A Narrative Review on the Prevalence of Plasmodium falciparum Resistance Mutations to Antimalarial Drugs in Rwanda
Abstract
:1. Introduction
2. Study Selection Method
3. Malaria in Rwanda
4. Current Antimalarial Drug Therapies
5. Prevalence of Resistance Marker in P. falciparum in Rwanda
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SP | Sulfadoxine-pyrimethamine |
ACTs | Artemisinin-based combination therapies |
CQ | Chloroquine |
AQ | Amodiaquine |
SNPs | Single nucleotide polymorphisms |
pfk13 | P. falciparum Kelch-13 |
pfmdr1 | P. falciparum multidrug resistance |
IPTp-SP | Intermittent preventive therapy for pregnant women |
pfcrt K76T | P. falciparum chloroquine resistance transporter |
ITNs | Insecticide-treated nets |
AL | Artemether-lumefantrine |
References
- Venkatesan, P. WHO world malaria report 2024. Lancet Microbe 2025, 101073. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and Disease. Cell 2016, 167, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Fidock, D.A.; Nomura, T.; Talley, A.K.; Cooper, R.A.; Dzekunov, S.M.; Ferdig, M.T.; Ursos, L.M.; Sidhu, A.B.; Naude, B.; Deitsch, K.W.; et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 2000, 6, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Morry, M.J.; Biggs, B.A.; Cross, G.A.; Foote, S.J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1988, 85, 9109–9113. [Google Scholar] [CrossRef]
- Triglia, T.; Cowman, A.F. The mechanism of resistance to sulfa drugs in Plasmodium falciparum. Drug Resist. Updates 1999, 2, 15–19. [Google Scholar] [CrossRef]
- Pulcini, S.; Staines, H.M.; Lee, A.H.; Shafik, S.H.; Bouyer, G.; Moore, C.M.; Daley, D.A.; Hoke, M.J.; Altenhofen, L.M.; Painter, H.J.; et al. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities. Sci. Rep. 2015, 5, 14552. [Google Scholar] [CrossRef]
- Goel, N.; Dhiman, K.; Kalidas, N.; Mukhopadhyay, A.; Ashish, F.; Bhattacharjee, S. Plasmodium falciparum Kelch13 and its artemisinin-resistant mutants assemble as hexamers in solution: A SAXS data-driven modelling study. FEBS J. 2022, 289, 4935–4962. [Google Scholar] [CrossRef]
- Phompradit, P.; Wisedpanichkij, R.; Muhamad, P.; Chaijaroenkul, W.; Na-Bangchang, K. Molecular analysis of pfatp6 and pfmdr1 polymorphisms and their association with in vitro sensitivity in Plasmodium falciparum isolates from the Thai-Myanmar border. Acta Trop. 2011, 120, 130–135. [Google Scholar] [CrossRef]
- Idowu, A.O.; Oyibo, W.A.; Bhattacharyya, S.; Khubbar, M.; Mendie, U.E.; Bumah, V.V.; Black, C.; Igietseme, J.; Azenabor, A.A. Rare mutations in Pfmdr1 gene of Plasmodium falciparum detected in clinical isolates from patients treated with anti-malarial drug in Nigeria. Malar. J. 2019, 18, 319. [Google Scholar] [CrossRef]
- Eyase, F.L.; Akala, H.M.; Ingasia, L.; Cheruiyot, A.; Omondi, A.; Okudo, C.; Juma, D.; Yeda, R.; Andagalu, B.; Wanja, E.; et al. The role of Pfmdr1 and Pfcrt in changing chloroquine, amodiaquine, mefloquine and lumefantrine susceptibility in western-Kenya P. falciparum samples during 2008–2011. PLoS ONE 2013, 8, e64299. [Google Scholar] [CrossRef]
- Duraisingh, M.T.; Jones, P.; Sambou, I.; von Seidlein, L.; Pinder, M.; Warhurst, D.C. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol. Biochem. Parasitol. 2000, 108, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, A.B.; Verdier-Pinard, D.; Fidock, D.A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 2002, 298, 210–213. [Google Scholar] [CrossRef]
- Kateera, F.; Nsobya, S.L.; Tukwasibwe, S.; Mens, P.F.; Hakizimana, E.; Grobusch, M.P.; Mutesa, L.; Kumar, N.; van Vugt, M. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: A cross sectional survey at two sites of different malaria transmission intensities in Rwanda. Malar. J. 2016, 15, 237. [Google Scholar] [CrossRef] [PubMed]
- Kateera, F.; Nsobya, S.L.; Tukwasibwe, S.; Hakizimana, E.; Mutesa, L.; Mens, P.F.; Grobusch, M.P.; van Vugt, M.; Kumar, N. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop. 2016, 164, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Republic of Rwanda, Ministry of Health, Rwanda Biomedical Centre. Rwanda Malaria Strategic Plan 2020–2024. Available online: https://mesamalaria.org/wp-content/uploads/2024/07/RWANDA-MALARIA-STRATEGIC-PLAN_2020-2024.pdf (accessed on 22 March 2025).
