HIV Cerebrospinal Fluid Escape: Interventions for the Management, Current Evidence and Future Perspectives
Abstract
:1. Background
1.1. Introduction
1.2. Aims of Review
2. Methods and Definitions
2.1. Methods
2.2. Definition of CSF HIV RNA Escape
2.3. Types of Escape
2.4. Epidemiology and Clinical Context
Typical Clinical Presentation | Prevalence and Relative Frequency | Typical CSF Findings | Typical Imaging Findings | |
---|---|---|---|---|
Symptomatic Primary CSF HIV RNA escape presenting with neurological symptoms | Variable presentations can include: Cognitive slowing Headaches Sleep disturbance Seizures Ataxia Personality change Psychosis Reduced level of consciousness [14] | In two large cohort studies of people on ART, the achieved viral suppression overall prevalence was estimated at 0.09–2.5% [35,36] * 35.1–38.2% of aviraemic patients with CSF escape had neurocognitive impairment [35,36] ** | Lymphocytic pleocytosis High neuroinflammatory markers High levels of neurofilament light chain [60,61] High levels of CSF neopterin | Diffuse white matter signal abnormalities on brain MRI [33] |
Asymptomatic Primary CSF HIV RNA escape presenting without any neurological symptoms | No symptoms Can be transient (CSF blips) | In two large cohort studies of people on ART, the achieved viral suppression overall prevalence was estimated as 2.7–4.7% [35,36] 61.8–64.9% of aviraemic patients with CSF escape had no neurocognitive symptoms [35,36] *** | Can have mildly raised CSF white cell count [60,62] Lower CSF neurofilament light chain compared to symptomatic escape [60] Can have raised neopterin, though typically lower than symptomatic or secondary escape [32,60] | Not associated with changes in brain imaging |
Secondary CSF HIV RNA escape in the presence of an alternative cause of CSF pleocytosis | May have symptoms in the context of another neurological infection or autoimmune condition | Limited evidence In one study, 33.8% of virally suppressed people with CSF escape had a neurological coinfection [35] | Related to the neurological infection High levels of CSF neopterin | Related to the underlying neurological infection |
Artefactual CSF HIV RNA viral load higher than HIV RNA plasma viral load within the variability of the assay used | No symptoms | Unknown | No lymphocytic pleocytosis | Not associated with changes in brain imaging |
2.5. Mechanisms of CSF HIV RNA Escape
2.5.1. Symptomatic Escape
2.5.2. Asymptomatic Escape
2.5.3. Secondary CSF HIV RNA Escape
2.5.4. Artefactual—Differential Suppression and Limitations of the Assay
2.6. Biomarkers for Early Detection
3. Existing Treatment for CSF HIV RNA Escape
3.1. Optimising Antiretroviral Therapy
3.2. Optimising ART to Target Resistant Viruses
3.3. Integrase Inhibitors Can Be Used to Intensify ART Regimens in CSF HIV RNA Escape
3.4. Protease Inhibitors, Particularly Atazanavir, Are Associated with CSF HIV RNA Escape
3.5. CCR5 Inhibitors
3.6. Two Drug Regimens and Long-Acting Antivirals
3.7. Preventing CSF HIV RNA Escape Before It Occurs
4. Repurposing Licensed Drugs for CSF HIV RNA Escape
4.1. Lithium
4.2. Valproic Acid
4.3. Statins
4.4. Selective Serotonin Reuptake Inhibitors
4.5. Minocycline
4.6. Janus Kinase (Jak 1/2) Inhibitors
5. Novel Therapeutics for Treating CSF HIV RNA Escape
5.1. The Use of Nanoparticles to Cross the BBB
5.2. Elimination of the CNS Reservoir
Treatment | Advantages | Limitations | Strength of Evidence | Recommendation (Strength of Recommendation) |
---|---|---|---|---|
ART optimisation based on resistance profiles | Tailored regimen for each patient | Resource intensive Access to genotyping is limited in low-resource settings | Low Case series [39,53,61,107] | Recommended (Strong) |
ART optimisation by adding a second generationintegrase strand inhibitor (INSTI) | Cost effective; easily available Second generation INSTI’s now recommended in most first line regimes Guidelines suggest doubling dose of DTG if concerned re INSTI resistance | Neurocognitive side effects with dolutegravir in some patients Raltegravir should be avoided in suspected CSF escape | Low Case series [43,107] Expert opinion | Recommended (Weak) |
ART optimisation based on CNS penetration effectiveness (CPE) scores | Cost effective as does not require resistance testing. | Relies on the assumption that CSF drug levels are comparable with parenchymal levels. Not backed up by evidence from autopsy studies showing much higher levels in parenchyma than CSF [102]. Need to consider the potential neurotoxicity of ART itself [104] | Low Case series and retrospective cohort studies [176,177,178,179]. | Not recommended |
ART optimisation—avoiding PI based regimens | Cost effective | PI-based regimes are the only option for second-line treatment in some contexts. | Low A large retrospective cohort study (n = 1063) [35]. | Recommended (Strong) |
ART optimisation—adding CCR5 inhibitors | Good BBB penetration | No effect in larger randomised controlled trials | Low Case series [114] One randomised controlled trial (n = 49) [118] | Not Recommended |
ART optimisation—avoiding dual ART regimens | Cost effective | Dual ART regimens are a simpler option for those with cognitive impairment | Low Retrospective cohort [43] | Recommended (Strong) |
Lithium | Already licensed Safe and well tolerated | Risk of neurotoxic side effects, difficult to dose. | Low Pilot studies, no control group [127] | Not recommended |
Valproic acid | Already licensed | Neurotoxic side effects Teratogenic | Low Retrospective cohort studies [137] | Not recommended |
Statins | Easily available Cost effective Other cardiovascular and immunomodulatory benefits | Evidence from cross-sectional studies only. Pretreatment difference between the groups. Dose and class of statin varied in CHARTER. | Low Retrospective cohort studies [142] | Not recommended |
Selective serotonin reuptake inhibitors | Cheap and easily available | Evidence from cross-sectional studies only. Multiple different SSRIs grouped together. Not all patients in CHARTER on ART; not necessarily generalisable to this population. | Low Retrospective cohort studies [142] | Not recommended |
Minocycline | Cheap Already licensed | Only evidence from a small, open-labelled, pilot study No participants taking ART—not applicable to current population. | Low Open-labelled pilot study [147] | Not recommended |
Baricitinib | Licensed | Currently in Phase II clinical studies | Preclinical studies in rodents and non-human primates [151,152] | Not recommended |
Nanoparticles | Optimise concentration in CNS Could both treat CSF escape and help with elimination of the reservoir | Not yet in clinical trials | Insufficient in vitro and rodent models [162,163,164,165,166] | Not recommended |
Elimination of the CNS reservoir with “shock and kill” strategies | Elimination of the CNS reservoir essential to achieve HIV cure | Neuronal damage provoked by HIV reactivation and immune mediated clearance is unlikely to be a tolerable side effect in humans | Insufficient In vitro and rodent models [167] | Not recommended |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNAIDS. UNAIDS Fact Sheet—Global HIV Statistics [Internet]. 2023. Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 28 March 2024).
