Management and Prevention of Multidrug-Resistant Bacteria in War Casualties
Abstract
:1. Introduction
2. Methods
3. Results
3.1. A Brief History of AMR in War Casualties
3.2. An Overview of the Most Incriminated Species
3.2.1. Acinetobacter baumannii Complex
3.2.2. Pseudomonas aeruginosa
3.2.3. Enterobacterales
3.2.4. Methicillin-Resistant Staphylococcus Aureus (MRSA)
3.3. Prevention of MDRO Transmission in Military Medicine
3.3.1. Recommendations for Isolating Patients
3.3.2. Advance Progression
3.3.3. Use of Personal Protective Equipment (PPE) and Single-Use Items
3.3.4. Hand Hygiene
3.3.5. Environmental Hygiene
3.4. Sampling for MDROs
3.5. Detection Methods for MDROs
3.6. Drawbacks Hampering AMR Mitigation Measures in Conflict Settings
3.7. Recommendations for Prevention of Combat Injuries Infection
4. Discussion and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pallett, S.J.C.; Boyd, S.E.; O’Shea, M.K.; Martin, J.; Jenkins, D.R.; Hutley, E.J. The contribution of human conflict to the development of antimicrobial resistance. Commun. Med. 2023, 3, 153. [Google Scholar] [CrossRef] [PubMed]
- Abou Fayad, A.; Rizk, A.; El Sayed, S.; Kaddoura, M.; Jawad, N.K.; Al-Attar, A.; Dewachi, O.; Nguyen, V.K.; Sater, Z.A. Antimicrobial resistance and the Iraq wars: Armed conflict as an underinvestigated pathway with growing significance. BMJ Glob. Health 2023, 7, e010863. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Petersen, E.; Capone, A.; Donati, D.; Andriolo, B.; Gross, M.; Cicalini, S.; Petrosillo, N. The impact of armed conflict on the development and global spread of antibiotic resistance: A systematic review. Clin. Microbiol. Infect. 2024, 30, 858–865. [Google Scholar] [CrossRef]
- Landecker, H. Antimicrobials before antibiotics: War, peace, and disinfectants. Palgrave Commun. 2019, 5, 45. [Google Scholar] [CrossRef]
- Abbara, A.; Shortall, C.; Sullivan, R.; Zwijnenburg, W.; Moussally, K.; Aboshamr, R.; Naim, C.; Uyen, A.; Zaman, M.H.; Karah, N.; et al. Unravelling the linkages between conflict and antimicrobial resistance. NPJ Antimicrob. Resist. 2025, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Wild, A.; Shortall, C.; Dewachi, O.; Naim, C.; Green, A.; Hussain, S.; Abbara, A. Conflict-associated wounds and burns infected with GLASS pathogens in the Eastern Mediterranean Region: A systematic review. BMC Infect. Dis. 2025, 25, 187. [Google Scholar] [CrossRef]
- Stone, R. War-torn Ukraine is breeding drug-resistant bacterial strains. Science 2024, 386, 1085–1086. [Google Scholar] [CrossRef]
- Calhoun, J.H.; Murray, C.K.; Manring, M.M. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan. Clin. Orthop. Relat. Res. 2008, 466, 1356–1362. [Google Scholar] [CrossRef]
- Zwijnenburg, W.; Hochhauser, D.; Dewachi, O.; Sullivan, R.; Nguyen, V.K. Solving the jigsaw of conflict-related environmental damage: Utilizing open-source analysis to improve research into environmental health risks. J. Public Health 2019, 42, e352–e360. [Google Scholar] [CrossRef]
- Fukushima, S.; Hagiya, H.; Gotoh, K.; Tsuji, S.; Iio, K.; Matsushita, O. Detection of imported clinical strain of blaNDM-1-harbouring ST147 Klebsiella pneumoniae from a Ukrainian immigrant. J. Travel Med. 2024, 31, taae011. [Google Scholar] [CrossRef]
- Bhandari, P.S.; Mukherjee, M.K.; Maurya, S. Reconstructive challenges in war wounds. Indian J. Plast. Surg. 2012, 45, 332–339. [Google Scholar] [CrossRef]
- Murray, C.K.; Hinkle, M.K.; Yun, H.C. History of infections associated with combat-related injuries. J. Trauma Inj. Infect. Crit. Care 2008, 64, S221–S231. [Google Scholar] [CrossRef] [PubMed]
- Mende, K.; Beckius, M.L.; Zera, W.C.; Onmus-Leone, F.; Murray, C.K.; Tribble, D.R. Low Prevalence of carbapenem-resistant Enterobacteriaceae among wounded military personnel. US Army Med. Dep. J. 2017, 12–17. [Google Scholar]
- Murray, C.K.; Yun, H.C.; Griffith, M.E.; Thompson, B.; Crouch, H.K.; Monson, L.S.; Aldous, W.K.; Mende, K.; Hospenthal, D.R. Recovery of multidrug-resistant bacteria from combat personnel evacuated from Iraq and Afghanistan at a single military treatment facility. Mil. Med. 2009, 174, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Blyth, D.M.; Yun, H.C.; Tribble, D.R.; Murray, C.K. Lessons of war: Combat-related injury infections during the Vietnam War and Operation Iraqi and Enduring Freedom. J. Trauma Acute Care Surg. 2015, 79, S227–S235. [Google Scholar] [CrossRef] [PubMed]