- Ashley, E.A.; Dhorda, M.; Fairhurst, R.M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Anderson, J.M.; Mao, S.; Sam, B.; et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2014, 371, 411–423. [Google Scholar] [CrossRef]
- Hawkes, M.; Conroy, A.L.; Opoka, R.O.; Namasopo, S.; Zhong, K.; Liles, W.C.; John, C.C.; Kain, K.C. Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, Uganda, 2011–2013. Emerg. Infect. Dis. 2015, 21, 1237–1239. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2009, 361, 455–467. [Google Scholar] [CrossRef]
- Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014, 505, 50–55. [Google Scholar] [CrossRef]
- Malaria, G.E.N.P.f.C.P. Genomic epidemiology of artemisinin resistant malaria. eLife 2016, 5, e08714. [Google Scholar] [CrossRef]
- Bergmann, C.; van Loon, W.; Habarugira, F.; Tacoli, C.; Jager, J.C.; Savelsberg, D.; Nshimiyimana, F.; Rwamugema, E.; Mbarushimana, D.; Ndoli, J.; et al. Increase in Kelch 13 Polymorphisms in Plasmodium falciparum, Southern Rwanda. Emerg. Infect. Dis. 2021, 27, 294–296. [Google Scholar] [CrossRef]
- Uwimana, A.; Umulisa, N.; Venkatesan, M.; Svigel, S.S.; Zhou, Z.; Munyaneza, T.; Habimana, R.M.; Rucogoza, A.; Moriarty, L.F.; Sandford, R.; et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 2021, 21, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Straimer, J.; Gandhi, P.; Renner, K.C.; Schmitt, E.K. High Prevalence of Plasmodium falciparum K13 Mutations in Rwanda Is Associated With Slow Parasite Clearance After Treatment With Artemether-Lumefantrine. J. Infect. Dis. 2022, 225, 1411–1414. [Google Scholar] [CrossRef]
- Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; et al. Evidence of Artemisinin-Resistant Malaria in Africa. N. Engl. J. Med. 2021, 385, 1163–1171. [Google Scholar] [CrossRef]
- Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.B.; Munguti, K.; et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 2020, 26, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Tumwebaze, P.K.; Conrad, M.D.; Okitwi, M.; Orena, S.; Byaruhanga, O.; Katairo, T.; Legac, J.; Garg, S.; Giesbrecht, D.; Smith, S.R.; et al. Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat. Commun. 2022, 13, 6353. [Google Scholar] [CrossRef]
- Kublin, J.G.; Cortese, J.F.; Njunju, E.M.; Mukadam, R.A.; Wirima, J.J.; Kazembe, P.N.; Djimde, A.A.; Kouriba, B.; Taylor, T.E.; Plowe, C.V. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J. Infect. Dis. 2003, 187, 1870–1875. [Google Scholar] [CrossRef] [PubMed]
- Laufer, M.K.; Thesing, P.C.; Eddington, N.D.; Masonga, R.; Dzinjalamala, F.K.; Takala, S.L.; Taylor, T.E.; Plowe, C.V. Return of chloroquine antimalarial efficacy in Malawi. N. Engl. J. Med. 2006, 355, 1959–1966. [Google Scholar] [CrossRef]
- Plowe, C.V.; Roper, C.; Barnwell, J.W.; Happi, C.T.; Joshi, H.H.; Mbacham, W.; Meshnick, S.R.; Mugittu, K.; Naidoo, I.; Price, R.N.; et al. World Antimalarial Resistance Network (WARN) III: Molecular markers for drug resistant malaria. Malar. J. 2007, 6, 121. [Google Scholar] [CrossRef]