- Navia, B.A.; Jordan, B.D.; Price, R.W. The AIDS dementia complex: I. Clinical features. Ann. Neurol. 1986, 19, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.; Sarngadharan, M.G.; Read, E.; Gallo, R.C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 1984, 224, 497–500. [Google Scholar] [CrossRef]
- Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983, 220, 868–871. [Google Scholar] [CrossRef]
- Dore, G.J.; McDonald, A.; Li, Y.; Kaldor, J.M.; Brew, B.J. Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 2003, 17, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Sacktor, N.; McDermott, M.P.; Marder, K.; Schifitto, G.; Selnes, O.A.; McArthur, J.C.; Stern, Y.; Albert, S.; Palumbo, D.; Kieburtz, K.; et al. HIV-associated cognitive impairment before and after the advent of combination therapy. J. NeuroVirology 2002, 8, 136–142. [Google Scholar] [CrossRef]
- Robertson, K.R.; Smurzynski, M.; Parsons, T.D.; Wu, K.; Bosch, R.J.; Wu, J.; McArthur, J.C.; Collier, A.C.; Evans, S.R.; Ellis, R.J. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 2007, 21, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Heaton, R.K.; Franklin, D.R.; Ellis, R.J.; McCutchan, J.A.; Letendre, S.L.; Leblanc, S.; Corkran, S.H.; Duarte, N.A.; Clifford, D.B.; Woods, S.P.; et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. NeuroVirol. 2011, 17, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, S.; Ances, B.; Cinque, P.; Dravid, A.; Dreyer, A.J.; Gisslén, M.; Joska, J.A.; Kwasa, J.; Meyer, A.-C.; Mpongo, N.; et al. Cognitive impairment in people living with HIV: Consensus recommendations for a new approach. Nat. Rev. Neurol. 2023, 19, 424–433. [Google Scholar]
- European AIDS Clinical Society Guidelines 12.0 [Internet]. 2023. Available online: https://www.eacsociety.org/media/guidelines-12.0.pdf (accessed on 25 October 2024).
- McArthur, J.C.; Steiner, J.; Sacktor, N.; Nath, A. Human immunodeficiency virus-associated neurocognitive disorders mind the gap. Ann. Neurol. 2010, 67, 699–714. [Google Scholar] [CrossRef]
- Kaul, M. HIV-1 associated dementia: Update on pathological mechanisms and therapeutic approaches. Curr. Opin. Neurol. 2009, 22, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Gannon, P.; Khan, M.Z.; Kolson, D.L. Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr. Opin. Neurol. 2011, 24, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.A.; Haddow, L.; Brijkumar, J.; Moosa, M.Y.S.; Benjamin, L.; Gupta, R.K. HIV cerebrospinal fluid escape and neurocognitive pathology in the era of combined antiretroviral therapy: What lies beneath the tip of the Iceberg in Sub-Saharan Africa? Brain Sci. 2018, 8, 190. [Google Scholar] [CrossRef]
- Valcour, V.; Chalermchai, T.; Sailasuta, N.; Marovich, M.; Lerdlum, S.; Suttichom, D.; Suwanwela, N.C.; Jagodzinski, L.; Michael, N.; Spudich, S.; et al. Central nervous system viral invasion and inflammation during acute HIV infection. J. Infect. Dis. 2012, 206, 275–282. [Google Scholar] [CrossRef]
- Kanmogne, G.D.; Schall, K.; Leibhart, J.; Knipe, B.; E Gendelman, H.; Persidsky, Y. HIV-1 gp120 compromises blood-brain barrier integrity and enhance monocyte migration across blood-brain barrier: Implication for viral neuropathogenesis. J. Cereb. Blood Flow. Metab. 2006, 27, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Eugenin, E.A.; Clements, J.E.; Christine Zink, M.; Berman, J.W. Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J. Neurosci. 2011, 31, 9456–9465. [Google Scholar] [CrossRef] [PubMed]
- Toborek, M.; Lee, Y.W.; Flora, G.; Pu, H.; András, I.E.; Wylegala, E.; Hennig, B.; Nath, A. Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell. Mol. Neurobiol. 2005, 25, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Dallasta, L.M.; Pisarov, L.A.; Esplen, J.E.; Werley, J.V.; Moses, A.V.; Nelson, J.A.; Achim, C.L. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 1999, 155, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Eugenin, E.A.; Osiecki, K.; Lopez, L.; Goldstein, H.; Calderon, T.M.; Berman, J.W. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: A potential mechanism of HIV-CNS invasion and NeuroAIDS. J. Neurosci. 2006, 26, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Atluri, V.S.R.; Hidalgo, M.; Samikkannu, T.; Kurapati, K.R.V.; Jayant, R.D.; Sagar, V.; Nair, M.P.N. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: An update. Front. Cell. Neurosci. 2015, 9, 212. [Google Scholar] [CrossRef]
- Rahimy, E.; Li, F.-Y.; Hagberg, L.; Fuchs, D.; Robertson, K.; Meyerhoff, D.J.; Zetterberg, H.; Price, R.W.; Gisslén, M.; Spudich, S. Blood-brain barrier disruption is initiated during primary HIV infection and not rapidly altered by antiretroviral therapy. J. Infect. Dis. 2017, 215, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P.O. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim. Et. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 842–857. [Google Scholar] [CrossRef]
- Schnell, G.; Price, R.W.; Swanstrom, R.; Spudich, S. Compartmentalization and Clonal Amplification of HIV-1 Variants in the Cerebrospinal Fluid during Primary Infection. J. Virol. 2010, 84, 2395–2407. [Google Scholar] [CrossRef]
- Pillai, S.K.; Pond, S.L.K.; Liu, Y.; Good, B.M.; Strain, M.C.; Ellis, R.J.; Letendre, S.; Smith, D.M.; Günthard, H.F.; Grant, I.; et al. Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain 2006, 129, 1872–1883. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.W.; Huong, J.T.J.; Lloyd, J.; Spearman, P.; Haas, D.W. Comparison of human immunodeficiency virus type 1 RNA sequence heterogeneity in cerebrospinal fluid and plasma. J. Clin. Microbiol. 2000, 38, 4637–4639. [Google Scholar] [CrossRef]
- Rossi, F.; Querido, B.; Nimmagadda, M.; Cocklin, S.; Navas-Martín, S.; Martín-García, J. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors. Retrovirology 2008, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Sturdevant, C.B.; Joseph, S.B.; Schnell, G.; Price, R.W.; Swanstrom, R.; Spudich, S. Compartmentalized Replication of R5 T Cell-Tropic HIV-1 in the Central Nervous System Early in the Course of Infection. PLoS Pathog. 2015, 11, e1004720. [Google Scholar] [CrossRef]
- Maggirwar, S.B.; Tong, N.; Ramirez, S.; Gelbard, H.A.; Dewhurst, S. HIV-1 Tat-mediated activation of glycogen synthase kinase-3β contributes to Tat-mediated neurotoxicity. J. Neurochem. 1999, 73, 578–586. [Google Scholar] [CrossRef]
- Winston, A.; Antinori, A.; Cinque, P.; Fox, H.S.; Gisslen, M.; Henrich, T.J.; Letendre, S.; Persaud, D.; Price, R.W.; Spudich, S. Defining cerebrospinal fluid HIV RNA escape: Editorial review. Aids 2019, 33, S107–S111. [Google Scholar] [CrossRef] [PubMed]
- Di Carlofelice, M.; Everitt, A.; Muir, D.; Winston, A. Cerebrospinal fluid HIV RNA in persons living with HIV. HIV Med. 2018, 19, 365–368. [Google Scholar] [CrossRef]
