Risk Perception and Self-Monitoring of Particulate Matter 2.5 (PM 2.5) Associated with Anxiety Among General Population in Urban Thailand
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Questionnaire
2.4. Data Collection
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM(10) and PM(2.5)), nitrogen dioxide (NO(2)), and ozone (O(3)) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef] [PubMed]
- Flies, E.J.; Mavoa, S.; Zosky, G.R.; Mantzioris, E.; Williams, C.; Eri, R.; Brook, B.W.; Buettel, J.C. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environ. Int. 2019, 133 Pt A, 105187. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Kunno, J.; Luangwilai, T.; Manomaipiboon, B.; Onklin, I.; Ong-artborirak, P.; Krainara, P.; Chaichana, T.; Robson, M.G. The Urban Health Themes and Urban Factors Associated with Health: A Brief Review: Status Quo in Urban Health and Its Factors Associated with Health. Vajira. Med. J. 2024, 68, e269743. [Google Scholar] [CrossRef]
- Brockerhoff, M. An urbanizing world. Popul. Bull. 2000, 55, 1–44. [Google Scholar]
- Han, L.; Zhou, W.; Li, W. Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013. Sci. Rep. 2016, 6, 23604. [Google Scholar] [CrossRef]
- Mueller, W.; Vardoulakis, S.; Steinle, S.; Loh, M.; Johnston, H.J.; Precha, N.; Kliengchuay, W.; Sahanavin, N.; Nakhapakorn, K.; Sillaparassamee, R. A health impact assessment of long-term exposure to particulate air pollution in Thailand. Environ. Res. Lett 2021, 16, 055018. [Google Scholar] [CrossRef]
- Bran, S.H.; Macatangay, R.; Chotamonsak, C.; Chantara, S.; Surapipith, V. Understanding the seasonal dynamics of surface PM2. 5 mass distribution and source contributions over Thailand. Atmos. Environ. 2024, 331, 120613. [Google Scholar] [CrossRef]
- Ahmad, M.; Thaveevong, P.; Aman, N.; Ngamsritrakul, T.; Panyametheekul, S. The PM2. 5-bound metals in the metropolitan area of Bangkok, Thailand: Temporal trends, sources, and human health challenges. Environ. Chall. 2025, 18, 101092. [Google Scholar] [CrossRef]
- Silva, R.A.; Adelman, Z.; Fry, M.M.; West, J.J. The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ. Health Perspect. 2016, 124, 1776–1784. [Google Scholar] [CrossRef]
- Yang, T.; Wang, J.; Huang, J.; Kelly, F.J.; Li, G. Long-term Exposure to Multiple Ambient Air Pollutants and Association With Incident Depression and Anxiety. JAMA Psychiatry 2023, 80, 305–313. [Google Scholar] [CrossRef]
- Jarernwong, K.; Gheewala, S.H.; Sampattagul, S. Health impact related to ambient particulate matter exposure as a spatial health risk map case study in Chiang Mai, Thailand. Atmosphere 2023, 14, 261. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Nyarku, M.; Mazaheri, M.; Jayaratne, R.; Dunbabin, M.; Rahman, M.M.; Uhde, E.; Morawska, L. Mobile phones as monitors of personal exposure to air pollution: Is this the future? PLoS ONE 2018, 13, e0193150. [Google Scholar] [CrossRef]
- Otanasap, N.; Tadsuan, S.; Chalermsuk, C. An AIoT-based Air Quality Monitoring System for Real-time PM2. 5 Prediction in Urban Environments. ASEAN J. Sci. Tech. Rep. 2025, 28, e255168. [Google Scholar] [CrossRef]
- Punnasiri, K.; Tawatsupa, B.; Pumipan, T.; Kruon, N.; Sritong-Aon, C.; Phosri, A. Development of the national Air Quality Health Index based on short-term effects of ambient air pollution on mortality in Thailand. Chemosphere 2025, 371, 144049. [Google Scholar] [CrossRef]
- Ban, J.; Zhou, L.; Zhang, Y.; Brooke Anderson, G.; Li, T. The health policy implications of individual adaptive behavior responses to smog pollution in urban China. Environ. Int. 2017, 106, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, J.; Shan, J.; Zhang, W. Extending the Theory of Planned Behavior to understand residents’ coping behaviors for reducing the health risks posed by haze pollution. Environ. Dev. Sustain. 2021, 23, 2122–2142. [Google Scholar] [CrossRef]