- Mandt, R.E.K.; Lafuente-Monasterio, M.J.; Sakata-Kato, T.; Luth, M.R.; Segura, D.; Pablos-Tanarro, A.; Viera, S.; Magan, N.; Ottilie, S.; Winzeler, E.A.; et al. In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Sci. Transl. Med. 2019, 11, eaav1636. [Google Scholar] [CrossRef]
- Karema, C.; Wen, S.; Sidibe, A.; Smith, J.L.; Gosling, R.; Hakizimana, E.; Tanner, M.; Noor, A.M.; Tatarsky, A. History of malaria control in Rwanda: Implications for future elimination in Rwanda and other malaria-endemic countries. Malar. J. 2020, 19, 356. [Google Scholar] [CrossRef]
- Zeile, I.; Gahutu, J.B.; Shyirambere, C.; Steininger, C.; Musemakweri, A.; Sebahungu, F.; Karema, C.; Harms, G.; Eggelte, T.A.; Mockenhaupt, F.P. Molecular markers of Plasmodium falciparum drug resistance in southern highland Rwanda. Acta Trop. 2012, 121, 50–54. [Google Scholar] [CrossRef]
- Karema, C.; Imwong, M.; Fanello, C.I.; Stepniewska, K.; Uwimana, A.; Nakeesathit, S.; Dondorp, A.; Day, N.P.; White, N.J. Molecular correlates of high-level antifolate resistance in Rwandan children with Plasmodium falciparum malaria. Antimicrob. Agents Chemother. 2010, 54, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Fanello, C.I.; Karema, C.; Avellino, P.; Bancone, G.; Uwimana, A.; Lee, S.J.; d’Alessandro, U.; Modiano, D. High risk of severe anaemia after chlorproguanil-dapsone+artesunate antimalarial treatment in patients with G6PD (A-) deficiency. PLoS ONE 2008, 3, e4031. [Google Scholar] [CrossRef]
- Alruwaili, M.; Uwimana, A.; Sethi, R.; Murindahabi, M.; Piercefield, E.; Umulisa, N.; Abram, A.; Eckert, E.; Munguti, K.; Mbituyumuremyi, A.; et al. Peripheral and Placental Prevalence of Sulfadoxine-Pyrimethamine Resistance Markers in Plasmodium falciparum among Pregnant Women in Southern Province, Rwanda. Am. J. Trop. Med. Hyg. 2023, 109, 1057–1062. [Google Scholar] [CrossRef]
- van Loon, W.; Schallenberg, E.; Igiraneza, C.; Habarugira, F.; Mbarushimana, D.; Nshimiyimana, F.; Ngarambe, C.; Ntihumbya, J.B.; Ndoli, J.M.; Mockenhaupt, F.P. Escalating Plasmodium falciparum K13 marker prevalence indicative of artemisinin resistance in southern Rwanda. Antimicrob. Agents Chemother. 2024, 68, e0129923. [Google Scholar] [CrossRef]
- Venkatesan, M.; Gadalla, N.B.; Stepniewska, K.; Dahal, P.; Nsanzabana, C.; Moriera, C.; Price, R.N.; Martensson, A.; Rosenthal, P.J.; Dorsey, G.; et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: Parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 2014, 91, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Tacoli, C.; Gai, P.P.; Bayingana, C.; Sifft, K.; Geus, D.; Ndoli, J.; Sendegeya, A.; Gahutu, J.B.; Mockenhaupt, F.P. Artemisinin Resistance-Associated K13 Polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010-2015. Am. J. Trop. Med. Hyg. 2016, 95, 1090–1093. [Google Scholar] [CrossRef]
- Okell, L.C.; Griffin, J.T.; Roper, C. Mapping sulphadoxine-pyrimethamine-resistant Plasmodium falciparum malaria in infected humans and in parasite populations in Africa. Sci. Rep. 2017, 7, 7389. [Google Scholar] [CrossRef]
- Deutsch-Feldman, M.; Aydemir, O.; Carrel, M.; Brazeau, N.F.; Bhatt, S.; Bailey, J.A.; Kashamuka, M.; Tshefu, A.K.; Taylor, S.M.; Juliano, J.J.; et al. The changing landscape of Plasmodium falciparum drug resistance in the Democratic Republic of Congo. BMC Infect. Dis. 2019, 19, 872. [Google Scholar] [CrossRef]