- Edén, A.; Fuchs, D.; Hagberg, L.; Nilsson, S.; Spudich, S.; Svennerholm, B.; Price, R.W.; Gisslén, M. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J. Infect. Dis. 2010, 202, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Kugathasan, R.; Collier, D.A.; Haddow, L.J.; El Bouzidi, K.; Edwards, S.G.; Cartledge, J.D.; Miller, R.F.; Gupta, R.K. Diffuse white matter signal abnormalities on magnetic resonance imaging are associated with human immunodeficiency virus type 1 viral escape in the central nervous system among patients with neurological symptoms. Clin. Infect. Dis. 2017, 64, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, S.S.; Misra, V.; Lorenz, D.; Cervantes-Arslanian, A.M.; Lyons, J.; Chalkias, S.; Wurcel, A.; Burke, D.; Venna, N.; Morgello, S.; et al. Temporal Patterns and Drug Resistance in CSF Viral Escape among ART-Experienced HIV-1 Infected Adults. J. Acquir. Immune Defic. Syndr. 2017, 75, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, S.S.; Misra, V.; Lorenz, D.R.; Uno, H.; Morgello, S.; Franklin, D.; Ellis, R.J.; Letendre, S.; Gabuzda, D. Impact of Antiretroviral Regimens on Cerebrospinal Fluid Viral Escape in a Prospective Multicohort Study of Antiretroviral Therapy-Experienced Human Immunodeficiency Virus-1-Infected Adults in the United States. Clin. Infect. Dis. 2018, 67, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Valero, I.; Ellis, R.; Heaton, R.; Deutsch, R.; Franklin, D.; Clifford, D.B.; Collier, A.; Gelman, B.; Marra, C.; McCutchan, J.A.; et al. Cerebrospinal fluid viral escape in aviremic HIV-infected patients receiving antiretroviral therapy: Prevalence, risk factors and neurocognitive effects. AIDS 2019, 33, 475–481. [Google Scholar] [CrossRef]
- Rawson, T.; Muir, D.; Mackie, N.E.; Garvey, L.J.; Everitt, A.; Winston, A. Factors associated with cerebrospinal fluid HIV RNA in HIV infected subjects undergoing lumbar puncture examination in a clinical setting. J. Infect. 2012, 65, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Trunfio, M.; Rugge, W.; Mighetto, L.; Vai, D.; Atzori, C.; Nigra, M.; Domini, S.; Borgogno, E.; Guastamacchia, G.; Bonora, S.; et al. Dual antiretroviral therapies are effective and safe regimens in the central nervous system of neurologically symptomatic people living with HIV. AIDS 2020, 34, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Dravid, A.N.; Natrajan, K.; Kulkarni, M.M.; Saraf, C.K.; Mahajan, U.S.; Kore, S.D.; Rathod, N.M.; Mahajan, U.S.; Wadia, R.S. Discordant CSF/plasma HIV-1 RNA in individuals on virologically suppressive antiretroviral therapy in Western India. Medicine 2018, 97, e9969. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, S.M.; Rotta, I.; de Pereira, A.P.; Tang, B.; Umlauf, A.; Ribeiro, C.E.; Letendre, S.; Ellis, R.J.; HIV Neurobehavioral Research Center (HNRC) Group. Cerebrospinal fluid pleocytosis as a predictive factor for CSF and plasma HIV RNA discordance and escape. J. Neurovirol. 2020, 26, 241–251. [Google Scholar] [CrossRef]
- Calcagno, A.; Simiele, M.; Alberione, M.C.; Bracchi, M.; Marinaro, L.; Ecclesia, S.; Di Perri, G.; D’Avolio, A.; Bonora, S. Cerebrospinal fluid inhibitory quotients of antiretroviral drugs in HIV-infected patients are associated with compartmental viral control. Clin. Infect. Dis. 2015, 60, 311–317. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Calamo, A.; Lepore, L.; Fabrizio, C.; Saracino, A.; Angarano, G.; Monno, L. Cerebrospinal fluid compartmentalization of HIV-1 and correlation with plasma viral load and blood–brain barrier damage. Infection 2019, 47, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Filippidis, P.; Damas, J.; Viala, B.; Assal, F.; Tshikung, O.N.; Tarr, P.; Derfuss, T.; Oberholzer, M.; Jelcic, I.; Hundsberger, T.; et al. Cerebrospinal Fluid HIV-1 Escape in Patients with Neurocognitive Symptoms: Pooled Data from a Neuro-HIV Platform and the NAMACO Study. J. Acquir. Immune Defic. Syndr. 2023, 93, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Letendre, S.L.; Ellis, R.J.; Ances, B.M.; McCutchan, J.A. Neurologic complications of HIV disease and their treatment. Top. HIV Med. 2010, 18, 45–55. [Google Scholar]
- Garvey, L.J.; Everitt, A.; Winston, A.; MacKie, N.E.; Benzie, A. Detectable cerebrospinal fluid HIV RNA with associated neurological deficits, despite suppression of HIV replication in the plasma compartment. AIDS 2009, 23, 1443–1444. [Google Scholar] [CrossRef]
- Waters, L.; Winston, A.; Reeves, I.; Boffito, M.; Churchill, D.; Cromarty, B.; Dunn, D.; Fink, D.; Fidler, S.; Foster, C.; et al. BHIVA guidelines on antiretroviral treatment for adults living with HIV-1 2022. HIV Med. 2022, 23, 3–115. [Google Scholar] [CrossRef] [PubMed]
- Ambrosioni, J.; Levi, L.; Alagaratnam, J.; Van Bremen, K.; Mastrangelo, A.; Waalewijn, H.; Molina, J.; Guaraldi, G.; Winston, A.; Boesecke, C.; et al. Major revision version 12.0 of the European AIDS Clinical Society guidelines 2023. HIV Med. 2023, 24, 1126–1136. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Falck-Ytter, Y.; Vist, G.E.; Liberati, A.; Schünemann, H.J. GRADE: Going from evidence to recommendations. Bmj 2008, 336, 1049–1051. [Google Scholar] [CrossRef]
- Ferretti, F.; Gisslen, M.; Cinque, P.; Price, R.W. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy. Curr. HIV/AIDS Rep. 2015, 12, 280–288. [Google Scholar] [CrossRef]
- Ruelle, J.; Debaisieux, L.; Vancutsem, E.; De Bel, A.; Delforge, M.-L.; Piérard, D.; Goubau, P. HIV-1 low-level viraemia assessed with 3 commercial real-time PCR assays show high variability. BMC Infect. Dis. 2012, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Barakat, E.; Oren, N.C.; Vaysberg, A. Symptomatic cerebrospinal fluid HIV escape syndrome in a patient on highly active antiretroviral therapy and suppressed plasma viral load. AIDS 2019, 33, 2444–2446. [Google Scholar] [CrossRef]
- Béguelin, C.; Vázquez, M.; Bertschi, M.; Yerly, S.; de Jong, D.; Gutbrod, K.; Rauch, A.; Cusini, A. Viral escape in the central nervous system with multidrug-resistant human immunodeficiency virus-1. Open Forum Infect. Dis. 2016, 3, ofv210. [Google Scholar] [CrossRef] [PubMed]
- Canestri, A.; Lescure, F.; Jaureguiberry, S.; Moulignier, A.; Amiel, C.; Marcelin, A.G.; Peytavin, G.; Tubiana, R.; Pialoux, G.; Katlama, C. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin. Infect. Dis. 2010, 50, 773–778. [Google Scholar] [CrossRef]
- Peluso, M.J.; Ferretti, F.; Peterson, J.; Lee, E.; Fuchs, D.; Boschini, A.; Gisslén, M.; Angoff, N.; Price, R.W.; Cinque, P.; et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS 2012, 26, 1765–1774. [Google Scholar] [CrossRef]
- Henderson, M.; Pepper, N.; Bawa, M.; Muir, D.; Everitt, A.; Mackie, N.E.; Winston, A. Cerebrospinal fluid virology in people with HIV. HIV Med. 2023, 24, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Spudich, S.; Robertson, K.R.; Bosch, R.J.; Gandhi, R.T.; Cyktor, J.C.; Mar, H.; Macatangay, B.J.; Lalama, C.M.; Rinaldo, C.; Collier, A.C.; et al. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J. Clin. Investig. 2019, 129, 3339–3346. [Google Scholar] [CrossRef]