- Sutter, D.E.; Bradshaw, L.U.; Simkins, L.H.; Summers, A.M.; Atha, M.; Elwood, R.L.; Robertson, J.L.; Murray, C.K.; Wortmann, G.W.; Hospenthal, D.R. High incidence of multidrug-resistant gram-negative bacteria recovered from Afghan patients at a deployed US military hospital. Infect. Control. Hosp. Epidemiol. 2011, 32, 854–860. [Google Scholar] [CrossRef]
- Lesho, E.P.; Clifford, R.J.; Chukwuma, U.; Kwak, Y.I.; Maneval, M.; Neumann, C.; Xie, S.; Nielsen, L.E.; Julius, M.D.; McGann, P.; et al. Carbapenem-resistant Enterobacteriaceae and the correlation between carbapenem and fluoroquinolone usage and resistance in the US military health system. Diagn. Microbiol. Infect. Dis. 2015, 81, 119–125. [Google Scholar] [CrossRef]
- Yaacoub, S.; Truppa, C.; Pedersen, T.I.; Abdo, H.; Rossi, R. Antibiotic resistance among bacteria isolated from war-wounded patients at the Weapon Traumatology Training Center of the International Committee of the Red Cross from 2016 to 2019: A secondary analysis of WHONET surveillance data. BMC Infect. Dis. 2022, 22, 257. [Google Scholar] [CrossRef]
- Campbell, W.R.; Li, P.; Whitman, T.J.; Blyth, D.M.; Schnaubelt, E.R.; Mende, K.; Tribble, D.R. Multi-Drug—Resistant Gram-Negative Infections in Deployment-Related Trauma Patients. Surg. Infect. 2017, 18, 357–367. [Google Scholar] [CrossRef]
- Ronat, J.B.; Kakol, J.; Khoury, M.N.; Berthelot, M.; Yun, O.; Brown, V.; Murphy, R.A. Highly drug-resistant pathogens implicated in burn-associated bacteremia in an Iraqi burn care unit. PLoS ONE 2014, 9, e101017. [Google Scholar] [CrossRef]
- Kassem, D.F.; Hoffmann, Y.; Shahar, N.; Ocampo, S.; Salomon, L.; Zonis, Z.; Glikman, D. Multidrug-Resistant Pathogens in Hospitalized Syrian Children. Emerg. Infect. Dis. 2017, 23, 166–168. [Google Scholar] [CrossRef]
- Hrabák, J.; Študentová, V.; Adámková, V.; Šemberová, L.; Kabelíková, P.; Hedlová, D.; Čurdová, M.; Zemlickova, H.; Papagiannitsis, C.C. Report on a transborder spread of carbapenemase-producing bacteria by a patient injured during Euromaidan, Ukraine. New Microbes New Infect. 2015, 8, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Granzer, H.; Hagen, R.M.; Warnke, P.; Bock, W.; Baumann, T.; Schwarz, N.G.; Podbielski, A.; Frickmann, H.; Koeller, T. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii complex isolates from patients that were injured during the eastern Ukrainian conflict. Eur. J. Microbiol. Immunol. 2016, 6, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Valentine, K.P.; Viacheslav, K.M. Bacterial flora of combat wounds from eastern Ukraine and time-specified changes of bacterial recovery during treatment in Ukrainian military hospital. BMC Res. Notes 2017, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Hagen, R.M.; Podbielski, A.; Frickmann, H.; Warnke, P. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolated from War-Injured Patients from the Eastern Ukraine. Antibiotics 2020, 9, 579. [Google Scholar] [CrossRef]
- Kondratiuk, V.; Jones, B.T.; Kovalchuk, V.; Kovalenko, I.; Ganiuk, V.; Kondratiuk, O.; Frantsishko, A. Phenotypic and genotypic characterization of antibiotic resistance in military hospital-associated bacteria from war injuries in the Eastern Ukraine conflict between 2014 and 2020. J. Hosp. Infect. 2021, 112, 69–76. [Google Scholar] [CrossRef]
- Sandfort, M.; Hans, J.B.; Fischer, M.A.; Reichert, F.; Cremanns, M.; Eisfeld, J.; Pfeifer, Y.; Heck, A.; Eckmanns, T.; Werner, G.; et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Eurosurveillance 2022, 27, 2200926. [Google Scholar] [CrossRef]
- Schultze, T.; Hogardt, M.; Velázquez, E.S.; Hack, D.; Besier, S.; Wichelhaus, T.A.; Rochwalsky, U.; Kempf, V.A.; Reinheimer, C. Molecular surveillance of multidrug-resistant Gram-negative bacteria in Ukrainian patients, Germany, March to June 2022. Eurosurveillance 2023, 28, 2200850. [Google Scholar] [CrossRef]
- Petrosillo, N.; Petersen, E.; Antoniak, S. Ukraine war and antimicrobial resistance. Lancet Infect. Dis. 2023, 23, 653–654. [Google Scholar] [CrossRef]
- Stepanskyi, D.; Ishchenko, O.; Luo, T.; Lebreton, F.; Bennett, J.W.; Kovalenko, I.; McGann, P. Phenotypic and genomic analysis of bacteria from war wounds in Dnipro, Ukraine. JAC-Antimicrob. Resist. 2024, 6, dlae090. [Google Scholar] [CrossRef]
