Using a Machine Learning Approach to Predict Snakebite Envenoming Outcomes Among Patients Attending the Snakebite Treatment and Research Hospital in Kaltungo, Northeastern Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Differences in Patient Characteristics by Treatment Outcome
3.2. Logistic Regression Analysis
3.3. XGBoost Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habib, A.G. Public health aspects of snakebite care in West Africa: Perspectives from Nigeria. J. Venom. Anim. Toxins Incl. Trop. Dis. 2013, 19, 27. [Google Scholar] [CrossRef]
- Gutiérrez, J.M. Snakebite envenomation as a neglected tropical disease: New impetus for confronting an old scourge. In Handbook of Venoms and Toxins of Reptiles; CRC Press: Boca Raton, FL, USA, 2021; pp. 471–484. [Google Scholar]
- Chippaux, J.P.; Massougbodji, A.; Habib, A.G. The WHO strategy for prevention and control of snakebite envenoming: A sub-Saharan Africa plan. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e20190083. [Google Scholar] [CrossRef] [PubMed]
- Onuaguluchi, G.O. Clinical observations on snakebite in Wukari, Nigeria. Trans. R. Soc. Trop. Med. Hyg. 1960, 54, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Warrell, D.; Arnett, C. The importance of bites by the saw-scaled or carpet viper (Echis carinatus): Epidemiological studies in Nigeria and a review of the world literature. Acta Tropica 1976, 33, 307–341. [Google Scholar] [PubMed]
- Pugh, R.N.H.; Theakston, R.D.G. Incidence and Mortality of Snake Bite in Savanna Nigeria. Lancet 1980, 316, 1181–1183. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Maduwage, K.; Iliyasu, G.; Habib, A. Snakebite envenoming in different national contexts: Costa Rica, Sri Lanka, and Nigeria. Toxicon X 2021, 9–10, 100066. [Google Scholar] [CrossRef]
- Meyer, W.P.; Habib, A.G.; Onayade, A.A.; Yakubu, A.; Smith, D.C.; Nasidi, A.; Daudu, I.J.; Warrell, D.A.; Theakston, R.D. First clinical experiences with a new ovine Fab Echis ocellatus snake bite antivenom in Nigeria: Randomized comparative trial with Institute Pasteur Serum (Ipser) Africa antivenom. Am. J. Trop. Med. Hyg. 1997, 56, 291–300. [Google Scholar] [CrossRef]
- Warrell, D.A. Snake bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
- Iliyasu, G.; Dayyab, F.M.; Michael, G.C.; Hamza, M.; Habib, M.A.; Gutiérrez, J.M.; Habib, A.G. Case fatality rate and burden of snakebite envenoming in children—A systematic review and meta-analysis. Toxicon 2023, 234, 107299. [Google Scholar] [CrossRef]
- Abdullahi, S.A.; Habib, A.G.; Hussaini, N. Control of snakebite envenoming: A mathematical modeling study. PLoS Negl. Trop. Dis. 2021, 15, e0009711. [Google Scholar] [CrossRef]
- Martín, G.; Erinjery, J.J.; Ediriweera, D.; de Silva, H.J.; Lalloo, D.G.; Iwamura, T.; Murray, K.A. A mechanistic model of snakebite as a zoonosis: Envenoming incidence is driven by snake ecology, socioeconomics and its impacts on snakes. PLoS Negl. Trop. Dis. 2022, 16, e0009867. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, B.M.; Warrell, D.A.; Davidson, N.M.; Ormerod, L.D.; Reid, H.A. Immunodiagnosis of Snake Bite. Br. Med. J. 1974, 4, 743–745. [Google Scholar] [CrossRef]
- Ayuba, J.S.; Abdullahi, M.; Iliya, P.B. Modeling the Impacts of Diagnosis and Treatment of Snakebite Envenoming Victims with Anti-Snake Venom in a Community. Int. J. Dev. Math. 2024, 1, 38–59. [Google Scholar]