- Ulfhammer, G.; Yilmaz, A.; Mellgren, Å.; Tyrberg, E.; Sörstedt, E.; Hagberg, L.; Gostner, J.; Fuchs, D.; Zetterberg, H.; Nilsson, S.; et al. Asymptomatic Cerebrospinal Fluid HIV-1 Escape: Incidence and Consequences. J. Infect. Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Underwood, J.; Cole, J.H.; Leech, R.; Sharp, D.J.; Winston, A.; for the CHARTER group. Multivariate pattern analysis of volumetric neuroimaging data and its relationship with cognitive function in treated HIV disease. J. Acquir. Immune Defic. Syndr. 2018, 78, 429–436. [Google Scholar] [CrossRef] [PubMed]
- A van Zoest, R.; Underwood, J.; De Francesco, D.; A Sabin, C.; Cole, J.H.; Wit, F.W.; A Caan, M.W.; A Kootstra, N.; Fuchs, D.; Zetterberg, H.; et al. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations with Disease and Cerebrospinal Fluid Biomarkers. J. Infect. Dis. 2018, 217, 69–81. [Google Scholar] [CrossRef]
- Hu, Z.; Cinque, P.; Dravid, A.; Hagberg, L.; Yilmaz, A.; Zetterberg, H.; Fuchs, D.; Gostner, J.; Blennow, K.; Spudich, S.S.; et al. Changes in cerebrospinal fluid proteins across the spectrum of untreated and treated chronic HIV-1 infection. Silvestri G, editor. PLoS Pathog. 2024, 20, e1012470. [Google Scholar] [CrossRef]
- Kincer, L.P.; Dravid, A.; Trunfio, M.; Calcagno, A.; Zhou, S.; Vercesi, R.; Spudich, S.; Gisslen, M.; Price, R.W.; Cinque, P.; et al. Neurosymptomatic HIV-1 CSF escape is associated with replication in CNS T cells and inflammation. J. Clin. Investig. 2024, 134, e176358. [Google Scholar] [CrossRef]
- Guha, D.; Misra, V.; Yin, J.; Gabuzda, D. CSF Inflammation Markers Associated with Asymptomatic Viral Escape in Cerebrospinal Fluid of HIV-Positive Individuals on Antiretroviral Therapy. Viruses 2023, 15, 1829. [Google Scholar] [CrossRef] [PubMed]
- Castellano, P.; Prevedel, L.; Eugenin, E.A. HIV-infected macrophages and microglia that survive acute infection become viral reservoirs by a mechanism involving Bim. Sci. Rep. 2017, 7, 12866. [Google Scholar] [CrossRef]
- Schnell, G.; Spudich, S.; Harrington, P.; Price, R.W.; Swanstrom, R. Compartmentalized Human Immunodeficiency Virus Type 1 Originates from Long-Lived Cells in Some Subjects with HIV-1-Associated Dementia. PLoS Pathog. 2009, 5, e1000395. [Google Scholar] [CrossRef]
- Joseph, S.B.; Kincer, L.P.; Bowman, N.M.; Evans, C.; Vinikoor, M.J.; Lippincott, C.K.; Gisslén, M.; Spudich, S.; Menezes, P.; Robertson, K.; et al. Human Immunodeficiency Virus Type 1 RNA Detected in the Central Nervous System (CNS) after Years of Suppressive Antiretroviral Therapy Can Originate from a Replicating CNS Reservoir or Clonally Expanded Cells. Clin. Infect. Dis. 2019, 69, 1345–1352. [Google Scholar] [CrossRef]
- Lahouassa, H.; Daddacha, W.; Hofmann, H.; Ayinde, D.; Logue, E.C.; Dragin, L.; Bloch, N.; Maudet, C.; Bertrand, M.; Gramberg, T.; et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012, 13, 223–228. [Google Scholar] [CrossRef]
- Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Ségéral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Mlcochova, P.; Sutherland, K.A.; Watters, S.A.; Bertoli, C.; de Bruin, R.A.; Rehwinkel, J.; Neil, S.J.; Lenzi, G.M.; Kim, B.; Khwaja, A.; et al. A G1-like state allows HIV -1 to bypass SAMHD 1 restriction in macrophages. EMBO J. 2017, 36, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Mlcochova, P.; Heilig, R.; Fischer, R.; Gupta, R.K. CD4 T cell contact drives macrophage cell cycle progression and susceptibility to lentiviral transduction. Sig. Transduct. Target Ther. 2024, 9, 348. [Google Scholar] [CrossRef]
- Lucas, S.B.; Wong, K.T.; Nightingale, S.; Miller, R.F. HIV-Associated CD8 Encephalitis: A UK Case Series and Review of Histopathologically Confirmed Cases. Front. Neurol. 2021, 12, 628296. [Google Scholar] [CrossRef]
- Edén, A.; Nilsson, S.; Hagberg, L.; Fuchs, D.; Zetterberg, H.; Svennerholm, B.; Gisslén, M. Asymptomatic cerebrospinal fluid HIV-1 viral blips and viral escape during antiretroviral therapy: A longitudinal study. J. Infect. Dis. 2016, 214, 1822–1825. [Google Scholar] [CrossRef]
- Spudich, S.S.; Nilsson, A.C.; Lollo, N.D.; Liegler, T.J.; Petropoulos, C.J.; Deeks, S.G.; E Paxinos, E.; Price, R.W. Cerebrospinal fluid HIV infection and pleocytosis: Relation to systemic infection and antiretroviral treatment. BMC Infect. Dis. 2005, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Marra, C.M.; Maxwell, C.L.; Collier, A.C.; Robertson, K.R.; Imrie, A. Interpreting cerebrospinal fluid pleocytosis in HIV in the era of potent antiretroviral therapy. BMC Infect. Dis. 2007, 7, 37. [Google Scholar] [CrossRef]
- Antinori, A.; Giancola, M.L.; Grisetti, S.; Soldani, F.; Alba, L.; Liuzzi, G.; Amendola, A.; Capobianchi, M.; Tozzi, V.; Perno, C.F. Factors influencing virological response to antiretroviral drugs in cerebrospinal fluid of advanced HIV-1-infected patients. AIDS 2002, 16, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, D.M.; Cañizal, A.M.; Rojas, H.; Arechavala, A.; Negroni, R.; Bouzas, M.B.; A Benetucci, J. Variables that influence HIV-1 cerebrospinal fluid viral load in cryptococcal meningitis: A linear regression analysis. J. Int. AIDS Soc. 2009, 12, 33. [Google Scholar] [CrossRef]
- Christo, P.P.; Greco, D.B.; Aleixo, A.W.; Livramento, J.A. HIV-1 RNA levels in cerebrospinal fluid and plasma and their correlation with opportunistic neurological diseases in a Brazilian aids reference hospital. Arq. Neuropsiquiatr. 2005, 63, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Rivera, C.; Sgadari, C.; Franklin, J.; E Max, E.; Bhatia, K.; Tosato, G. Infection of human endothelial cells with Epstein-Barr virus. J. Exp. Med. 1995, 182, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Lupia, T.; Milia, M.G.; Atzori, C.; Gianella, S.; Audagnotto, S.; Imperiale, D.; Mighetto, L.; Pirriatore, V.; Gregori, G.; Lipani, F.; et al. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS 2020, 34, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Hawes, I.; Alvarenga, B.; Browne, W.; Wapniarski, A.; Dandekar, R.; Bartley, C.; Sowa, G.; DeRisi, J.; Cinque, P.; Dravid, A.; et al. Viral co-infection, autoimmunity, and CSF HIV antibody profiles in HIV central nervous system escape. J. Neuroimmunol. 2023, 381, 578141. [Google Scholar] [CrossRef]
- Ellis, R.; Gamst, A.; Capparelli, E.; Spector, S.; Hsia, K.; Wolfson, T.; Abramson, I.; Grant, I.; McCutchan, J. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 2000, 54, 927–936. [Google Scholar] [CrossRef]
- Schnell, G.; Joseph, S.; Spudich, S.; Price, R.W.; Swanstrom, R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011, 7, e1002286. [Google Scholar] [CrossRef]