- Mbogo, G.W.; Nankoberanyi, S.; Tukwasibwe, S.; Baliraine, F.N.; Nsobya, S.L.; Conrad, M.D.; Arinaitwe, E.; Kamya, M.; Tappero, J.; Staedke, S.G.; et al. Temporal changes in prevalence of molecular markers mediating antimalarial drug resistance in a high malaria transmission setting in Uganda. Am. J. Trop. Med. Hyg. 2014, 91, 54–61. [Google Scholar] [CrossRef]
- Matondo, S.I.; Temba, G.S.; Kavishe, A.A.; Kauki, J.S.; Kalinga, A.; van Zwetselaar, M.; Reyburn, H.; Kavishe, R.A. High levels of sulphadoxine-pyrimethamine resistance Pfdhfr-Pfdhps quintuple mutations: A cross sectional survey of six regions in Tanzania. Malar. J. 2014, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Hailemeskel, E.; Kassa, M.; Taddesse, G.; Mohammed, H.; Woyessa, A.; Tasew, G.; Sleshi, M.; Kebede, A.; Petros, B. Prevalence of sulfadoxine-pyrimethamine resistance-associated mutations in dhfr and dhps genes of Plasmodium falciparum three years after SP withdrawal in Bahir Dar, Northwest Ethiopia. Acta Trop. 2013, 128, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Iyer, J.K.; Milhous, W.K.; Cortese, J.F.; Kublin, J.G.; Plowe, C.V. Plasmodium falciparum cross-resistance between trimethoprim and pyrimethamine. Lancet 2001, 358, 1066–1067. [Google Scholar] [CrossRef] [PubMed]
- Duraisingh, M.T.; Cowman, A.F. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop. 2005, 94, 181–190. [Google Scholar] [CrossRef]
- Mohammed, A.; Ndaro, A.; Kalinga, A.; Manjurano, A.; Mosha, J.F.; Mosha, D.F.; van Zwetselaar, M.; Koenderink, J.B.; Mosha, F.W.; Alifrangis, M.; et al. Trends in chloroquine resistance marker, Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar. J. 2013, 12, 415. [Google Scholar] [CrossRef]
- Malmberg, M.; Ngasala, B.; Ferreira, P.E.; Larsson, E.; Jovel, I.; Hjalmarsson, A.; Petzold, M.; Premji, Z.; Gil, J.P.; Bjorkman, A.; et al. Temporal trends of molecular markers associated with artemether-lumefantrine tolerance/resistance in Bagamoyo district, Tanzania. Malar. J. 2013, 12, 103. [Google Scholar] [CrossRef]
- Sisowath, C.; Petersen, I.; Veiga, M.I.; Martensson, A.; Premji, Z.; Bjorkman, A.; Fidock, D.A.; Gil, J.P. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J. Infect. Dis. 2009, 199, 750–757. [Google Scholar] [CrossRef]
- Okombo, J.; Kamau, A.W.; Marsh, K.; Sutherland, C.J.; Ochola-Oyier, L.I. Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 152–163. [Google Scholar] [CrossRef]
- Henriques, G.; Hallett, R.L.; Beshir, K.B.; Gadalla, N.B.; Johnson, R.E.; Burrow, R.; van Schalkwyk, D.A.; Sawa, P.; Omar, S.A.; Clark, T.G.; et al. Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT. J. Infect. Dis. 2014, 210, 2001–2008. [Google Scholar] [CrossRef]
- Mwai, L.; Kiara, S.M.; Abdirahman, A.; Pole, L.; Rippert, A.; Diriye, A.; Bull, P.; Marsh, K.; Borrmann, S.; Nzila, A. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1. Antimicrob. Agents Chemother. 2009, 53, 5069–5073. [Google Scholar] [CrossRef]