- Ljungquist, O.; Nazarchuk, O.; Kahlmeter, G.; Andrews, V.; Koithan, T.; Wasserstrom, L.; Dmytriiev, D.; Fomina, N.; Bebyk, V.; Matuschek, E.; et al. Highly multidrug-resistant Gram-negative bacterial infections in war victims in Ukraine, 2022. Lancet Infect. Dis. 2023, 23, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Zwittink, R.D.; Wielders, C.C.; Notermans, D.W.; Verkaik, N.J.; Schoffelen, A.F.; Witteveen, S.; Ganesh, V.A.; de Haan, A.; Bos, J.; Bakker, J.; et al. Multidrug-resistant organisms in patients from Ukraine in the Netherlands, March to August 2022. Eurosurveillance 2022, 27, 2200896. [Google Scholar] [CrossRef] [PubMed]
- Pallett, S.J.C.; Trompeter, A.; Basarab, M.; Moore, L.S.P.; Boyd, S.E. Multidrug-resistant infections in war victims in Ukraine. Lancet Infect. Dis. 2023, 23, E270–E271. [Google Scholar] [CrossRef]
- Berger, F.K.; Schmartz, G.P.; Fritz, T.; Veith, N.; Alhussein, F.; Roth, S.; Schneitler, S.; Gilcher, T.; Gärtner, B.C.; Pirpilashvili, V.; et al. Occurrence, resistance patterns, and management of carbapenemase-producing bacteria in war-wounded refugees from Ukraine. Int. J. Infect. Dis. 2023, 132, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Luo, T.L.; Kovalchuk, V.; Kondratiuk, V.; Dao, H.D.; Kovalenko, I.; Plaza, B.J.; Kettlewell, J.M.; Anderson, C.P.; Smedberg, J.R.; et al. Detection of cefiderocol and aztreonam/avibactam resistance in epidemic Escherichia coli ST-361 carrying blaNDM-5 and blaKPC-3 from foreign fighters evacuated from Ukraine. Antimicrob Agents Chemother. 2024, 20, e0109024. [Google Scholar] [CrossRef]
- Witteveen, S.; Hans, J.B.; Izdebski, R.; Hasman, H.; Samuelsen, Ø.; Dortet, L.; Pfeifer, Y.; Delappe, N.; Oteo-Iglesias, J.; Żabicka, D.; et al. Dissemination of extensively drug-resistant NDM-producing Providencia stuartii in Europe linked to patients transferred from Ukraine, March 2022 to March 2023. Eurosurveillance 2024, 29, 2300616. [Google Scholar] [CrossRef]
- Ljungquist, O.; Magda, M.; Giske, C.G.; Tellapragada, C.; Nazarchuk, O.; Dmytriiev, D.; Thofte, O.; Öhnström, V.; Matuschek, E.; Blom, A.M.; et al. Pandrug-resistant Klebsiella pneumoniae isolated from Ukrainian war victims are hypervirulent. J. Infect. 2024, 89, 106312. [Google Scholar] [CrossRef]
- Pallett, S.J.C.; Morkowska, A.; Woolley, S.D.; O’Shea, M.K.; Moore, L.S.P.; Moshynets, O. Severe conflict-associated wound infections complicated by the discovery of carbapenemase-coproducing Pseudomonas aeruginosa in Ukraine. Lancet Microbe 2024, 6, 101046. [Google Scholar] [CrossRef]
- McGann, P.T.; Lebreton, F.; Jones, B.T.; Dao, H.D.; Martin, M.J.; Nelson, M.J.; Luo, T.; Wyatt, A.C.; Smedberg, J.R.; Kettlewell, J.M.; et al. Six Extensively Drug-Resistant Bacteria in an Injured Soldier, Ukraine. Emerg. Infect. Dis. 2023, 29, 1692–1695. [Google Scholar]
- Pallett, S.J.C.; Morkowska, A.; Woolley, S.D.; Potochilova, V.V.; Rudnieva, K.L.; Iungin, O.S.; Sgro, V.; Boyd, S.E.; Reece, N.; Lambert, Z.L.; et al. Evolving antimicrobial resistance of extensively drug-resistant Gram-negative severe infections associated with conflict wounds in Ukraine: An observational study. Lancet Reg. Health Eur. 2025, 52, 101274. [Google Scholar] [CrossRef]
- Rodero Roldán, M.D.M.; Yuste Benavente, V.; Martínez Álvarez, R.M.; López Calleja, A.I.; García-Lechuz, J.M. Characterization of wound infections among patients injured during the Ruso-Ukrainian war in a Role 4 hospital. Enferm. Infecc. Microbiol. Clin. 2024, 42, 501–506. [Google Scholar] [CrossRef]
- Fuchs, F.; Xanthopoulou, K.; Burgwinkel, T.; Arazo Del Pino, R.; Wohlfarth, E.; Pavlu, F.; Hagen, R.M.; Higgins, P.G. Coexistence of seven different carbapenemase producers in a single hospital admission screening confirmed by whole-genome sequencing. J. Glob. Antimicrob. Resist. 2024, 39, 184–188. [Google Scholar] [CrossRef]
- Urbieta-Mancisidor, J.; Treviño-Theriot, J.M. Challenges in Managing Multidrug-Resistant Infections Among Refugees: Clinical Experience During the Ukrainian War. Eur. J. Case Rep. Intern. Med. 2025, 12, 005338. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, O.; Vorobets, D.; Chaplyk, V.; Vorobets, M.; Fafula, R.; Besedina, A.; Vorobets, Z. Profile of antibiotic resistance of the main infectious contaminants on the wound surface of wounded men in the Russian-Ukrainian war. Wiad Lek. 2025, 78, 295–302. [Google Scholar] [CrossRef] [PubMed]
- NATO Standard—Allied Joint Doctrine for Medical Support. Available online: https://www.coemed.org/files/stanags/01_AJP/AJP-4.10_EDC_V1_E_2228.pdf (accessed on 2 April 2025).