- Nightingale, S.; Dreyer, A.J.; Thomas, K.G.F.; van Zyl, G.; Decloedt, E.; Naude, P.J.W.; Orrell, C.; Sinxadi, P.; Winston, A.; Khoo, S.; et al. Cognitive performance, neuropsychiatric symptoms, and cerebrospinal fluid viral control following programmatic switch from efavirenz-based to dolutegravir-based antiretroviral therapy in South Africa (CONNECT): A prospective cohort study. Lancet HIV 2024, 11, e680–e689. [Google Scholar] [CrossRef] [PubMed]
- Swenson, L.C.; Cobb, B.; Geretti, A.M.; Harrigan, P.R.; Poljak, M.; Seguin-Devaux, C.; Verhofstede, C.; Wirden, M.; Amendola, A.; Boni, J.; et al. Comparative performances of HIV-1 RNA load assays at low viral load levels: Results of an international collaboration. J. Clin. Microbiol. 2014, 52, 517–523. [Google Scholar] [CrossRef]
- Sollis, K.A.; Smit, P.W.; Fiscus, S.; Ford, N.; Vitoria, M.; Essajee, S.; Barnett, D.; Cheng, B.; Crowe, S.M.; Denny, T.; et al. Systematic review of the performance of HIV viral load technologies on plasma samples. PLoS ONE 2014, 9, e85869. [Google Scholar] [CrossRef]
- Chernoff, D.N. The significance of HIV viral load assay precision: A review of the package insert specifications of two commercial kits. J. Int. Assoc. Physicians AIDS Care 2002, 1, 134–140. [Google Scholar] [CrossRef]
- Doyle, T.; Geretti, A.M. Low-level viraemia on HAART: Significance and management. Curr. Opin. Infect. Dis. 2012, 25, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Letendre, S.; McClernon, D.; Ellis, R.J.; Muñoz-Moreno, J.; Way, L.; Clifford, D.; Collier, A.; Gelman, B.; Marra, C.; McArthur, J.; et al. Persistent HIV in the central nervous system during treatment is associated with worse antiretroviral therapy penetration and cognitive impairment. J. Neurovirol. 2009, 15 (Suppl. S1), 74. [Google Scholar]
- Gisslén, M.; Hagberg, L.; Brew, B.J.; Cinque, P.; Price, R.W.; Rosengren, L. Elevated Cerebrospinal Fluid Neurofilament Light Protein Concentrations Predict the Development of AIDS Dementia Complex. J. Infect. Dis. 2007, 195, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, S.M.; Rotta, I.; Ribeiro, C.E.; Oliveira, M.F.; Chaillon, A.; de Pereira, A.P.; Cunha, A.P.; Zonta, M.; Bents, J.F.; Raboni, S.M.; et al. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization—Case study. J. NeuroVirology 2017, 23, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Gisslén, M.; Price, R.W.; Andreasson, U.; Norgren, N.; Nilsson, S.; Hagberg, L.; Fuchs, D.; Spudich, S.; Blennow, K.; Zetterberg, H. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. EBioMedicine 2016, 3, 135–140. [Google Scholar] [CrossRef]
- Lustig, G.; Cele, S.; Karim, F.; Derache, A.; Ngoepe, A.; Khan, K.; Gosnell, B.I.; Moosa, M.-Y.S.; Ntshuba, N.; Marais, S.; et al. T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog. 2021, 17, e1009871. [Google Scholar] [CrossRef]
- Bertrand, L.; Nair, M.; Toborek, M. Solving the Blood-Brain Barrier Challenge for the Effective Treatment of HIV Replication in the Central Nervous System. Curr. Pharm. Des. 2016, 22, 5477–5486. [Google Scholar] [CrossRef]
- Ene, L.; Duiculescu, D.; Ruta, S.M. How much do antiretroviral drugs penetrate into the central nervous system? J. Med. Life 2011, 4, 432. [Google Scholar] [PubMed]
- Harder, B.G.; Blomquist, M.R.; Wang, J.; Kim, A.J.; Woodworth, G.F.; Winkles, J.A.; Loftus, J.C.; Tran, N.L. Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma. Front. Oncol. 2018, 8, 462. [Google Scholar] [CrossRef]
- Tiraboschi, J.; Scévola, S.; Penchala, S.D.; Challenger, E.; Else, L.; Prieto, P.; Saumoy, M.; Imaz, A.; Silva-Klug, A.; Niubó, J.; et al. Total and Unbound Doravirine Concentrations and Viral Suppression in CSF. Clin. Infect. Dis. 2021, 74, 1855–1858. [Google Scholar] [CrossRef] [PubMed]
- Letendre, S.; Marquie-Beck, J.; Capparelli, E.; Best, B.; Clifford, D.; Collier, A.C.; Gelman, B.B.; McArthur, J.C.; McCutchan, J.A.; Morgello, S.; et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch. Neurol. 2008, 65, 65–70. [Google Scholar] [CrossRef]
- Cusini, A.; Vernazza, P.L.; Yerly, S.; Decosterd, L.A.; Ledergerber, B.; Fux, C.A.; Rohrbach, J.; Widmer, N.; Hirschel, B.; Gaudenz, R.; et al. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better hiv-1 viral suppression in cerebrospinal fluid. J. Acquir. Immune Defic. Syndr. 2013, 62, 28–35. [Google Scholar] [CrossRef]
- Varatharajan, L.; Thomas, S.A. The transport of anti-HIV drugs across blood-CNS interfaces: Summary of current knowledge and recommendations for further research. Antivir. Res. 2009, 82, A99–A109. [Google Scholar] [CrossRef]
- Ellis, R.J.; Letendre, S.; Vaida, F.; Grant, I.; Atkinson, J.H.; McCutchan, J.A.; Clifford, D.B.; Everall, I.P.; Morgello, S.; Simpson, D.M. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin. Infect. Dis. 2014, 58, 1015–1022. [Google Scholar] [CrossRef]
- Ferrara, M.; Bumpus, N.N.; Ma, Q.; Ellis, R.J.; Soontornniyomkij, V.; Fields, J.A.; Bharti, A.; Achim, C.L.; Moore, D.J.; Letendre, S.L. Antiretroviral drug concentrations in brain tissue of adult decedents. AIDS 2020, 34, 1907–1914. [Google Scholar] [CrossRef]
- Caniglia, E.C.; Cain, L.E.; Justice, A.; Tate, J.; Logan, R.; Sabin, C.; Winston, A.; van Sighem, A.; Miro, J.M.; Podzamczer, D.; et al. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology 2014, 83, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Lanman, T.; Letendre, S.; Ma, Q.; Bang, A.; Ellis, R. CNS Neurotoxicity of Antiretrovirals. J. Neuroimmune Pharmacol. 2021, 16, 130–143. [Google Scholar] [CrossRef]
- Jenny-Avital, E.; Hoffman, J.; Katz, M.; Leider, J.; Apfelroth, S. HIV Central Nervous System Escape (CNSE): Finding the Needle in the Haystack Using Cerebrospinal Fluid (CSF) HIV Viral Load. Open Forum Infect. Dis. 2015, 2 (Suppl. S1), 1658. [Google Scholar] [CrossRef]
- Dahl, V.; Lee, E.; Peterson, J.; Spudich, S.S.; Leppla, I.; Sinclair, E.; Fuchs, D.; Palmer, S.; Price, R.W. Raltegravir treatment intensification does not alter cerebrospinal fluid hiv-1 infection or immunoactivation in subjects on suppressive therapy. J. Infect. Dis. 2011, 204, 1936–1945. [Google Scholar] [CrossRef]
- Yilmaz, A.; Gisslén, M.; Spudich, S.; Lee, E.; Jayewardene, A.; Aweeka, F.; Price, R.W. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection. PLoS ONE 2009, 4, e6877. [Google Scholar] [CrossRef]
- Mora-Peris, B.; MacKie, N.E.; Suan, D.; Cooper, D.A.; Brew, B.J.; Winston, A. Raltegravir resistance in the cerebrospinal fluid. Infection 2013, 41, 731–734. [Google Scholar] [CrossRef]
- Dravid, A.N.; Gawali, R.; Betha, T.P.; Sharma, A.K.; Medisetty, M.; Natrajan, K.; Kulkarni, M.M.; Saraf, C.K.; Kore, S.D.; Rathod, N.M.; et al. Two treatment strategies for management of Neurosymptomatic cerebrospinal fluid HIV escape in Pune, India. Medicine 2020, 99, e20516. [Google Scholar] [CrossRef] [PubMed]
- Nickoloff-Bybel, E.A.; Festa, L.; Meucci, O.; Gaskill, P.J. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.R.; Ruiz, A.P.; Prasad, V.R. Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res. Ther. 2014, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Watson, V.; Else, L.; Gisslèn, M. Cerebrospinal fluid maraviroc concentrations in HIV-1 infected patients. AIDS 2009, 23, 2537–2540. [Google Scholar] [CrossRef]