- Althammer, A.; Prückner, S.; Gehring, G.C.; Lieftüchter, V.; Trentzsch, H.; Hoffmann, F. Systemic review of age brackets in pediatric emergency medicine literature and the development of a universal age classification for pediatric emergency patients—The Munich Age Classification System (MACS). BMC Emerg. Med. 2023, 23, 77. [Google Scholar] [CrossRef] [PubMed]
- Montomoli, J.; Romeo, L.; Moccia, S.; Bernardini, M.; Migliorelli, L.; Berardini, D.; Donati, A.; Carsetti, A.; Bocci, M.G.; Garcia, P.D.W.; et al. Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients. J. Intensive Med. 2021, 1, 110–116. [Google Scholar] [CrossRef]
- Zheng, J.; Li, J.; Zhang, Z.; Yu, Y.; Tan, J.; Liu, Y.; Gong, J.; Wang, T.; Wu, X.; Guo, Z. Clinical Data based XGBoost Algorithm for infection risk prediction of patients with decompensated cirrhosis: A 10-year (2012–2021) Multicenter Retrospective Case-control study. BMC Gastroenterol. 2023, 23, 310. [Google Scholar] [CrossRef]
- Chang, W.; Liu, Y.; Xiao, Y.; Yuan, X.; Xu, X.; Zhang, S.; Zhou, S. A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data. Diagnostics 2019, 9, 178. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar]
- Akani, G.C.; Ebere, N.; Franco, D.; Eniang, E.A.; Petrozzi, F.; Politano, E.; Luiselli, L. Correlation between annual activity patterns of venomous snakes and rural people in the Niger Delta, southern Nigeria. J. Venom. Anim. Toxins Incl. Trop. Dis. 2013, 19, 2. [Google Scholar] [CrossRef]
- Chippaux, J.P. Estimate of the burden of snakebites in sub-Saharan Africa: A meta-analytic approach. Toxicon 2011, 57, 586–599. [Google Scholar] [CrossRef]
- Chippaux, J.P. Incidence and mortality due to snakebite in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005662. [Google Scholar] [CrossRef] [PubMed]
- Iliyasu, G.; Dajel, T.B.; Abubakar, S.B.; Azi, N.A.; Danamarya, N.M.; Obateru, O.A.; Dayyab, A.M.; Hamza, M.; Alabi, O.A.; Habib, A.G. Comparison of snakebite in children and adults in Nigeria. Toxicon 2023, 228, 107128. [Google Scholar] [CrossRef]
- Rai, A.; Chettri, M.; Dewan, S.; Khandelwal, B.; Chettri, B. Epidemiological study of snakebite cases in Sikkim: Risk modeling with regard to the habitat suitability of common venomous snakes. PLoS Negl. Trop. Dis. 2021, 15, e0009800. [Google Scholar] [CrossRef] [PubMed]
- Nimzing, T.; Arigbede, Y.A.; Muhammad, I. Examination of snakebite prevalence and factors predispose to bite in langtang north, plateau state, nigeria. Fudma J. Sci. 2022, 6, 130–137. [Google Scholar] [CrossRef]
- Habib, A.G.; Abubakar, S.B. Factors affecting snakebite mortality in north-eastern Nigeria. Int. Health 2011, 3, 50–55. [Google Scholar] [CrossRef]
- Mustapha, S.K. Snake Bite in Gombe. Highl. Med. Res. J. 2003, 1, 22–27. [Google Scholar] [CrossRef]
- Halliru, N.; Badamasi, M.M.; Tudunwada, I.Y.; Dajel, T.B.; Abubakar, S.B.; Hamza, A.S.; Oluwashola, S.B.; Nalado, N.K.; Dahiru, M.; Na’abdu, I.; et al. Epidemiologic and spatiotemporal study on access to snakebite care in Northern Nigeria. Toxin Rev. 2023, 42, 537–547. [Google Scholar] [CrossRef]
- Yunanto, R.; Sulistyorini, L. Snakebite Cases in Agricultural Area of Jember: A Descriptive Study of Snakebite Victims at Two Public Hospitals of Jember. J. Kesehat. Dr Soebandi 2021, 9, 106–114. [Google Scholar] [CrossRef]
- Mise, Y.F.; Lira-da-Silva, R.M.; Carvalho, F.M. Fatal Snakebite Envenoming and Agricultural Work in Brazil: A Case-Control Study. Am. J. Trop. Med. Hyg. 2019, 100, 150–154. [Google Scholar] [CrossRef]