- Sereenonchai, S.; Arunrat, N.; Kamnoonwatana, D. Risk perception on haze pollution and willingness to pay for self-protection and haze management in Chiang Mai Province, Northern Thailand. Atmosphere 2020, 11, 600. [Google Scholar] [CrossRef]
- Romarate, R.A.; Madarcos, J.R.V.; Pacilan, C.J.M.; Bacosa, H.P.; Torres, A.G. When air quality matters: Awareness, perception, and attitude of the residents in Metro Manila, Philippines. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Ong, A.K.S.; Prasetyo, Y.T.; Kusonwattana, P.; Marinas, K.A.; Yuduang, N.; Chuenyindee, T.; Robas, K.P.E.; Persada, S.F.; Nadlifatin, R. Determining factors affecting the perceived usability of air pollution detection mobile application “AirVisual” in Thailand: A structural equation model forest classifier approach. Heliyon 2022, 8, e12538. [Google Scholar] [CrossRef] [PubMed]
- Boluda-Verdu, I.; Senent-Valero, M.; Casas-Escolano, M.; Matijasevich, A.; Pastor-Valero, M. Fear for the future: Eco-anxiety and health implications, a systematic review. J. Environ. Psychol. 2022, 84, 101904. [Google Scholar] [CrossRef]
- Albrecht, G. Chronic Environmental Change: Emerging ‘Psychoterratic’ Syndromes. In Climate Change and Human Well-Being: Global Challenges and Opportunities; Weissbecker, I., Ed.; Springer Science+Business Media: New York, NY, USA, 2011. [Google Scholar]
- Narita, D.; Oanh, N.T.K.; Sato, K.; Huo, M.; Permadi, D.A.; Chi, N.N.H.; Ratanajaratroj, T.; Pawarmart, I. Pollution characteristics and policy actions on fine particulate matter in a growing Asian economy: The case of Bangkok Metropolitan Region. Atmosphere 2019, 10, 227. [Google Scholar] [CrossRef]
- Wayne, W. Biostatistics: A Foundation of Analysis in the Health Sciences; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Phungkat, Y.; Bumprom, P.; Thonkhaimook, B.; Sangsiriwut, N.; Sirijaroonwong, U. Perception and preventive bahavior towards particulate matter among personel: A case study of an organization in Bangkok. HCU J. 2022, 26, 98–107. [Google Scholar]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Lowe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Lowe, B.; Decker, O.; Muller, S.; Brahler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med. Care 2008, 46, 266–274. [Google Scholar] [CrossRef]
- Acharya, S.R.; Bhatta, J.; Timilsina, D.; Ray, N.; Pahari, S. Long-term exposure to air pollutants, meteorological factors, and mental health status: A nationwide population-based study with multilevel regression analysis. Arch. Public Health 2025, 83, 81. [Google Scholar] [CrossRef]
- Moreno-Peral, P.; Conejo-Ceron, S.; Motrico, E.; Rodriguez-Morejon, A.; Fernandez, A.; Garcia-Campayo, J.; Roca, M.; Serrano-Blanco, A.; Rubio-Valera, M.; Bellon, J.A. Risk factors for the onset of panic and generalised anxiety disorders in the general adult population: A systematic review of cohort studies. J. Affect. Disord. 2014, 168, 337–348. [Google Scholar] [CrossRef]
- Mongkhon, P.; Ruengorn, C.; Awiphan, R.; Thavorn, K.; Hutton, B.; Wongpakaran, N.; Wongpakaran, T.; Nochaiwong, S. Exposure to COVID-19-Related Information and its Association with Mental Health Problems in Thailand: Nationwide, Cross-sectional Survey Study. J. Med. Internet Res. 2021, 23, e25363. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Chen, Y.; Xu, J.; Gao, Q.; Zang, S. Traffic-related pollution and symptoms of depression and anxiety among Chinese adults: A population-based study. J. Affect. Disord. 2024, 352, 101–109. [Google Scholar] [CrossRef]
- Archived Data PM2.5. Available online: http://air4thai.pcd.go.th/webV3/#/Home (accessed on 14 February 2025).
- WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 14 February 2025).
- Ji, S.; Guo, Y.; Yan, W.; Wei, F.; Ding, J.; Hong, W.; Wu, X.; Ku, T.; Yue, H.; Sang, N. PM(2.5) exposure contributes to anxiety and depression-like behaviors via phenyl-containing compounds interfering with dopamine receptor. Proc. Natl. Acad. Sci. USA 2024, 121, e2319595121. [Google Scholar] [CrossRef]
- Zundel, C.G.; Ryan, P.; Brokamp, C.; Heeter, A.; Huang, Y.; Strawn, J.R.; Marusak, H.A. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022, 93, 272–300. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef] [PubMed]
- Lyons, S.; Nolan, A.; Carthy, P.; Griffin, M.; O’Connell, B. Long-term exposure to PM(2.5) air pollution and mental health: A retrospective cohort study in Ireland. Environ. Health 2024, 23, 54. [Google Scholar] [CrossRef]
- Power, M.C.; Kioumourtzoglou, M.-A.; Hart, J.E.; Okereke, O.I.; Laden, F.; Weisskopf, M.G. The relation between past exposure to fine particulate air pollution and prevalent anxiety: Observational cohort study. BMJ 2015. [Google Scholar] [CrossRef]
- Pun, V.C.; Manjourides, J.; Suh, H. Association of Ambient Air Pollution with Depressive and Anxiety Symptoms in Older Adults: Results from the NSHAP Study. Environ. Health Perspect. 2017, 125, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jiang, M.; Huang, N.; Guo, X.; Huang, T. Long-Term Air Pollution, Genetic Susceptibility, and the Risk of Depression and Anxiety: A Prospective Study in the UK Biobank Cohort. Environ. Health Perspect. 2023, 131, 17002. [Google Scholar] [CrossRef]
- Lan, Y.; Roberts, H.; Kwan, M.P.; Helbich, M. Daily space-time activities, multiple environmental exposures, and anxiety symptoms: A cross-sectional mobile phone-based sensing study. Sci. Total Environ. 2022, 834, 155276. [Google Scholar] [CrossRef]
- Suriyawong, P.; Chuetor, S.; Samae, H.; Piriyakarnsakul, S.; Amin, M.; Furuuchi, M.; Hata, M.; Inerb, M.; Phairuang, W. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 2023, 9, e14261. [Google Scholar] [CrossRef]
- Vichit-Vadakan, N.; Vajanapoom, N. Health impact from air pollution in Thailand: Current and future challenges. Environ. Health Perspect. 2011, 119, A197–A198. [Google Scholar] [CrossRef]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, S.; Tawatsupa, B.; Punnasiri, K.; Jaakkola, J.J.; Williams, G. The association between air pollution and mortality in Thailand. Sci. Rep. 2014, 4, 5509. [Google Scholar] [CrossRef] [PubMed]
- Pinichka, C.; Makka, N.; Sukkumnoed, D.; Chariyalertsak, S.; Inchai, P.; Bundhamcharoen, K. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach. PLoS ONE 2017, 12, e0189909. [Google Scholar] [CrossRef]