- Melica, G.; Canestri, A.; Peytavin, G.; Lelievre, J.D.; Bouvier-Alias, M.; Clavel, C.; Calvez, V.; Lascaux, A.S.; Katlama, C.; Levy, Y. Maraviroc-containing regimen suppresses HIV replication in the cerebrospinal fluid of patients with neurological symptoms. AIDS 2010, 24, 2130–2133. [Google Scholar] [CrossRef] [PubMed]
- Tiraboschi, J.M.; Niubo, J.; Curto, J.; Podzamczer, D. Maraviroc concentrations in cerebrospinal fluid in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 2010, 55, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Soulié, C.; Tubiana, R.; Simon, A.; Lambert-Niclot, S.; Malet, I.; Canestri, A.; Brunet, C.; Murphy, R.; Katlama, C.; Calvez, V.; et al. Presence of hiv-1 r5 viruses in cerebrospinal fluid even in patients harboring r5x4/x4 viruses in plasma. J. Acquir. Immune Defic. Syndr. 2009, 51, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Spudich, S.S.; Huang, W.; Nilsson, A.C.; Petropoulos, C.J.; Liegler, T.J.; Whitcomb, J.M.; Price, R.W. HIV-1 chemokine coreceptor utilization in paired cerebrospinal fluid and plasma samples: A survey of subjects with viremia. J. Infect. Dis. 2005, 191, 890–898. [Google Scholar] [CrossRef]
- Kelly, K.M.; Beck, S.E.; Pate, K.A.; Queen, S.E.; Dorsey, J.L.; Adams, R.J.; Avery, L.B.; Hubbard, W.; Tarwater, P.M.; Mankowski, J.L. Neuroprotective maraviroc monotherapy in simian immunodeficiency virus-infected macaques: Reduced replicating and latent SIV in the brain. AIDS 2013, 27, F21–F28. [Google Scholar] [CrossRef] [PubMed]
- Gates, T.M.; Cysique, L.A.; Siefried, K.J.; Chaganti, J.; Moffat, K.J.; Brew, B.J. Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS 2016, 30, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Ndhlovu, L.C.; Umaki, T.; Chew, G.M.; Chow, D.C.; Agsalda, M.; Kallianpur, K.J.; Paul, R.; Zhang, G.; Ho, E.; Hanks, N.; et al. Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is associated with improvements in neurocognitive test performance: Implications for HIV-associated neurocognitive disease (HAND). J. Neurovirol. 2014, 20, 571–582. [Google Scholar] [PubMed]
- Shikuma, C.M.; Wojna, V.; De Gruttola, V.; Siriwardhana, C.; Souza, S.A.; Rodriguez-Benitez, R.J.; Turner, E.H.; Kallianpur, K.; Bolzenius, J.; Chow, D.; et al. Impact of antiretroviral therapy intensification with C-C motif chemokine receptor 5 antagonist maraviroc on HIV-associated neurocognitive impairment. AIDS 2023, 37, 1987–1995. [Google Scholar] [CrossRef]
- Ndhlovu, L.C.; D’Antoni, M.L.; Ananworanich, J.; Byron, M.M.; Chalermchai, T.; Sithinamsuwan, P.; Tipsuk, S.; Ho, E.; Slike, B.M.; Schuetz, A.; et al. Loss of CCR2 expressing non-classical monocytes are associated with cognitive impairment in antiretroviral therapy-naïve HIV-infected Thais. J. Neuroimmunol. 2015, 288, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.; Lyons, J.L.; Misra, V.; Uno, H.; Morgello, S.; Singer, E.J.; Gabuzda, D. Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J. Acquir. Immune Defic. Syndr. 2012, 60, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.; Veenstra, M.; Gaskill, P.; Morgello, S.; Calderon, T.; Berman, J. Monocytes Mediate HIV Neuropathogenesis: Mechanisms that Contribute to HIV Associated Neurocognitive Disorders. Curr. HIV Res. 2014, 12, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.W.; Calderon, T.M.; Lopez, L.; Carvallo-Torres, L.; Gaskill, P.J.; Eugenin, E.A.; Morgello, S.; Berman, J.W. Mechanisms of HIV Entry into the CNS: Increased Sensitivity of HIV Infected CD14+CD16+ Monocytes to CCL2 and Key Roles of CCR2, JAM-A, and ALCAM in Diapedesis. PLoS ONE 2013, 8, e69270. [Google Scholar] [CrossRef]
- D’Antoni, M.L.; Paul, R.H.; Mitchell, B.I.; Kohorn, L.; Fischer, L.; Lefebvre, E.; Seyedkazemi, S.; Nakamoto, B.K.; Walker, M.; Kallianpur, K.J.; et al. Improved cognitive performance and reduced monocyte activation in virally suppressed chronic HIV after dual CCR2 and CCR5 antagonism. Am. J. Ther. 2018, 79, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Letendre, S.L.; Mills, A.; Hagins, D.; Swindells, S.; Felizarta, F.; Devente, J.; Bettacchi, C.; Lou, Y.; Ford, S.; Sutton, K.; et al. Pharmacokinetics and antiviral activity of cabotegravir and rilpivirine in cerebrospinal fluid following long-acting injectable administration in HIV-infected adults. J. Antimicrob. Chemother. 2020, 75, 648–655. [Google Scholar] [CrossRef]
- Gabuzda, D.; McArthur, J.C.; Letendre, S.L. Efficacy and Safety of Two-drug Regimens for Treatment of HIV in the Central Nervous System. AIDS 2020, 34, 1975. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, V.S.; Cibul, M.L.; Hughes, N.K.; Tse, K.F. Effect of lithium in murine immunodeficiency virus infected animals. Pathobiology 1993, 61, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Letendre, S.L.; Woods, S.P.; Ellis, R.J.; Atkinson, J.H.; Masliah, E.; Brande, G.v.D.; Durelle, J.; Grant, I.; Everall, I. Lithium improves HIV-associated neurocognitive impairment. AIDS 2006, 20, 1885–1888. [Google Scholar] [CrossRef] [PubMed]
- Decloedt, E.H.; Freeman, C.; Howells, F.; Casson-Crook, M.; Lesosky, M.; Koutsilieri, E.; Lovestone, S.; Maartens, G.; Joska, J.A. Moderate to severe HIV-associated neurocognitive impairment A randomized placebo-controlled trial of lithium. Medicine 2016, 95, e5401. [Google Scholar] [CrossRef]
- Thela, L.; Decloedt, E.; Zetterberg, H.; Gisslén, M.; Lesosky, M.; Gleich, M.; Koutsilieri, E.; Scheller, C.; Hye, A.; Joska, J. Blood and cerebrospinal fluid biomarker changes in patients with HIV-associated neurocognitive impairment treated with lithium: Analysis from a randomised placebo-controlled trial. J. Neurovirol. 2023, 29, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Schifitto, G.; Zhong, J.; Gill, D.; Peterson, D.R.; Gaugh, M.D.; Zhu, T.; Tivarus, M.; Cruttenden, K.; Maggirwar, S.B.; E Gendelman, H.; et al. Lithium therapy for human immunodeficiency virus type 1-associated neurocognitive impairment. J. Neurovirol. 2009, 15, 176–186. [Google Scholar] [CrossRef]
- Masvekar, R.R.; El-Hage, N.; Hauser, K.F.; Knapp, P.E. GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Mol. Cell. Neurosci. 2015, 65, 11–20. [Google Scholar] [CrossRef]
- Lehrman, G.; Hogue, I.B.; Palmer, S.; Jennings, C.; Spina, C.A.; Wiegand, A.; Landay, A.L.; Coombs, R.W.; Richman, D.D.; Mellors, J.W. Depletion of latent HIV-1 infection in vivo: A proof-of-concept study. Lancet 2005, 366, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Archin, N.M.; Cheema, M.; Parker, D.; Wiegand, A.; Bosch, R.J.; Coffin, J.M.; Eron, J.; Cohen, M.; Margolis, D.M. Antiretroviral intensification and valproic acid lack sustained effect on residual HIV-1 viremia or resting CD4+ cell infection. PLoS ONE 2010, 5, e9390. [Google Scholar] [CrossRef]