- Lyons, C. Penicillin and its use in the war wounded. Am. J. Surg. 1946, 72, 315–318. [Google Scholar] [CrossRef]
- Fleming, R.S.; Queen, F.B. Penicillin resistance: I. of bacteria: Strain variations in penicillin sensitivity among bacterial species encountered in war wounds and infections. Am. J. Clin. Pathol. 1946, 16, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Wannamaker, G.T.; Pulaski, E.J. Pyogenic neurosurgical infections in Korean battle casualties. J. Neurosurg. 1958, 15, 512–518. [Google Scholar] [CrossRef]
- Kovaric, J.J.; Matsumoto, T.; Dobek, A.S.; Hamit, H.F. Bacterial flora of one hundred and twelve combat wounds. Mil. Med. 1968, 133, 622–624. [Google Scholar] [CrossRef]
- Sidi, Y.; Bogokowski, B.; Tsur, H.; Tavdioglu, B.; Rubinstein, E. Infectious complications of burns casualties during the Yom-Kippur War. Infection 1977, 5, 214–218. [Google Scholar] [CrossRef]
- Phillips, L.G.; Heggers, J.P.; Robson, M.C. Burn and trauma units as sources of methicillin-resistant Staphylococcus aureus. J. Burn. Care Rehabil. 1992, 13, 293–297. [Google Scholar] [CrossRef]
- Lohr, B.; Pfeifer, Y.; Heudorf, U.; Rangger, C.; Norris, D.E.; Hunfeld, K.P. High Prevalence of Multidrug-Resistant Bacteria in Libyan War Casualties Admitted to a Tertiary Care Hospital, Germany. Microb. Drug Resist. 2018, 24, 578–584. [Google Scholar] [CrossRef]
- Abu Qamar, A.K.; Habboub, T.M.; Elmanama, A.A. Antimicrobial resistance of bacteria isolated at the European Gaza Hospital before and after the Great March of Return protests: A retrospective study. Lancet 2022, 399, S14. [Google Scholar] [CrossRef]
- Taher, A.Q.M.; Aqel, R.; Alnajjar, M.; Walker, C.; Repetto, E.; Raad, M.; Gomez, F.G.; Nyaruhirira, I.; Michel, J.; Herard, P.; et al. Posttraumatic Pseudomonas aeruginosa Osteomyelitis in Mosul and Gaza: A Retrospective Cohort Study, 2018–2022. Open Forum Infect Dis. 2024, 11, ofae579. [Google Scholar] [CrossRef]
- Moussally, K.; Abu-Sittah, G.; Gomez, F.G.; Fayad, A.A.; Farra, A. Antimicrobial resistance in the ongoing Gaza war: A silent threat. Lancet 2023, 402, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef]
- Playford, E.G.; Craig, J.C.; Iredell, J.R. Carbapenem-resistant Acinetobacter baumannii in intensive care unit patients: Risk factors for acquisition, infection and their consequences. J. Hosp. Infect. 2007, 65, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Montefour, K.; Frieden, J.; Hurst, S.; Helmich, C.; Headley, D.; Martin, M.; Boyle, D.A. Acinetobacter baumannii: An emerging multidrug-resistant pathogen in critical care. Crit. Care Nurse 2008, 28, 15–25. [Google Scholar] [CrossRef]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef]
- Suljagic, V.; Jevtic, M.; Djordjevic, B.; Romic, P.; Ilic, R.; Stankovic, N.; Milovic, N.; Novakovic, M.; Kozarski, J.; Roganovic, Z.; et al. Epidemiology of nosocomial colonization/infection caused by Acinetobacter spp. in patients of six surgical clinics in war and peacetime. Vojn. Pregl. 2011, 68, 661–668. [Google Scholar] [CrossRef]
- Scott, P.; Deye, G.; Srinivasan, A.; Murray, C.; Moran, K.; Hulten, E.; Fishbain, J.; Craft, D.; Riddell, S.; Lindler, L.; et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin. Infect. Dis. 2007, 44, 1577–1584. [Google Scholar] [CrossRef]
- Davis, K.A.; Moran, K.A.; McAllister, C.K.; Gray, P.J. Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg. Infect. Dis. 2005, 11, 1218–1224. [Google Scholar] [CrossRef]
- Tien, H.C.; Battad, A.; Bryce, E.A.; Fuller, J.; Mulvey, M.; Bernard, K.; Brisebois, R.; Doucet, J.J.; Rizoli, S.B.; Fowler, R.; et al. Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers. BMC Infect. Dis. 2007, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Sahli, Z.T.; Bizri, A.R.; Abu-Sittah, G.S. Microbiology and risk factors associated with war-related wound infections in the Middle East. Epidemiol. Infect. 2016, 144, 2848–2857. [Google Scholar] [CrossRef]
- Keen, E.F., 3rd; Murray, C.K.; Robinson, B.J.; Hospenthal, D.R.; Co, E.M.; Aldous, W.K. Changes in the incidences of multidrug-resistant and extensively drug-resistant organisms isolated in a military medical center. Infect Control. Hosp. Epidemiol. 2010, 31, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Hujer, K.M.; Hujer, A.M.; Hulten, E.A.; Bajaksouzian, S.; Adams, J.M.; Donskey, C.J.; Ecker, D.J.; Massire, C.; Eshoo, M.W.; Sampath, R.; et al. Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients Treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 2006, 50, 4114–4123. [Google Scholar] [CrossRef] [PubMed]
- Dau, A.A.; Tloba, S.; Daw, M.A. Characterization of wound infections among patients injured during the 2011 Libyan conflict. East. Mediterr. Health J. 2013, 19, 356–361. [Google Scholar] [CrossRef]