- Francis, M.F.; Vianney, S.J.M.; Heitz-Tokpa, K.; Kreppel, K. Risks of snakebite and challenges to seeking and providing treatment for agro-pastoral communities in Tanzania. PLoS ONE 2023, 18, e0280836. [Google Scholar] [CrossRef]
- Arias-Rodriguez, J.; Maria Gutierrez, J. Circumstances and Consequences of Snakebite Envenomings: A Qualitative Study in South-Eastern Costa Rica. Toxins 2020, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Adeyi, A.O.; Adeyemi, S.O.; Effiong, E.O.P.; Ajisebiola, B.S.; Adeyi, O.E.; James, A.S. Moringa oleifera Extract Extenuates Echis ocellatus Venom-Induced Toxicities, Histopathological Impairments and Inflammation via Enhancement of Nrf2 Expression in Rats. Pathophysiology 2021, 28, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.; Ruha, A.M.; Wolk, B.; Caravati, M.; Brent, J.; Campleman, S. When It Comes to Snakebites, Kids Are Little Adults: A Comparison of Adults and Children with Rattlesnake Bites. J. Med. Toxicol. 2020, 16, 444–451. [Google Scholar] [CrossRef]
- Silva, A.; Hlusicka, J.; Siribaddana, N.; Waiddyanatha, S.; Pilapitiya, S.; Weerawansa, P.; Lokunarangoda, N.; Thalgaspitiya, S.; Siribaddana, S.; Isbister, G.K. Time delays in treatment of snakebite patients in rural Sri Lanka and the need for rapid diagnostic tests. PLoS Negl. Trop. Dis. 2020, 14, e0008914. [Google Scholar] [CrossRef] [PubMed]
- Anderson, V.E.; Gerardo, C.J.; Rapp-Olsson, M.; Bush, S.P.; Mullins, M.E.; Greene, S.; Toschlog, E.A.; Quackenbush, E.; Rose, S.R.; Schwartz, R.B.; et al. Early administration of Fab antivenom resulted in faster limb recovery in copperhead snake envenomation patients. Clin. Toxicol. 2019, 57, 25–30. [Google Scholar] [CrossRef]
- Jayaraman, T.; Dhanasinghu, R.; Kuppusamy, S.; Gaur, A.; Sakthivadivel, V. Bite-to-needle Time—An Extrapolative Indicator of Repercussion in Patients with Snake Bite. Indian J. Crit. Care Med. 2022, 26, 1173–1176. [Google Scholar] [CrossRef]
- de Castaneda, R.R.; Durso, A.M.; Ray, N.; Fernandez, J.L.; Williams, D.J.; Alcoba, G.; Chappuis, F.; Salathé, M.; Bolon, I. Snakebite and snake identification: Empowering neglected communities and health-care providers with AI. Lancet Digit. Health 2019, 1, e202–e203. [Google Scholar] [CrossRef]
- Bolon, I.; Picek, L.; Durso, A.M.; Alcoba, G.; Chappuis, F.; Ruiz de Castañeda, R. An artificial intelligence model to identify snakes from across the world: Opportunities and challenges for global health and herpetology. PLoS Negl. Trop. Dis. 2022, 16, e0010647. [Google Scholar] [CrossRef]
- Padidar, S.; Monadjem, A.; Litschka-Koen, T.; Thomas, B.; Shongwe, N.; Baker, C.; Mmema, L.; Sithole, T.; Murray, J.; Casewell, N.R.; et al. Snakebite epidemiology, outcomes and multi-cluster risk modelling in Eswatini. PLoS Negl. Trop. Dis. 2023, 17, e0011732. [Google Scholar] [CrossRef]
- Yousefi, M.; Kafash, A.; Khani, A.; Nabati, N. Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor. Sci. Rep. 2020, 10, 18073. [Google Scholar] [CrossRef]
- Gopalakrishnan, M.; Saurabh, S.; Sagar, P.; Bammigatti, C.; Dutta, T.K. A simple mortality risk prediction score for viper envenoming in India (VENOMS): A model development and validation study. PLoS Negl. Trop. Dis. 2022, 16, e0010183. [Google Scholar] [CrossRef] [PubMed]
- Lang, T. Web. 2024. The Global Health Network. Available online: https://tghn.org (accessed on 26 September 2024).