- Routy, J.P.; Tremblay, C.L.; Angel, J.B.; Trottier, B.; Rouleau, D.; Baril, J.G.; Harris, M.; Trottier, S.; Singer, J.; Chomont, N.; et al. Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: Results from a multicentre randomized clinical study. HIV Med. 2012, 13, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Schifitto, G.; Peterson, D.R.; Zhong, J.; Ni, H.; Cruttenden, K.; Gaugh, M.; Gendelman, H.E.; Boska, M.; Gelbard, H. Valproic acid adjunctive therapy for HIV-associated cognitive impairment: A first report. Neurology 2006, 66, 919–921. [Google Scholar] [CrossRef]
- Cysique, L.A.; Maruff, P.; Brew, B.J. Valproic acid is associated with cognitive decline in HIV-infected individuals: A clinical observational study. BMC Neurol. 2006, 6, 42. [Google Scholar] [CrossRef]
- Ances, B.M.; Letendre, S.; Buzzell, M.; Marquie-Beck, J.; Lazaretto, D.; Marcotte, T.D.; Grant, I.; Ellis, R.J.; the HNRC Group. Valproic acid does not affect markers of human immunodeficiency virus disease progression. J. Neurovirol. 2006, 12, 403–406. [Google Scholar] [CrossRef] [PubMed]
- del Real, G.; Jiménez-Baranda, S.; Mira, E.; Lacalle, R.A.; Lucas, P.; Gómez-Moutón, C.; Alegret, M.; Peña, J.M.; Rodriíguez-Zapata, M.; Alvarez-Mon, M.; et al. Statins inhibit HIV-1 infection by down-regulating Rho activity. J. Exp. Med. 2004, 200, 541–547. [Google Scholar] [CrossRef]
- Hillyard, D.Z.; Nutt, C.D.; Thomson, J.; McDonald, K.J.; Wan, R.K.; Cameron, A.J.; Mark, P.B.; Jardine, A.G. Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation. Atherosclerosis 2007, 191, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Goebel, J.; Logan, B.; Forrest, K.; Mieczkowski, A.; Roszman, T.L.; Wills-Karp, M. Atorvastatin affects interleukin-2 signaling by altering the lipid raft enrichment of the interleukin-2 receptor β chain. J. Investig. Med. 2005, 53, 322–328. [Google Scholar] [CrossRef]
- Popik, W.; Alce, T.M.; Au, W.C. Human Immunodeficiency Virus Type 1 Uses Lipid Raft-Colocalized CD4 and Chemokine Receptors for Productive Entry into CD4 + T Cells. J. Virol. 2002, 76, 4709–4722. [Google Scholar] [CrossRef]
- Letendre, S.L.; Marquie-Beck, J.; Ellis, R.J.; Woods, S.P.; Best, B.; Clifford, D.B.; Collier, A.C.; Gelman, B.B.; Marra, C.; McArthur, J.C.; et al. The role of cohort studies in drug development: Clinical evidence of antiviral activity of serotonin reuptake inhibitors and HMG-CoA reductase inhibitors in the central nervous system. J. Neuroimmune Pharmacol. 2007, 2, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, J.E.; Hansen, J.B. Inhibition of HIV replication by neuroleptic agents and their potential use in HIV infected patients with AIDS related dementia. Int. J. Antimicrob. Agents 2000, 14, 209–213. [Google Scholar] [CrossRef]
- Si, Q.; A Cosenza, M.; Kim, M.-O.; Zhao, M.-L.; Brownlee, M.; Goldstein, H.; Lee, S.C. A novel action of minocycline: Inhibition of human immunodeficiency virus type 1 infection in microglia. J. NeuroVirology 2004, 10, 284–292. [Google Scholar] [CrossRef]
- Ratai, E.-M.; Bombardier, J.P.; Joo, C.-G.; Annamalai, L.; Burdo, T.H.; Campbell, J.; Fell, R.; Hakimelahi, R.; He, J.; Autissier, P.; et al. Proton magnetic resonance spectroscopy reveals neuroprotection by oral minocycline in a nonhuman primate model of accelerated NeuroAIDS. PLoS ONE 2010, 5, e10523. [Google Scholar] [CrossRef]
- Clements, J.; Mankowski, J.; Gama, L.; Zink, M.C. The accelerated simian immunodeficiency virus macaque model of human immunodeficiency virus-associated neurological disease: From mechanism to treatment. J. NeuroVirology 2008, 14, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Follstaedt, S.C.; Barber, S.A.; Zink, M.C. Mechanisms of minocycline-induced suppression of simian immunodeficiency virus encephalitis: Inhibition of apoptosis signal-regulating kinase 1. J. NeuroVirology 2008, 14, 376–388. [Google Scholar] [CrossRef]
- Szeto, G.L.; Brice, A.; Yang, H.C.; Barber, S.A.; Siliciano, R.F.; Clements, J.E. Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells. J. Infect. Dis. 2010, 201, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.L.; Spudich, S.S.; Lee, E.; Fuchs, D.; Sinclair, E.; Price, R.W. Minocycline fails to modulate cerebrospinal fluid HIV infection or immune activation in chronic untreated HIV-1 infection: Results of a pilot study. AIDS Res. Ther. 2011, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Marconi, V.C.; Moser, C.; Gavegnano, C.; Deeks, S.G.; Lederman, M.M.; Overton, E.T.; Tsibris, A.; Hunt, P.W.; Kantor, A.; Sekaly, R.-P.; et al. Randomized Trial of Ruxolitinib in Antiretroviral-Treated Adults with Human Immunodeficiency Virus. Clin. Infect. Dis. 2022, 74, 95–104. [Google Scholar] [CrossRef]
- De Armas, L.R.; Gavegnano, C.; Pallikkuth, S.; Rinaldi, S.; Pan, L.; Battivelli, E.; Verdin, E.; Younis, R.T.; Pahwa, R.; Williams, S.L.; et al. The Effect of JAK1/2 Inhibitors on HIV Reservoir Using Primary Lymphoid Cell Model of HIV Latency. Front. Immunol. 2021, 12, 720697. [Google Scholar] [CrossRef]
- Gavegnano, C.; Haile, W.B.; Hurwitz, S.; Tao, S.; Jiang, Y.; Schinazi, R.F.; Tyor, W.R. Baricitinib reverses HIV-associated neurocognitive disorders in a SCID mouse model and reservoir seeding in vitro. J. Neuroinflammation 2019, 16, 182. [Google Scholar] [CrossRef]
- Bertrand, L.; Velichkovska, M.; Toborek, M. Cerebral Vascular Toxicity of Antiretroviral Therapy. J. Neuroimmune Pharmacol. 2019, 16, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Velichkovska, M.; Surnar, B.; Nair, M.; Dhar, S.; Toborek, M. Targeted Mitochondrial COQ 10 Delivery Attenuates Antiretroviral-Drug-Induced Senescence of Neural Progenitor Cells. Mol. Pharm. 2019, 16, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, N.; Funes, H.A.; Blas-Garcia, A.; Galindo, M.J.; Alvarez, A.; Esplugues, J.V. Efavirenz and the CNS: What we already know and questions that need to be answered. J. Antimicrob. Chemother. 2015, 70, 2693–2708. [Google Scholar] [CrossRef] [PubMed]
- Rosás-Umbert, M.; Mothe, B.; Noguera-Julian, M.; Bellido, R.; Puertas, M.C.; Carrillo, J.; Rodriguez, C.; Perez-Alvarez, N.; Cobarsí, P.; Gomez, C.E.; et al. Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B. PLoS ONE 2017, 12, e0184929. [Google Scholar] [CrossRef] [PubMed]
- Salantes, D.B.; Zheng, Y.; Mampe, F.; Srivastava, T.; Beg, S.; Lai, J.; Li, J.Z.; Tressler, R.L.; Koup, R.A.; Hoxie, J.; et al. HIV-1 latent reservoir size and diversity are stable following brief treatment interruption. J. Clin. Investig. 2018, 128, 3102–3115. [Google Scholar] [CrossRef] [PubMed]
- Osborne, O.; Peyravian, N.; Nair, M.; Daunert, S.; Toborek, M. The Paradox of HIV Blood–Brain Barrier Penetrance and Antiretroviral Drug Delivery Deficiencies. Trends Neurosci. 2020, 43, 695–708. [Google Scholar] [CrossRef]