- Rafei, R.; Dabboussi, F.; Hamze, M.; Eveillard, M.; Lemarié, C.; Mallat, H.; Rolain, J.M.; Joly-Guillou, M.L.; Kempf, M. First report of blaNDM-1-producing Acinetobacter baumannii isolated in Lebanon from civilians wounded during the Syrian war. Int. J. Infect. Dis. 2014, 21, 21–23. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Wolf, S.E.; Kauvar, D.S.; Wade, C.E.; Cancio, L.C.; Renz, E.P.; Horvath, E.E.; White, C.E.; Park, M.S.; Wanek, S.; Albrecht, M.A.; et al. Comparison between civilian burns and combat burns from Operation Iraqi Freedom and Operation Enduring Freedom. Ann. Surg. 2006, 243, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Kauvar, D.S.; Wolf, S.E.; Wade, C.E.; Cancio, L.C.; Renz, E.M.; Holcomb, J.B. Burns sustained in combat explosions in Operations Iraqi and Enduring freedom (OIF/OEF explosion burns). Burns 2006, 32, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Azzopardi, E.A.; Azzopardi, E.; Camilleri, L.; Villapalos, J.; Boyce, D.E.; Dziewulski, P.; Dickson, W.A.; Whitaker, I.S. Gram negative wound infection in hospitalised adult burn patients—Systematic review and metanalysis-. PLoS ONE 2014, 9, e95042. [Google Scholar] [CrossRef]
- Mosleh, M.; Dalal, K.; Aljeesh, Y.; Svanström, L. The burden of war-injury in the Palestinian health care sector in Gaza Strip. BMC Int. Health Hum. Rights 2018, 18, 28. [Google Scholar]
- Weintrob, A.C.; Murray, C.K.; Xu, J.; Krauss, M.; Bradley, W.; Warkentien, T.E.; Lloyd, B.A.; Tribble, D.R. Early Infections Complicating the Care of Combat Casualties from Iraq and Afghanistan. Surg. Infect. 2018, 19, 286–297. [Google Scholar] [CrossRef]
- Ford, M.B.; Mende, K.; Kaiser, S.J.; Beckius, M.L.; Lu, D.; Stam, J.; Li, P.; Stewart, L.; Tribble, D.R.; Blyth, D.M. Clinical Characteristics and Resistance Patterns of Pseudomonas aeruginosa Isolated From Combat Casualties. Mil. Med. 2021, 187, 426–434. [Google Scholar] [CrossRef]
- Yun, H.C.; Murray, C.K.; Roop, S.A.; Hospenthal, D.R.; Gourdine, E.; Dooley, D.P. Bacteria recovered from patients admitted to a deployed US military hospital in Baghdad, Iraq. Mil. Med. 2006, 171, 821–825. [Google Scholar] [CrossRef]
- Stolberg, R.S.; Hansen, F.; Porsbo, L.J.; Karstensen, K.T.; Roer, L.; Holzknecht, B.J.; Hansen, K.H.; Schønning, K.; Wang, M.; Justesen, U.S.; et al. Genotypic characterisation of carbapenemase-producing organisms obtained in Denmark from patients associated with the war in Ukraine. J. Glob. Antimicrob. Resist. 2023, 34, 15–17. [Google Scholar] [CrossRef]
- Stein, C.; Zechel, M.; Spott, R.; Pletz, M.W.; Kipp, F. Multidrug-resistant isolates from Ukrainian patients in a German health facility: A genomic surveillance study focusing on antimicrobial resistance and bacterial relatedness. Infection 2023, 51, 1731–1738. [Google Scholar] [CrossRef]
- Nji, E.; Kazibwe, J.; Hambridge, T.; Joko, C.A.; Larbi, A.A.; Damptey, L.A.O.; Nkansa-Gyamfi, N.A.; Stålsby Lundborg, C.; Lien, L.T.Q. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci. Rep. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Biedrzycka, M.; Izdebski, R.; Hryniewicz, W.; Gniadkowski, M.; Żabicka, D. Carbapenemase-Producing Enterobacterales from Patients Arriving from Ukraine in Poland, March 2022–February 2023. Infect. Dis. Ther. 2025, 14, 401–419. [Google Scholar] [CrossRef]
- Abushomar, R.; Zeitoun, M.; Abu Sittah, G.; Abu Fayad, A.; Abbara, A.; El Achi, N.; Elmanama, A. Antimicrobial Resistant Bacteria in Health Care Facilities: Exploring Links With Water, Sanitation, and Hygiene in Gaza, Palestine. Iproceedings 2022, 8, e37246. [Google Scholar] [CrossRef]
- Whitaker, R. Gunshot wounds of the cranium: With special reference to those of the brain. Br. J. Surg. 1915, 3, 708–735. [Google Scholar] [CrossRef]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Jevons, M.P. “Celbenin”-resistant staphylococci. BMJ 1961, 1, 124–125. [Google Scholar] [CrossRef]
- Curry, J.A.; Maguire, J.D.; Fraser, J.; Tribble, D.R.; Deiss, R.G.; Bryan, C.C.; Tisdale, M.D.; Crawford, K.; Ellis, M.; Lalani, T. Prevalence of Staphylococcus aureus Colonization and Risk Factors for Infection Among Military Personnel in a Shipboard Setting. Mil. Med. 2016, 181, 524–529. [Google Scholar] [CrossRef]
- Frickmann, H. Impact of MRSA on the Military Medical Service and Diagnostic Point-of-Care Options for the Field Setting. Eur. J. Microbiol. Immunol. 2018, 8, 31–33. [Google Scholar] [CrossRef]
- Atherton, M.E. Outbreak of methicillin resistant Staphylococcus aureus in a Royal Naval hospital. J. R. Nav. Med Serv. 1986, 72, 135–140. [Google Scholar] [CrossRef]
- Ellis, M.W.; Hospenthal, D.R.; Dooley, D.P.; Gray, P.J.; Murray, C.K. Natural history of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in soldiers. Clin. Infect. Dis. 2004, 39, 971–979. [Google Scholar] [CrossRef]