- Lang, T. Web. 2024. Global Health Data Science: Pathfinder Studies. Available online: https://globalhealthdatascience.tghn.org/pathfinder-projects/ (accessed on 26 September 2024).
Hyperparameter | Range of Values |
---|---|
XGBoost | |
subsample: the proportion of all patients sampled for each tree | [0.25, 1] |
max_depth: the maximum depth of each tree (integer value) | [2, 10] |
min_child: the lowest sum of weights of a child node | [1, 25] |
Random Forest | |
mtry: the number of predictor variables selected at each tree split | [1, 3] |
ntrees: the number of decision trees to be built | [10, 40] |
Logistic Regression | |
mixture: controls balance between lasso and ridge regularization | [0, 1] |
penalty: controls how much shrinkage is applied to model coefficients | [0, 1] |
Variable | Overall, N = 1022 1 | Treatment Outcome | p-Value 2 | |
---|---|---|---|---|
Amputation, Debridement or Death, N = 91 1 | Recovery, N = 931 1 | |||
Month of Snakebite Occurrence | 0.5 | |||
April | 282 | 27 (10%) | 255 (90%) | |
March | 213 | 23 (11%) | 190 (89%) | |
June | 183 | 14 (8%) | 169 (92%) | |
May | 180 | 10 (6%) | 170 (94%) | |
February | 95 | 10 (11%) | 85 (89%) | |
January | 69 | 7 (10%) | 62 (90%) | |
Age | 20 | 22 (18, 35) | 20 (13, 34) | 0.082 |
Age Group | 0.020 | |||
Adult (18+) | 638 | 68 (11%) | 570 (89%) | |
Adolescent (12 to 17) | 196 | 15 (8%) | 181 (92%) | |
Infant, toddler, childhood (0 to 11) | 188 | 8 (4%) | 180 (96%) | |
Sex | 0.002 | |||
Male | 734 | 78 (11%) | 656 (89%) | |
Female | 288 | 13 (5%) | 275 (95%) | |
State or Country of Origin | ||||
Gombe | 498 | 34 (7%) | 464 (93%) | |
Taraba | 188 | 13 (7%) | 175 (93%) | |
Adamawa | 143 | 16 (11%) | 127 (89%) | |
Bauchi | 98 | 17 (17%) | 81 (83%) | |
Borno | 59 | 7 (12%) | 52 (88%) | |
Yobe | 30 | 4 (13%) | 26 (87%) | |
Other 3 | 6 | 0 (0%) | 6 (100%) | |
Occupation | ||||
Farmer | 469 | 59 (13%) | 410 (87%) | |
Under Care | 215 | 12 (6%) | 203 (94%) | |
House Wife | 152 | 8 (5%) | 144 (95%) | |
Student | 138 | 9 (7%) | 129 (93%) | |
Business | 36 | 3 (8%) | 33 (92%) | |
Civil Servant | 8 | 0 (0%) | 8 (100%) | |
Other 3 | 4 | 0 (0%) | 4 (100%) | |
Hours Between Bite and Hospitalization | 4 (2, 8) | 5 (4, 8) | 4 (2, 8) | 0.014 |
Site of Snakebite | >0.9 | |||
Upper Limb | 795 | 72 (9%) | 723 (91%) | |
Lower Limb | 224 | 19 (8%) | 205 (92%) | |
Other 3 | 3 | 0 (0%) | 3 (100%) | |
Snake Species | >0.9 | |||
Carpet Viper (Echis romani) | 810 | 74 (9%) | 736 (91%) | |