- Liu, L.; Yan, Y.; Nazhalati, N.; Kuerban, A.; Li, J.; Huang, L. The effect of PM(2.5) exposure and risk perception on the mental stress of Nanjing citizens in China. Chemosphere 2020, 254, 126797. [Google Scholar] [CrossRef]
- Claeson, A.S.; Liden, E.; Nordin, M.; Nordin, S. The role of perceived pollution and health risk perception in annoyance and health symptoms: A population-based study of odorous air pollution. Int. Arch. Occup. Environ. Health 2013, 86, 367–374. [Google Scholar] [CrossRef]
- Rosenstock, I.M.; Strecher, V.J.; Becker, M.H. Social learning theory and the Health Belief Model. Health Educ. Q. 1988, 15, 175–183. [Google Scholar] [CrossRef]
- Delmas, M.A.; Kohli, A. Can apps make air pollution visible? Learning about health impacts through engagement with air quality information. J. Bus. Ethics 2020, 161, 279–302. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Lan, G.-l.; Yuan, Z.-k.; Maddock, J.E.; Cook, A.; Chu, Y.-y.; Pan, B.-b.; Tu, H.; Fan, S.; Liao, X.; Lu, Y. Public perception of air pollution and health effects in Nanchang, China. Air Qual. Atmos. Health 2016, 9, 951–959. [Google Scholar] [CrossRef]
- Xu, Z.; Shan, J. The effect of risk perception on willingness to pay for reductions in the health risks posed by particulate matter 2.5: A case study of Beijing, China. Energy Environ. 2018, 29, 1319–1337. [Google Scholar] [CrossRef]
- Lee, K.-H.; Bae, M.-S. Discrepancy between scientific measurement and public anxiety about particulate matter concentrations. Sci. Total Environ. 2021, 760, 143980. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.K.; Hogg, T.L.; Leviston, Z.; Walker, I. From anger to action: Differential impacts of eco-anxiety, eco-depression, and eco-anger on climate action and wellbeing. J. Clim. Change Health 2021, 1, 100003. [Google Scholar] [CrossRef]
- Heeren, A.; Asmundson, G.J. Understanding climate anxiety: What decision-makers, health care providers, and the mental health community need to know to promote adaptative coping. J. Anxiety Disord. 2023, 93, 102654. [Google Scholar] [CrossRef] [PubMed]
- Clayton, S. Climate anxiety: Psychological responses to climate change. J. Anxiety Disord. 2020, 74, 102263. [Google Scholar] [CrossRef]
- Clayton, S.; Karazsia, B.T. Development and validation of a measure of climate change anxiety. J. Environ. Psychol. 2020, 69, 101434. [Google Scholar] [CrossRef]
Variables | n (%) | Perception [Mean ± SD] | p | Self-Monitoring [n (%)] | p | Anxiety Level [n (%)] | p | ||
---|---|---|---|---|---|---|---|---|---|
No/Occasional | Everyday | Minimal/Mild | Moderate/Severe | ||||||
Total | 921 (100%) | 57.87 ± 6.07 | - | 633 (68.7%) | 288 (31.3%) | - | 768 (83.4%) | 153 (16.6%) | - |
Sex | <0.001 | 0.006 | 0.320 | ||||||
Male | 315 (34.2%) | 56.79 ± 6.24 | 235 (74.6%) | 80 (25.4%) | 268 (85.1%) | 47 (14.9%) | |||