- M’Aiber, S.; Maamari, K.; Williams, A.; Albakry, Z.; Taher, A.Q.M.; Hossain, F.; Fliti, S.; Repetto, E.; Moussally, K. The challenge of antibiotic resistance in post-war Mosul, Iraq: An analysis of 20 months of microbiological samples from a tertiary orthopaedic care centre. J. Glob. Antimicrob. Resist. 2022, 30, 311–318. [Google Scholar] [CrossRef]
- Roy, S.; Mukherjee, P.; Kundu, S.; Majumder, D.; Raychaudhuri, V.; Choudhury, L. Microbial infections in burn patients. Acute Crit. Care 2024, 39, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Norbury, W.; Herndon, D.N.; Tanksley, J.; Jeschke, M.G.; Finnerty, C.C. Infection in burns. Surg. Infect. 2016, 17, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Crouch, H.K.; Murray, C.K.; Hospenthal, D.R. Development of a deployment infection control course. Mil. Med. 2010, 175, 983–989. [Google Scholar] [CrossRef]
- Landrum, M.L.; Murray, C.K. Ventilator associated pneumonia in a military deployed setting: The impact of an aggressive infection control program. J. Trauma Inj. Infect. Crit. Care 2008, 64, S123–S128, discussion S127-8. [Google Scholar] [CrossRef]
- Hospenthal, D.R.; Murray, C.K.; Andersen, R.C.; Blice, J.P.; Calhoun, J.H.; Cancio, L.C.; Chung, K.K.; Conger, N.G.; Crouch, H.K.; D’Avignon, L.C.; et al. Guidelines for the prevention of infection after combat-related injuries. J. Trauma Inj. Infect. Crit. Care 2008, 64, S211–S220. [Google Scholar] [CrossRef]
- CDC MDRO Containment Strategy. Available online: https://www.cdc.gov/healthcare-associated-infections/php/preventing-mdros/mdro-containment-strategy.html (accessed on 20 January 2025).
- Aanbevelingen Van De Hoge Gezondheidsraad Inzake Preventie, Beheersing En Aanpak Van Patiënten Die Drager Zijn Van Tegen Antibiotica Multiresistente Organismen (MDRO) in Zorginstellingen. Available online: https://www.hgr-css.be/file/download/649e0c62-75ef-4a34-8763-000bd8258876/6ByEnc53CKxhOu7QZmk3wqRsx1pUq8pif2gdKu8E83d.pdf (accessed on 25 February 2025).
- Haut Conseil de la Santé Publique—Actualisation des Recommandations Relatives aux BHRe. Available online: https://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=758 (accessed on 28 February 2025).
- Khawaja, T.; Kirveskari, J.; Johansson, S.; Väisänen, J.; Djupsjöbacka, A.; Nevalainen, A.; Kantele, A. Patients hospitalized abroad as importers of multiresistant bacteria—A cross-sectional study. Clin. Microbiol. Infect. 2017, 23, 673.e1–673.e8. [Google Scholar] [CrossRef] [PubMed]
- Kajova, M.; Khawaja, T.; Kantele, A. European hospitals as source of multidrug-resistant bacteria: Analysis of travellers screened in Finland after hospitalization abroad. J. Travel Med. 2022, 29, taac022. [Google Scholar] [CrossRef]
- DEFENCE MEDICAL SERVICES (DMS) INFECTION PREVENTION AND CONTROL (IPC) POLICY. Available online: https://cgo.mod.uk/media/qxcpchq1/role1-jsp950-9-aa.pdf (accessed on 20 January 2025).
- SH2H-INRS Fiche Prévention de la Transmission des Infections en Milieux de Soins Precautions Standard. Available online: https://www.inrs.fr/media.html?refINRS=ED%206360 (accessed on 20 January 2025).
- SH2H-INRS Fiche Prévention de la Transmission des Infections en Milieux de Soins Precautions Contact. Available online: https://www.inrs.fr/media.html?refINRS=ED%206363 (accessed on 20 January 2025).
- HSCP Actualisation des Recommandations Relatives à la Maitrise de la Diffusion des Bactéries Hautement Résistantes aux Antibiotiques Emergentes (BHRe) Décembre 2019. Available online: https://www.cpias-nouvelle-aquitaine.fr/wp-content/uploads/2024/04/hcspr20191211-actualidesrecommarelativauxbhre.pdf (accessed on 20 January 2025).
- SF2H Guide Pour le Choix des Désinfectants—Janvier 2015. Available online: https://www.sf2h.net/publications/le-choix-des-desinfectants.html (accessed on 20 January 2025).
- Frickmann, H.; Podbielski, A.; Kreikemeyer, B. Resistant Gram-Negative Bacteria and Diagnostic Point-of-Care Options for the Field Setting during Military Operations. BioMed Res. Int. 2018, 2018, 9395420. [Google Scholar] [CrossRef]
- Adler, A.; Navon-Venezia, S.; Moran-Gilad, J.; Marcos, E.; Schwartz, D.; Carmeli, Y. Laboratory and clinical evaluation of screening agar plates for detection of carbapenem-resistant Enterobacteriaceae from surveillance rectal swabs. J. Clin. Microbiol. 2011, 49, 2239–2242. [Google Scholar] [CrossRef]
- Borgundvaag, E.; Faheem, A.; Shafinaz, S.; Armstrong, I.; Coleman, B.; Green, K.; Jayasinghe, K.; Johnstone, J.; Katz, K.; Kohler, P.; et al. Sensitivity of Different Anatomic Sites for Detection and Duration of Colonization with Carbapenemase-Producing Enterobacteriaceae (CPE). Open Forum Infect. Dis. 2017, 4, S140. [Google Scholar] [CrossRef]
- Nato Logistics Handbook, Chapter 16—Medical Support. Available online: https://www.nato.int/docu/logi-en/1997/lo-1610.htm (accessed on 2 February 2025).