Unidentifiable | 188 | 17 (9%) | 171 (91%) | |
Cobra (Naja) | 10 | 0 (0%) | 10 (100%) | |
Night Adder (Causus rhombeatus) | 7 | 0 (0%) | 7 (100%) | |
Mole Viper (Atractaspididae) | 5 | 0 (0%) | 5 (100%) | |
Other 3 | 2 | 0 (0%) | 2 (100%) | |
Antivenom Dose (Number of Vials) | <0.001 | |||
1 | 664 | 48 (7%) | 616 (93%) | |
2 or more | 220 | 39 (18%) | 181 (82%) | |
0 | 138 | 4 (3%) | 134 (97%) |
Characteristic | Univariate Models | Multivariate Model | ||
---|---|---|---|---|
OR 1 | 95% CI 1 | Adjusted OR 1 | 95% CI 1 | |
Month of Snakebite Occurrence | ||||
January | — | — | — | — |
February | 1.04 | 0.38, 3.01 | 1.07 | 0.38, 3.19 |
March | 1.07 | 0.46, 2.81 | 0.89 | 0.36, 2.42 |
April | 0.94 | 0.41, 2.43 | 0.87 | 0.36, 2.31 |
May | 0.52 | 0.19, 1.49 | 0.41 | 0.15, 1.22 |
June | 0.73 | 0.29, 2.01 | 0.58 | 0.22, 1.64 |
Age Group | ||||
Infant, toddler, childhood (0 to 11) | — | — | — | — |
Adolescent (12 to 17) | 1.86 | 0.79, 4.73 | 2.09 | 0.71, 6.29 |
Adult (18+) | 2.68 | 1.34, 6.15 | 3.22 | 0.97, 11.7 |
Sex | ||||
Female | — | — | — | — |
Male | 2.52 | 1.42, 4.81 | 1.82 | 0.81, 4.56 |
State or Country of Origin | ||||
Adamawa | — | — | — | — |
Bauchi | 1.67 | 0.79, 3.51 | 1.82 | 0.84, 3.95 |
Borno | 1.07 | 0.39, 2.66 | 1.04 | 0.37, 2.65 |
Gombe | 0.58 | 0.32, 1.11 | 0.82 | 0.39, 1.75 |
Other | 0.00 | 0.00, Inf | 0.00 | 0.00, Inf |
Taraba | 0.59 | 0.27, 1.27 | 0.60 | 0.27, 1.32 |
Yobe | 1.22 | 0.33, 3.66 | 1.06 | 0.28, 3.27 |
Occupation | ||||
Business | — | — | — | — |
Civil Servant | 0.00 | 0.00, Inf | 0.00 | 0.00, 0.00 |
Farmer | 1.58 | 0.55, 6.72 | 1.53 | 0.50, 6.65 |
House Wife | 0.61 | 0.17, 2.90 | 0.92 | 0.20, 5.26 |
Other | 0.00 | 0.00, Inf | 0.00 | 0.00, Inf |
Student | 0.77 | 0.21, 3.60 | 1.20 | 0.31, 6.03 |
Under Care | 0.65 | 0.19, 2.96 | 1.58 | 0.32, 9.41 |
Site of Snakebite | ||||
Lower Limb | — | — | — | — |
Other | 0.00 | 0.00, Inf | 0.00 | 0.00, Inf |
Upper Limb | 1.07 | 0.65, 1.87 | 1.07 | 0.63, 1.91 |
Snake Species | ||||
Carpet Viper (Echis romani) | — | — | — | — |
Cobra (Naja) | 0.00 | 0.00, Inf | 0.00 | 0.00, Inf |
Mole Viper (Atractaspididae) | 0.00 | 0.00, Inf | 0.00 | 0.00, Inf |
Night Adder (Causus rhombeatus) | 0.00 | 0.00, Inf | 0.00 | 0.00, Inf |
Other | 0.00 | 0.00, Inf | 0.00 | 0.00, Inf |
Unidentifiable | 0.99 | 0.55, 1.68 | 1.01 | 0.55, 1.76 |
Hours Between Bite and Hospitalization | ||||
4 h or more | — | — | — | — |
Less than 4 h | 0.50 | 0.30, 0.80 | 0.57 | 0.29, 1.11 |
Full Model | Simplified Model | |