Female | 606 (65.8%) | 58.43 ± 5.90 | 398 (65.7%) | 208 (34.3%) | 500 (82.5%) | 106 (17.5%) | |||
Age (years) | 0.002 | <0.001 | 0.301 | ||||||
18–24 years | 226 (24.5%) | 57.29 ± 6.70 | 174 (77.0%) | 52 (23.0%) | 181 (80.1%) | 45 (19.9%) | |||
25–44 years | 481 (52.2%) | 58.11 ± 5.65 | 306 (63.6%) | 175 (36.4%) | 404 (84.0%) | 77 (16.0%) | |||
45–59 years | 163 (17.7%) | 58.91 ± 5.43 | 107 (65.6%) | 56 (34.4%) | 137 (84.0%) | 26 (16.0%) | |||
≥60 years | 51 (5.5%) | 54.88 ± 7.64 | 46 (90.2%) | 5 (9.8%) | 46 (90.2%) | 5 (9.8%) | |||
Marital status | 0.440 | 0.076 | 0.856 | ||||||
Single | 559 (60.7%) | 57.78 ± 6.19 | 388 (69.4%) | 171 (30.6%) | 466 (83.4%) | 93 (16.6%) | |||
Married | 310 (33.7%) | 58.15 ± 5.91 | 203 (65.5%) | 107 (34.5%) | 260 (83.9%) | 50 (16.1%) | |||
Divorced/widowed/separated | 52 (5.6%) | 57.10 ± 5.62 | 42 (80.8%) | 10 (19.2%) | 42 (80.8%) | 10 (19.2%) | |||
Education | <0.001 | <0.001 | 0.079 | ||||||
Secondary education | 212 (23.0%) | 55.64 ± 6.09 | 173 (81.6%) | 39 (18.4%) | 175 (82.5%) | 37 (17.5%) | |||
Bachelor’s degree | 468 (50.8%) | 58.06 ± 6.29 | 317 (67.7%) | 151 (32.3%) | 381 (81.4%) | 87 (18.6%) | |||
Graduate level | 241 (26.2%) | 59.46 ± 4.95 | 143 (59.3%) | 98 (40.7%) | 212 (88.0%) | 29 (12.0%) | |||
Occupation | <0.001 | 0.003 | 0.068 | ||||||
Unemployment | 45 (4.9%) | 57.84 ± 5.68 | 33 (73.3%) | 12 (26.7%) | 33 (73.3%) | 12 (26.7%) | |||
Students | 184 (20.0%) | 57.61 ± 6.36 | 143 (77.7%) | 41 (22.3%) | 152 (82.6%) | 32 (17.4%) | |||
Civil servant/state enterprise | 234 (25.4%) | 59.33 ± 5.43 | 149 (63.7%) | 85 (36.3%) | 207 (88.5%) | 27 (11.5%) | |||
Government or private sector | 294 (31.9%) | 57.33 ± 5.91 | 187 (63.6%) | 107 (36.4%) | 244 (83.0%) | 50 (17.0%) | |||
Self-employed/merchant/freelance | 164 (17.8%) | 57.05 ± 6.65 | 121 (73.8%) | 43 (26.2%) | 132 (80.5%) | 32 (19.5%) | |||
Monthly income | <0.001 | <0.001 | 0.002 | ||||||
≤15,000 THB | 322 (35.0%) | 56.81 ± 6.51 | 247 (76.7%) | 75 (23.3%) | 252 (78.3%) | 70 (21.7%) | |||
>15,000 THB | 599 (65.0%) | 58.44 ± 5.74 | 386 (64.4%) | 213 (35.6%) | 516 (86.1%) | 83 (13.9%) | |||
Years of residence | 0.007 | 0.012 | 0.010 | ||||||
≤20 years | 485 (52.7%) | 57.35 ± 6.26 | 351 (72.4%) | 134 (27.6%) | 419 (86.4%) | 66 (13.6%) | |||
>20 years | 436 (47.3%) | 58.44 ± 5.80 | 282 (64.7%) | 154 (35.3%) | 349 (80.0%) | 87 (20.0%) | |||
Family relationship (n = 916) † | <0.001 | <0.001 | 0.680 | ||||||
Fair | 472 (51.5%) | 56.19 ± 5.84 | 359 (76.1%) | 113 (23.9%) | 396 (83.9%) | 76 (16.1%) | |||
Very good | 444 (48.5%) | 59.70 ± 5.46 | 272 (61.3%) | 172 (38.7% | 368 (82.9%) | 76 (17.1%) | |||
Chronic disease | 0.735 | 0.380 | 0.620 | ||||||
No | 604 (65.6%) | 57.82 ± 6.36 | 421 (69.7%) | 183 (30.3%) | 501 (82.9%) | 103 (17.1%) | |||