Eastern and Western Provinces | Southern Provinces | |||||||
---|---|---|---|---|---|---|---|---|
2005/6 (N = 725) [33] | 2010 (N = 104) [32] | 2015 (N = 399) [14] | 2016/18 (N = 148) [35] | |||||
Gene | SNP | Rukara, (%) | Mashesha, (%) | Huye, n (%) | Mubuga, n (%) | Ruhuha, n (%) | Huye, n (%) | Kamonyi, n (%) |
pfdhfr | I164L | 11.4 | ND2 | ND | ND | 19 (10.2) | ND | ND |
A16V | ND * | |||||||
N51I | 103 (99) | 185 (99.5) | 190 (100) | 44 (96) | 97 (98) | |||
C59R | 78 (75) | 184 (96.3) | 160 (84.2) | 42 (89) | 95 (94) | |||
S108N | 103 (99) | 189 (100) | 190 (100) | 46 (98) | 101 (100) | |||
pfdhps | S436A | (1) | 32 (74) | 64 (69) | ||||
A437G | 97 | 80 | 98 (96) | 169 (93.9) | 169 (91.9) | 39 (91) | 83 (89) | |
K450E | 56.5 | 47 | 97 (94) | 170 (94.4) | 173 (94.5) | 39 (91) | 84 (89) | |
A581G | 60 | 29 | 64 (63) | 39 (21.7) | 49 (26.8) | 12(31) | 36 (41) | |
A613S | ND * | ND | ND | ND | ND | 2 (5) | 2 (2) | |
Triple pfdhfr | N51I-C59R-S108N | 83.9 | 49.3 | 83.90% | 179 (96.2) | 160 (84.2) | 40 (85) | 91 (90) |
Double pfdhps | A437G-K540E | 36.20% | 166 (92.2) | 168 (91.8) | 39 (83) | 83 (82) | ||
Quintuple | pfdhfr N51I, C59R, S108N-pfdhps A437G, K540E | 31.3 | 23.1 | 20 (19.2) | 153 (74.6) | 143 (73.7) | 35 (74) | 76 (75) |
Sextuple | pfdhfr N51I, C59R, S108N-pfdhps A437G, K540E, A581G | 46.5 | 14.2 | 52 (50) | 31 (15.1) | 42 (21.7) | 11 (23) | 30 (30) |
pfcrt | K76T | 77 (74) | 86 (43.7) | 105 (55) | ||||
pfmdr1 | N86Y | 40 (38) | 33 (43.7) | 40 (21.5) | ||||
Y184F | 56 (52) | 100 (57.1) | 107 (62.6) | |||||
S1034C | 3 (2.9) | ND | ND | |||||
N1042C | 3 (2.9) | ND | ND | |||||
D1246Y | 13 (12) | 35 (17.8) | 37 (20.8) |
Year | Resistance Marker | Prevalence n, (Sample Size) | References |
---|---|---|---|
2010 | None | ND | [38] |
2014 | V555A, A626S | 2 (81) | [38] |
2015 | P574L, D648H, A675V | 3 (66) | [38] |
2018 | R561H, P574L, C469F | 36, 2, 3 (254) | [22] |
2019 | R561H, P574L, C469F | 16, 1, 3 (73) | [23] |
2023 | R561H, A675V, C469F | 19, 12, 6 (212) | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruwaili, M.; Elderdery, A.; Manni, E.; Mills, J. A Narrative Review on the Prevalence of Plasmodium falciparum Resistance Mutations to Antimalarial Drugs in Rwanda. Trop. Med. Infect. Dis. 2025, 10, 89. https://doi.org/10.3390/tropicalmed10040089
Alruwaili M, Elderdery A, Manni E, Mills J. A Narrative Review on the Prevalence of Plasmodium falciparum Resistance Mutations to Antimalarial Drugs in Rwanda. Tropical Medicine and Infectious Disease. 2025; 10(4):89. https://doi.org/10.3390/tropicalmed10040089
Chicago/Turabian StyleAlruwaili, Muharib, Abozer Elderdery, Emad Manni, and Jeremy Mills. 2025. "A Narrative Review on the Prevalence of Plasmodium falciparum Resistance Mutations to Antimalarial Drugs in Rwanda" Tropical Medicine and Infectious Disease 10, no. 4: 89. https://doi.org/10.3390/tropicalmed10040089
APA StyleAlruwaili, M., Elderdery, A., Manni, E., & Mills, J. (2025). A Narrative Review on the Prevalence of Plasmodium falciparum Resistance Mutations to Antimalarial Drugs in Rwanda. Tropical Medicine and Infectious Disease, 10(4), 89. https://doi.org/10.3390/tropicalmed10040089