---|---|---|
Features |
|
|
Hyperparameter values | XGBoost | |
|
| |
Random Forest | ||
|
| |
Logistic Regression | ||
|
|
Features | Model | Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value | AUROC |
---|---|---|---|---|---|---|
Full Set | XGBoost | 0.80 | 0.26 | 0.94 | 0.08 | 0.532 |
Random Forest | 0.58 | 0.58 | 0.95 | 0.09 | 0.582 | |
Logistic Regression | 0.58 | 0.42 | 0.94 | 0.07 | 0.505 | |
Simplified (Three Features) | XGBoost | 0.53 | 0.53 | 0.94 | 0.07 | 0.529 |
Random Forest | 0.08 | 0.95 | 0.95 | 0.07 | 0.512 | |
Logistic Regression | 0.53 | 0.53 | 0.94 | 0.07 | 0.529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamman, N.A.; Uppal, A.; Mohammed, N.; Ballah, A.S.; Abdulsalam, D.M.; Dangabar, F.M.; Barde, N.; Abdulkadir, B.; Abdulkarim, S.A.; Dahiru, H.; et al. Using a Machine Learning Approach to Predict Snakebite Envenoming Outcomes Among Patients Attending the Snakebite Treatment and Research Hospital in Kaltungo, Northeastern Nigeria. Trop. Med. Infect. Dis. 2025, 10, 103. https://doi.org/10.3390/tropicalmed10040103
Hamman NA, Uppal A, Mohammed N, Ballah AS, Abdulsalam DM, Dangabar FM, Barde N, Abdulkadir B, Abdulkarim SA, Dahiru H, et al. Using a Machine Learning Approach to Predict Snakebite Envenoming Outcomes Among Patients Attending the Snakebite Treatment and Research Hospital in Kaltungo, Northeastern Nigeria. Tropical Medicine and Infectious Disease. 2025; 10(4):103. https://doi.org/10.3390/tropicalmed10040103
Chicago/Turabian StyleHamman, Nicholas Amani, Aashna Uppal, Nuhu Mohammed, Abubakar Saidu Ballah, Danimoh Mustapha Abdulsalam, Frank Mela Dangabar, Nuhu Barde, Bello Abdulkadir, Suraj Abdullahi Abdulkarim, Habu Dahiru, and et al. 2025. "Using a Machine Learning Approach to Predict Snakebite Envenoming Outcomes Among Patients Attending the Snakebite Treatment and Research Hospital in Kaltungo, Northeastern Nigeria" Tropical Medicine and Infectious Disease 10, no. 4: 103. https://doi.org/10.3390/tropicalmed10040103
APA StyleHamman, N. A., Uppal, A., Mohammed, N., Ballah, A. S., Abdulsalam, D. M., Dangabar, F. M., Barde, N., Abdulkadir, B., Abdulkarim, S. A., Dahiru, H., Mohammed, I., Lang, T., & Difa, J. A. (2025). Using a Machine Learning Approach to Predict Snakebite Envenoming Outcomes Among Patients Attending the Snakebite Treatment and Research Hospital in Kaltungo, Northeastern Nigeria. Tropical Medicine and Infectious Disease, 10(4), 103. https://doi.org/10.3390/tropicalmed10040103