 0.05, 0.01 | 52, 11 | 32.0, 1.5 | 102, 20 |
G34 | 2 | Plastic tank | 8.0, 0.7 | 0.05, 0.02 | 106, 44 | 31.7, 0.5 | 213, 91 |
G35 | 7 | Pipe leak | 8.5, 0.1 | 0.05, 0.01 | 61, 10 | 30.0, 1.2 | 122, 20 |
G36 | 2 | Well water storage | 7.8, 0.3 | 0.07, 0.01 | 64, 2 | 31.4, 2.0 | 128, 5 |
G40 | 4 | Well water storage | 8.4, 0.2 | 0.08, 0.03 | 77, 26 | 30.8, 1.1 | 154, 52 |
G41 | 4 | Plastic tank | 8.4, 0.4 | 0.06, 0.00 | 61, 1.6 | 30.2, 1.0 | 121, 3 |
G42 | 3 | Plastic tank | 7.8, 0.4 | 0.14, 0.08 | 131, 73 | 30.6, 1.0 | 262, 145 |
G43 | 10 | Barrel | 8.2, 0.2 | 0.09, 0.02 | 86, 20 | 28.2, 1.1 | 171, 39 |
G44 | 6 | Barrel | 8.0, 0.3 | 0.10, 0.02 | 94, 15 | 27.4, 1.5 | 188, 30 |
G45 | 1 | Ablution place | 7.1, ND | 0.38, ND | 362, ND | 30.6, ND | 723, ND |
G46 | 5 | Well water storage | 8.3, 0.1 | 0.12, 0.05 | 115, 47 | 30.3, 1.8 | 230, 93 |
G47 | 5 | Barrel | 7.9, 0.2 | 0.10, 0.02 | 102, 17 | 31.6, 0.5 | 187, 42 |
G48 | 3 | Well water storage | 9.3, 0.1 | 0.08, 0.02 | 82, 25 | 32.2, 0.7 | 164, 49 |
G49 | 1 | Well water storage | 8.9, ND | 0.15, ND | 151, ND | 32.3, ND | 302, ND |
G51 | 1 | Plastic tank | 8.2, ND | 0.03, ND | 52, ND | 28.2, ND | 102, ND |
G52 | 3 | Plastic tank | 8.5, 0.1 | 0.03, 0.02 | 50, 10 | 29.3, 1.6 | 100, 20 |
G53 | 7 | Plastic tank | 8.5, 0.2 | 0.05, 0.00 | 55, 3 | 27.0, 1.1 | 109, 5 |
G54 | 6 | Plastic tank | 8.5, 0.2 | 0.06, 0.01 | 63, 7 | 30.8, 1.0 | 125, 14 |
G55 | 2 | Plastic tank | 8.2, 0.0 | 0.60, 0.10 | 505, 94 | 24.3, 4.0 | 1010, 186 |
G56 | 3 | Plastic tank | 8.9, 0.7 | 0.09, 0.02 | 84, 22 | 24.4, 2.1 | 167, 44 |
G58 | 1 | Plastic tank | 7.5, ND | 0.05, ND | 49, ND | 24.4, ND | 99, ND |
G59 | 1 | Plastic tank | 8.1, ND | 0.24, ND | 222, ND | 21.5, ND | 445, ND |
G60 | 2 | Pipe leak | 7.4, 0.3 | 0.19, 0.04 | 176, 33 | 24.2, 0.6 | 346, 72 |
Variables | N | P | aOR | CI95% | p-Value | |
---|---|---|---|---|---|---|
Depth (m) | ≤0.5 | 94 | 28 | 1 | ||
>0.5 | 200 | 88 | 5.18 | 1.66–16.18 | 0.005 | |
Exposure to the sun | Semi shaded/shaded | 188 | 96 | 1 | ||
Sunny | 106 | 20 | 0.04 | 0.01–0.26 | <0.001 | |
Water collection type | Natural | 20 | 1 | 1 | ||
Artificial | 274 | 115 | 252.88 | 4.05–15,786.84 | 0.009 | |
Distance to habitat (m) | ≤10 | 217 | 114 | 1 | ||
>10 | 77 | 2 | 0.00 | 0.00–0.02 | <0.001 |
Variables | N | aOR | CI95% | p-Value | |
---|---|---|---|---|---|
pH | <8.3 | 58 | 1 | ||
≥8.3 | 44 | 0.50 | 0.33–0.75 | 0.001 | |
Size (m2) | ≤5 | 26 | 1 | ||
>5 | 76 | 0.48 | 0.27–0.87 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haidy Massa, M.; Ould Lemrabott, M.A.; Abdillahi Guedi, O.; Briolant, S.; Ould Mohamed Salem Boukhary, A. Physical and Chemical Characteristics of Aedes aegypti Larval Habitats in Nouakchott, Mauritania. Trop. Med. Infect. Dis. 2025, 10, 147. https://doi.org/10.3390/tropicalmed10060147
Haidy Massa M, Ould Lemrabott MA, Abdillahi Guedi O, Briolant S, Ould Mohamed Salem Boukhary A. Physical and Chemical Characteristics of Aedes aegypti Larval Habitats in Nouakchott, Mauritania. Tropical Medicine and Infectious Disease. 2025; 10(6):147. https://doi.org/10.3390/tropicalmed10060147
Chicago/Turabian StyleHaidy Massa, Mohamed, Mohamed Aly Ould Lemrabott, Osman Abdillahi Guedi, Sébastien Briolant, and Ali Ould Mohamed Salem Boukhary. 2025. "Physical and Chemical Characteristics of Aedes aegypti Larval Habitats in Nouakchott, Mauritania" Tropical Medicine and Infectious Disease 10, no. 6: 147. https://doi.org/10.3390/tropicalmed10060147
APA StyleHaidy Massa, M., Ould Lemrabott, M. A., Abdillahi Guedi, O., Briolant, S., & Ould Mohamed Salem Boukhary, A. (2025). Physical and Chemical Characteristics of Aedes aegypti Larval Habitats in Nouakchott, Mauritania. Tropical Medicine and Infectious Disease, 10(6), 147. https://doi.org/10.3390/tropicalmed10060147