Yes | 317 (34.4%) | 57.96 ± 5.47 | 212 (66.9%) | 105 (33.1%) | 267 (84.2%) | 50 (15.8%) | |||
History of symptoms caused by PM2.5 | <0.001 | <0.001 | <0.001 | ||||||
No prior experience | 402 (43.6%) | 57.18 ± 6.80 | 299 (74.4%) | 103 (25.6%) | 344 (85.6%) | 58 (14.4%) | |||
1–3 symptoms | 307 (33.3%) | 57.09 ± 5.62 | 222 (72.3%) | 85 (27.7%) | 271 (88.3%) | 36 (11.7%) | |||
>3 symptoms | 212 (23.0%) | 60.31 ± 4.37 | 112 (52.8%) | 100 (47.2%) | 153 (72.2%) | 59 (27.8%) | |||
Perceived level of the PM2.5 problem | <0.001 | <0.001 | 0.002 | ||||||
Unknown | 127 (13.8%) | 53.58 ± 6.84 | 121 (95.3%) | 6 (4.7%) | 114 (89.8%) | 13 (10.2%) | |||
Mild | 448 (48.6%) | 57.20 ± 5.90 | 324 (72.3%) | 124 (27.7%) | 384 (85.7%) | 64 (14.3%) | |||
High | 346 (37.6%) | 60.32 ± 4.75 | 188 (54.3%) | 158 (45.7%) | 270 (78.0%) | 76 (22.0%) | |||
Level of worry about PM2.5 | <0.001 | <0.001 ‡ | <0.001 ‡ | ||||||
No | 121 (13.1%) | 52.15 ± 6.16 | 110 (90.9%) | 11 (9.1%) | 118 (97.5%) | 3 (2.5%) | |||
Low | 103 (11.2%) | 54.91 ± 6.69 | 92 (89.3%) | 11 (10.7%) | 97 (94.2%) | 6 (5.8%) | |||
Moderate | 259 (28.1%) | 56.65 ± 5.63 | 184 (71.0%) | 75 (29.0%) | 224 (86.5%) | 35 (13.5%) | |||
High | 246 (26.7%) | 60.00 ± 4.54 | 166 (67.5%) | 80 (32.5%) | 201 (81.7%) | 45 (18.3%) | |||
Very high | 192 (20.8%) | 61.98 ± 3.14 | 81 (42.2%) | 111 (57.8%) | 128 (66.7%) | 64 (33.3%) |
Variables | n (%) | Anxiety Level | Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|---|---|---|
Minimal/Mild | Moderate/Severe | Crude OR (95%CI) | p | Adjusted OR (95%CI) * | p | ||
Perception score | 57.44 ± 6.06 † | 60.03 ± 5.63 † | 1.09 (1.05, 1.13) | <0.001 | 1.09 (1.06, 1.13) | <0.001 | |
Self-monitoring | |||||||
No/occasional | 633 (68.7%) | 543 (85.8%) | 90 (14.2%) | 1 | 1 | ||
Everyday | 288 (31.3%) | 225 (78.1%) | 63 (21.9%) | 1.69 (1.18, 2.42) | 0.004 | 1.76 (1.21, 2.55) | 0.003 |
Using website | |||||||
No | 373 (40.5%) | 316 (84.7%) | 57 (15.3%) | 1 | 0.105 | 1 | 0.078 |
1–3 days/week | 339 (36.8%) | 288 (85.0%) | 51 (15.0%) | 0.98 (0.65, 1.48) | 0.930 | 0.95 (0.62, 1.44) | 0.794 |
4–6 days/week | 113 (12.3%) | 92 (81.4%) | 21 (18.6%) | 1.27 (0.73, 2.20) | 0.403 | 1.19 (0.68, 2.09) | 0.538 |
Everyday | 96 (10.4%) | 72 (75.0%) | 24 (25.0%) | 1.85 (1.08, 3.18) | 0.026 | 1.92 (1.11, 3.33) | 0.021 |
p for trend | 0.033 | ||||||
Using app | |||||||
No | 307 (33.3%) | 264 (86.0%) | 43 (14.0%) | 1 | 0.037 | 1 | 0.022 |
1–3 days/week | 230 (25.0%) | 200 (87.0%) | 30 (13.0%) | 0.92 (0.56, 1.52) | 0.747 | 0.87 (0.52, 1.46) | 0.594 |
4–6 days/week | 196 (21.3%) | 156 (79.6%) | 40 (20.4%) | 1.57 (0.98, 2.53) | 0.061 | 1.64 (1.01, 2.68) | 0.048 |
Everyday | 188 (20.4%) | 148 (78.7%) | 40 (21.3%) | 1.66 (1.03, 2.67) | 0.037 | 1.65 (1.01, 2.72) | 0.047 |
p for trend | 0.010 | ||||||
Using air purifier | |||||||