- Zurawski, D.V.; Serio, A.W.; Black, C.; Pybus, B.; Akers, K.S.; Deck, D.H.; Johnson, S.; Chattagul, S.; Noble, S.M.; Raynor, M.; et al. A Review of Omadacycline for Potential Utility in the Military Health System for the Treatment of Wound Infections. Mil. Med. 2024, 189, e1353–e1361. [Google Scholar] [CrossRef] [PubMed]
- Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infections. Clin. Microbiol. Rev. 2006, 19, 403–434. [Google Scholar] [CrossRef]
- Army Publishing Directorate. Medical Platoon. Available online: https://armypubs.army.mil/epubs/DR_pubs/DR_a/ARN32336-ATP_4-02.4-000-WEB-1.pdf (accessed on 2 February 2025).
- Army Publishing Directorate. The Medical Company (Role 2). Available online: https://armypubs.army.mil/epubs/DR_pubs/DR_a/ARN36760-ATP_4-02.6-000-WEB-1.pdf (accessed on 2 February 2025).
- Army Publishing Directorate. Theater Hospitalization. Available online: https://armypubs.army.mil/epubs/DR_pubs/DR_a/ARN30125-ATP_4-02.10-000-WEB-1.pdf (accessed on 2 February 2025).
- Causbie, J.M.; Wisniewski, P.; Maves, R.C.; Mount, C.A. Prophylactic antibiotic use for penetrating trauma in prolonged casualty care: A review of the literature and current guidelines. J. Trauma Acute Care Surg. 2024, 97 (Suppl. S1), S126–S137. [Google Scholar] [CrossRef]
- Army Publishing Directorate. Tactical Field Care. Available online: https://books.allogy.com/web/tenant/8/books/b729b76a-1a34-4bf7-b76b-66bb2072b2a7/ (accessed on 8 February 2025).
- Hospenthal, D.R.; Murray, C.K.; Andersen, R.C.; Bell, R.B.; Calhoun, J.H.; Cancio, L.C.; Cho, J.M.; Chung, K.K.; Clasper, J.C.; Colyer, M.H.; et al. Infectious Diseases Society of America; Surgical Infection Society. Guidelines for the prevention of infections associated with combat-related injuries: 2011 update: Endorsed by the Infectious Diseases Society of America and the Surgical Infection Society. J. Trauma Inj. Infect. Crit. Care 2011, 71, S210–S234. [Google Scholar]
- Mérens, A.; Rapp, C.; Delaune, D.; Danis, J.; Berger, F.; Michel, R. Prevention of combat-related infections: Antimicrobial therapy in battlefield and barrier measures in French military medical treatment facilities. Travel Med. Infect. Dis. 2014, 12, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.K.; Roop, S.A.; Hospenthal, D.R.; Dooley, D.P.; Wenner, K.; Hammock, J.; Taufen, N.; Gourdine, E. Bacteriology of war wounds at the time of injury. Mil. Med. 2006, 171, 826–829. [Google Scholar] [CrossRef]
- Keen, E.F., 3rd; Mende, K.; Yun, H.C.; Aldous, W.K.; Wallum, T.E.; Guymon, C.H.; Cole, D.W.; Crouch, H.K.; Griffith, M.E.; Thompson, B.L.; et al. Evaluation of potential environmental contamination sources for the presence of multidrug-resistant bacteria linked to wound infections in combat casualties. Infect. Control Hosp. Epidemiol. 2012, 33, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Larréché, S.; Bousquet, A.; Soler, C.; Mac Nab, C.; de Briel, D.; Delaune, D.; Bigaillon, C.; Pasquier, P.; Dubost, C.; Demoures, T.; et al. Microbiology of French military casualties repatriated from overseas for an open traumatic injury. Med. Et Mal. Infect. 2018, 48, 403–409. [Google Scholar] [CrossRef]
- Griffith, M.E.; Lazarus, D.R.; Mann, P.B.; Boger, J.A.; Hospenthal, D.R.; Murray, C.K. Acinetobacter skin carriage among US army soldiers deployed in Iraq. Infect. Control Hosp. Epidemiol. 2007, 28, 720–722. [Google Scholar] [CrossRef]
- Griffith, M.E.; Ceremuga, J.M.; Ellis, M.W.; Guymon, C.H.; Hospenthal, D.R.; Murray, C.K. Acinetobacter skin colonization of US Army soldiers. Infect. Control Hosp. Epidemiol. 2006, 27, 659–661. [Google Scholar] [CrossRef]
- Griffith, M.E.; Ellis, M.W.; Murray, C.K. Acinetobacter nares colonization of healthy US soldiers. Infect. Control Hosp. Epidemiol. 2006, 27, 787–788. [Google Scholar] [CrossRef] [PubMed]
- Pavey, G.J.; Formby, P.M.; Hoyt, B.W.; Wagner, S.C.; Forsberg, J.A.; Potter, B.K. Intrawound antibiotic powder decreases frequency of deep infection and severity of heterotopic ossification in combat lower extremity amputations. Clin. Orthop. Relat. Res. 2018, 477, 802–810. [Google Scholar] [CrossRef]
- TerBeek, B.R.; Loos, P.E.; Pekari, T.B.; Tennent, D.J. Efficacy of vancomycin powder in mitigating infection of open penetrating trauma wounds on the battlefield: An evidence-based review. J. Spéc. Oper. Med. 2022, 22, 76–80. [Google Scholar] [CrossRef]
- Murray, C.K. Field Wound Care: Prophylactic Antibiotics. Wilderness Environ. Med. 2017, 28, S90–S102. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; De Angelis, G.; Cataldo, M.A.; Mantengoli, E.; Spanu, T.; Pan, A.; Corti, G.; Radice, A.; Stolzuoli, L.; Antinori, S.; et al. Antibiotic usage and risk of colonization and infection with antibiotic-resistant bacteria: A hospital population-based study. Antimicrob. Agents Chemother. 2009, 53, 4264–4269. [Google Scholar] [CrossRef]