- Nair, M.; Jayant, R.D.; Kaushik, A.; Sagar, V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv. Drug Deliv. Rev. 2016, 103, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Garrido, C.; A Simpson, C.; Dahl, N.P.; Bresee, J.; Whitehead, D.C.; A Lindsey, E.; Harris, T.L.; A Smith, C.; Carter, C.J.; Feldheim, D.L.; et al. Gold nanoparticles to improve HIV drug delivery. Future Med. Chem. 2015, 7, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Pooyan, S.; Hu, P.; Leibowitz, M.J.; Stein, S.; Sinko, P.J. Peritoneal macrophage uptake, pharmacokinetics and biodistribution of macrophage-targeted PEG-fMLF (N-formyl-methionyl-leucyl-phenylalanine) nanocarriers for improving HIV drug delivery. Pharm. Res. 2007, 24, 2110–2119. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Chowdhury, P.; Nagesh, P.K.B.; Rahman, M.A.; Zhi, K.; Yallapu, M.M.; Kumar, S. Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci. Rep. 2020, 10, 3835. [Google Scholar] [CrossRef] [PubMed]
- Roy, U.; Drozd, V.; Durygin, A.; Rodriguez, J.; Barber, P.; Atluri, V.; Liu, X.; Voss, T.G.; Saxena, S.; Nair, M. Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain. Sci. Rep. 2018, 8, 1603. [Google Scholar] [CrossRef]
- Singh, D.; McMillan, J.; Hilaire, J.; Gautam, N.; Palandri, D.; Alnouti, Y.; E Gendelman, H.; Edagwa, B. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine 2016, 11, 1913–1927. [Google Scholar] [CrossRef] [PubMed]
- Sillman, B.; Bade, A.N.; Dash, P.K.; Bhargavan, B.; Kocher, T.; Mathews, S.; Su, H.; Kanmogne, G.D.; Poluektova, L.Y.; Gorantla, S.; et al. Creation of a long-acting nanoformulated dolutegravir. Nat. Commun. 2018, 9, 443. [Google Scholar] [CrossRef]
- Mamo, T.; Moseman, E.A.; Kolishetti, N.; Salvador-Morales, C.; Shi, J.; Kuritzkes, D.R.; Langer, R.; von Andrian, U.; Farokhzad, O.C. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 2010, 5, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Nühn, M.M.; Gumbs, S.B.; Buchholtz, N.V.; Jannink, L.M.; Gharu, L.; de Witte, L.D.; Wensing, A.M.; Lewin, S.R.; Nijhuis, M.; Symons, J. Shock and Kill within the CNS: A Promising HIV Eradication Approach? J. Leukoc. Biol. 2022, 112, 1297–1315. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Anderson, J.L.; Lewin, S.R. Getting the “Kill” into “Shock and Kill”: Strategies to Eliminate Latent HIV. Cell Host Microbe 2018, 23, 14–26. [Google Scholar] [CrossRef]
- Gama, L.; Abreu, C.M.; Shirk, E.N.; Price, S.L.; Li, M.; Laird, G.M.; Pate, K.A.M.; Wietgrefe, S.W.; O’connor, S.L.; Pianowski, L.; et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 2017, 31, 5–14. [Google Scholar] [CrossRef]
- Giri, M.S.; Nebozyhn, M.; Raymond, A.; Gekonge, B.; Hancock, A.; Creer, S.; Nicols, C.; Yousef, M.; Foulkes, A.S.; Mounzer, K.; et al. Circulating Monocytes in HIV-1-Infected Viremic Subjects Exhibit an Antiapoptosis Gene Signature and Virus- and Host-Mediated Apoptosis Resistance. J. Immunol. 2009, 182, 4459–4470. [Google Scholar] [CrossRef]
- Hendricks, C.M.; Cordeiro, T.; Gomes, A.P.; Stevenson, M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front. Microbiol. 2021, 12, 646447. [Google Scholar] [CrossRef] [PubMed]
- Clayton, K.L.; Collins, D.R.; Lengieza, J.; Ghebremichael, M.; Dotiwala, F.; Lieberman, J.; Walker, B.D. Resistance of HIV-infected macrophages to CD8 + T lymphocyte-mediated killing drives activation of the immune system article. Nat. Immunol. 2018, 19, 475–486. [Google Scholar] [CrossRef]
- Gray, L.R.; On, H.; Roberts, E.; Lu, H.K.; Moso, M.A.; Raison, J.A.; Papaioannou, C.; Cheng, W.-J.; Ellett, A.M.; Jacobson, J.C.; et al. Toxicity and in vitro activity of HIV-1 latency-reversing agents in primary CNS cells. J. Neurovirol. 2016, 22, 455–463. [Google Scholar] [CrossRef]
- Edara, V.V.; Ghorpade, A.; Borgmann, K. Insights into the Gene Expression Profiles of Active and Restricted Red/Green-HIV + Human Astrocytes: Implications for Shock or Lock Therapies in the Brain. J. Virol. 2020, 94, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.L.; Getts, D.R.; Deffrasnes, C.; van Vreden, C.; Campbell, I.L.; King, N.J.C. Inflammatory monocytes and the pathogenesis of viral encephalitis. J. Neuroinflammation 2012, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Carvalhal, A.; Gill, M.J.; Letendre, S.L.; Rachlis, A.; Bekele, T.; Raboud, J.; Burchell, A.; Rourke, S.B. Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network Cohort Study. J. Neurovirol. 2016, 22, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, N.; Fabbiani, M.; Colafigli, M.; Trecarichi, E.M.; Silveri, M.C.; Cauda, R.; Murri, R.; De Luca, A.; Di Giambenedetto, S. Revised central nervous system neuropenetrationeffectiveness score is associated with cognitive disorders in HIV-infected patients with controlled plasma viraemia. Antivir. Ther. 2013, 18, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Vassallo, M.; Durant, J.; Biscay, V.; Lebrun-Frenay, C.; Dunais, B.; Laffon, M.; Harvey-Langton, A.; Cottalorda, J.; Ticchioni, M.; Carsenti, H.; et al. Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders. AIDS 2014, 28, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Cross, H.M.; Combrinck, M.I.; Joska, J.A. HIV-associated neurocognitive disorders: Antiretroviral regimen, central nervous system penetration effectiveness, and cognitive outcomes. S. Afr. Med. J. 2013, 103, 758–762. [Google Scholar] [CrossRef]
- Chan, T.Y.H.; Marta, M.; Rackstraw, S. Relapse of neurosymptomatic cerebrospinal fluid HIV RNA escape. HIV Med. 2023, 24, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Kouamou, V.; Ndhlovu, C.E.; Katzenstein, D.; Manasa, J. Rapid hiv-1 drug resistance testing in a resource limited setting: The pan degenerate amplification and adaptation assay (pandaa). Pan Afr. Med. J. 2021, 40, 57. [Google Scholar] [PubMed]
- World Health Organization. Global Action Plan on HIV Drug Resistance 2017–2021; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, S.H.; Nightingale, S.; Gupta, R.K.; Collier, D.A. HIV Cerebrospinal Fluid Escape: Interventions for the Management, Current Evidence and Future Perspectives. Trop. Med. Infect. Dis. 2025, 10, 45. https://doi.org/10.3390/tropicalmed10020045
Kelly SH, Nightingale S, Gupta RK, Collier DA. HIV Cerebrospinal Fluid Escape: Interventions for the Management, Current Evidence and Future Perspectives. Tropical Medicine and Infectious Disease. 2025; 10(2):45. https://doi.org/10.3390/tropicalmed10020045
Chicago/Turabian StyleKelly, Sophie H., Sam Nightingale, Ravindra K. Gupta, and Dami A. Collier. 2025. "HIV Cerebrospinal Fluid Escape: Interventions for the Management, Current Evidence and Future Perspectives" Tropical Medicine and Infectious Disease 10, no. 2: 45. https://doi.org/10.3390/tropicalmed10020045
APA StyleKelly, S. H., Nightingale, S., Gupta, R. K., & Collier, D. A. (2025). HIV Cerebrospinal Fluid Escape: Interventions for the Management, Current Evidence and Future Perspectives. Tropical Medicine and Infectious Disease, 10(2), 45. https://doi.org/10.3390/tropicalmed10020045