No | 374 (40.6%) | 322 (86.1%) | 52 (13.9%) | 1 | 0.206 | 1 | 0.103 |
1–3 days/week | 137 (14.9%) | 113 (82.5%) | 24 (17.5%) | 1.32 (0.77, 2.23) | 0.310 | 1.24 (0.73, 2.13) | 0.430 |
4–6 days/week | 132 (14.3%) | 111 (84.1%) | 21 (15.9%) | 1.17 (0.68, 2.03) | 0.573 | 1.30 (0.74, 2.29) | 0.356 |
Everyday | 278 (30.2%) | 222 (79.9%) | 56 (20.1%) | 1.56 (1.03, 2.36) | 0.035 | 1.72 (1.12, 2.64) | 0.013 |
p for trend | 0.046 | ||||||
Using air detector | |||||||
No | 762 (82.7%) | 653 (85.7%) | 109 (14.3%) | 1 | <0.001 | 1 | <0.001 |
1–3 days/week | 74 (8.0%) | 57 (77.0%) | 17 (23.0%) | 1.79 (1.00, 3.19) | 0.049 | 1.67 (0.93, 3.00) | 0.089 |
4–6 days/week | 35 (3.8%) | 25 (71.4%) | 10 (28.6%) | 2.40 (1.12, 5.13) | 0.024 | 2.30 (1.06, 4.99) | 0.035 |
Everyday | 50 (5.4%) | 33 (66.0%) | 17 (34.0%) | 3.09 (1.66, 5.73) | <0.001 | 3.34 (1.77, 6.31) | <0.001 |
p for trend | <0.001 |
Variable | Spearman’s Rank Correlation Coefficient (rs) | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1. GAD score | 1.000 | ||||||
2. Level of worry about PM2.5 | 0.416 * | 1.000 | |||||
3. PM2.5 perception score | 0.268 * | 0.521 * | 1.000 | ||||
4. Frequency of monitoring via website | 0.025 | 0.111 * | 0.011 | 1.000 | |||
5. Frequency of monitoring via app | 0.109 * | 0.283 * | 0.153 * | 0.294 * | 1.000 | ||
6. Frequency of monitoring via air purifier | 0.089 * | 0.156 * | 0.156 * | 0.245 * | 0.244 * | 1.000 | |
7. Frequency of monitoring via air detector | 0.117 * | 0.140 * | 0.131 * | 0.250 * | 0.230 * | 0.212 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luangwilai, T.; Kunno, J.; Manomaipiboon, B.; Ruamtawee, W.; Ong-Artborirak, P. Risk Perception and Self-Monitoring of Particulate Matter 2.5 (PM 2.5) Associated with Anxiety Among General Population in Urban Thailand. Urban Sci. 2025, 9, 256. https://doi.org/10.3390/urbansci9070256
Luangwilai T, Kunno J, Manomaipiboon B, Ruamtawee W, Ong-Artborirak P. Risk Perception and Self-Monitoring of Particulate Matter 2.5 (PM 2.5) Associated with Anxiety Among General Population in Urban Thailand. Urban Science. 2025; 9(7):256. https://doi.org/10.3390/urbansci9070256
Chicago/Turabian StyleLuangwilai, Titaporn, Jadsada Kunno, Basmon Manomaipiboon, Witchakorn Ruamtawee, and Parichat Ong-Artborirak. 2025. "Risk Perception and Self-Monitoring of Particulate Matter 2.5 (PM 2.5) Associated with Anxiety Among General Population in Urban Thailand" Urban Science 9, no. 7: 256. https://doi.org/10.3390/urbansci9070256
APA StyleLuangwilai, T., Kunno, J., Manomaipiboon, B., Ruamtawee, W., & Ong-Artborirak, P. (2025). Risk Perception and Self-Monitoring of Particulate Matter 2.5 (PM 2.5) Associated with Anxiety Among General Population in Urban Thailand. Urban Science, 9(7), 256. https://doi.org/10.3390/urbansci9070256