- Stevens, V.; Dumyati, G.; Fine, L.S.; Fisher, S.G.; van Wijngaarden, E. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin. Infect. Dis. 2011, 53, 42–48. [Google Scholar] [CrossRef]
- Bhalodi, A.A.; van Engelen, T.S.R.; Virk, H.S.; Wiersinga, W.J. Impact of antimicrobial therapy on the gut microbiome. J. Antimicrob. Chemother. 2019, 74 (Suppl. S1), i6–i15. [Google Scholar] [CrossRef] [PubMed]
- Francino, M.P. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Front. Microbiol. 2016, 6, 1543. [Google Scholar] [CrossRef]
- Doan, T.; Liu, Z.; Sié, A.; Dah, C.; Bountogo, M.; Ouattara, M.; Coulibaly, B.; Kiemde, D.; Zonou, G.; Nebie, E.; et al. Gut Microbiome Diversity and Antimicrobial Resistance After a Single Dose of Oral Azithromycin in Children: A Randomized Placebo-Controlled Trial. Am. J. Trop. Med. Hyg. 2024, 110, 291–294. [Google Scholar] [CrossRef]
- Barsoumian, A.E.; Solberg, S.L.; Hanhurst, A.S.; Roth, A.L.; Funari, T.S.; Cruz-Fehr, M.C.E.; Crouch, H.; Florez, C.; Murray, C.K. Status Update on Infection Prevention and Control at Deployed Medical Treatment Facilities. Mil. Med. 2020, 185, 451–460. [Google Scholar] [CrossRef]
- Gelman, D.; Eisenkraft, A.; Chanishvili, N.; Nachman, D.; Coppenhagem Glazer, S.; Hazan, R. The history and promising future of phage therapy in the military service. J. Trauma Acute Care Surg. 2018, 85, S18–S26. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; De Soir, S.; Glonti, T.; Spiessens, A.; Vanden Berghe, E.; Green, S.; et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: A multicentre, multinational, retrospective observational study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef] [PubMed]
Role | Level of Care | Capability |
---|---|---|
Role 1 | Unit-level care (Immediate care, Field level): Basic first aid and trauma care provided by unit-level medics or first responders. | Immediate first aid Triage Basic trauma care Stabilization for evacuation to higher roles |
Role 2 | Advanced medical care: Care provided at forward operating bases (e.g., Battalion Aid Station). Involves stabilization and treatment beyond basic care. | Advanced trauma management Initial resuscitation Limited diagnostic and surgical capabilities (basic surgery for non-complicated injuries) Care for moderate trauma cases requiring immediate attention Administration of antibiotics Stabilization for evacuation to higher roles |
Role 3 | Field or regional hospitals: Comprehensive medical care provided at rear operational areas with better facilities. | Capabilities to handle serious combat injuries (extensive wound care and trauma surgery) Intensive care Blood transfusions Advanced diagnostic capabilities Specialist consultations Stabilization for evacuation to Role 4 |
Role 4 | Hospital care (e.g., Military Hospitals, Civilian Hospitals): Full range of medical services provided in a hospital environment. | Advanced medical treatment and diagnostics Major surgeries and specialized care Long-term care, rehabilitation and reintegration into military or civilian life Care for non-combat-related injuries or conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costescu Strachinaru, D.I.; Ragot, C.; Stoefs, A.; Donat, N.; François, P.-M.; Vanbrabant, P.; Verroken, A.; Janvier, F.; Soentjens, P. Management and Prevention of Multidrug-Resistant Bacteria in War Casualties. Trop. Med. Infect. Dis. 2025, 10, 128. https://doi.org/10.3390/tropicalmed10050128
Costescu Strachinaru DI, Ragot C, Stoefs A, Donat N, François P-M, Vanbrabant P, Verroken A, Janvier F, Soentjens P. Management and Prevention of Multidrug-Resistant Bacteria in War Casualties. Tropical Medicine and Infectious Disease. 2025; 10(5):128. https://doi.org/10.3390/tropicalmed10050128
Chicago/Turabian StyleCostescu Strachinaru, Diana Isabela, Céline Ragot, Anke Stoefs, Nicolas Donat, Pierre-Michel François, Peter Vanbrabant, Alexia Verroken, Frédéric Janvier, and Patrick Soentjens. 2025. "Management and Prevention of Multidrug-Resistant Bacteria in War Casualties" Tropical Medicine and Infectious Disease 10, no. 5: 128. https://doi.org/10.3390/tropicalmed10050128
APA StyleCostescu Strachinaru, D. I., Ragot, C., Stoefs, A., Donat, N., François, P.-M., Vanbrabant, P., Verroken, A., Janvier, F., & Soentjens, P. (2025). Management and Prevention of Multidrug-Resistant Bacteria in War Casualties. Tropical Medicine and Infectious Disease, 10(5), 128. https://doi.org/10.3390/tropicalmed10050128