Satellite Imagery for Comprehensive Urban Morphology and Surface Roughness Analysis: Leveraging GIS Tools and Google Earth Engine for Sustainable Urban Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Land Use Extraction
- Image collection selection: A Sentinel-2A image collection was loaded for the defined study area using the COPERNICUS/S2 dataset.
- Temporal filtering: To ensure temporal consistency and minimize seasonal variation, the collection was filtered to include only images acquired during the summer months—June, July, and August of 2024.
- Cloud cover filtering: The image collection was further filtered by selecting scenes with less than 20% cloud cover, using the CLOUDY_PIXEL_PERCENTAGE property available in the Sentinel-2 metadata.
- Cloud masking (optional but recommended): To further reduce residual cloud effects, cloud and shadow pixels were masked using the Sentinel-2 QA60 band.
- Image compositing: To derive a representative, noise-reduced dataset, a median composite image was then constructed, reducing residual cloud contamination and any radiometric inconsistencies.
- Output for analysis: The resulting median served as the basis for subsequent analyses.
2.3. Extraction of Surface Roughness Parameters
- zH is the mean building height within an area.
- λp is the plan area density and is calculated as the ratio of the total building footprint area (AT) within the study area to the total surface area (Ap) of the study area (AT/Ap).
- λF is the frontal area density and is calculated as the ratio of the total frontal area of the buildings (AF) within a given area to the total surface area (Ap) of the study area (AF/Ap).
- fd is an empirical coefficient that depends on the building and vegetation density and fo is an empirical coefficient that depends on the frontal area density of the buildings.
Classification Schema of Sub-Units of the Examined Urban Area
- The division of the study area into small geographical units that include typical features of an urban neighborhood, such as two to three building blocks, road networks and intersections, urban green spaces, etc.
- Consideration of the spatial resolution of the available imagery to ensure that these urban characteristics can be adequately identified; in our case the spatial resolution of the available WorldView-2 image of 0.5 m.
- The ability to produce detailed results suitable for high-scale maps, such as 1:5000 to 1:1000.
3. Results
3.1. Classification of Urban Sub-Units Based on Built-Up Density
3.2. Classification of Urban Sub-Units Based on Identified Airflow Type
3.3. Classification of Urban Sub-Units Based on Built-Up Volume and Porosity Index
- Ph: Urban porosity (airflow permeability of the urban area)
- AT: Total area of the study region
- h: Average building height above ground within the sub-unit (calculated based on the floor heights of the buildings it contains)
- V: Total built volume within the study area
3.4. Associations Between the Built-Up Area, Airflow Type, and Porosity Index Across Urban Subunits
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Navarro, M.; D’Agostino, A.; Neri, L. The Effect of Urbanization on Subjective Well-Being: Explaining Cross-Regional Differences. Socio-Econ. Plan. Sci. 2020, 71, 100824. [Google Scholar] [CrossRef]
- Winters, J.V.; Li, Y. Urbanisation, Natural Amenities and Subjective Well-Being: Evidence from US Counties. Urban Stud. 2017, 54, 1956–1973. [Google Scholar] [CrossRef]
- Smyth, R.; Mishra, V.; Qian, X. The Environment and Well-Being in Urban China. Ecol. Econ. 2008, 68, 547–555. [Google Scholar] [CrossRef]
- Mouratidis, K. Built Environment and Social Well-Being: How Does Urban Form Affect Social Life and Personal Relationships? Cities 2018, 74, 7–20. [Google Scholar] [CrossRef]
- United Nations—The 17 Goals|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 11 June 2024).
- United Nations—SDG Indicators. Available online: https://unstats.un.org/sdgs/report/2023/ (accessed on 23 January 2025).
- Hassan, A.M.; ELMokadem, A.A.; Megahed, N.A.; Abo Eleinen, O.M. Urban Morphology as a Passive Strategy in Promoting Outdoor Air Quality. J. Build. Eng. 2020, 29, 101204. [Google Scholar] [CrossRef]
- Tomas, J.M.; Eisma, H.E.; Pourquie, M.J.B.M.; Elsinga, G.E.; Jonker, H.J.J.; Westerweel, J. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness. Bound.-Layer Meteorol. 2017, 163, 225–251. [Google Scholar] [CrossRef]
- Tsirigoti, D.; Bikas, D. A Cross Scale Analysis of the Relationship Between Energy Efficiency and Urban Morphology in the Greek City Context. Procedia Environ. Sci. 2017, 38, 682–687. [Google Scholar] [CrossRef]
- Adolphe, L. A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities. Environ. Plan. B Plan. Des. 2001, 28, 183–200. [Google Scholar] [CrossRef]
- Hildebrand, F. Designing the City Towards a More Sustainable Urban Form, 1st ed.; Taylor & Francis: London, UK, 2003; ISBN 978-0-203-36243-3. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, G.; Zhou, X.; Zhang, T.; Bie, X.; Li, J.; Ji, B. Spatial Distribution and Influencing Factors on Urban Land Surface Temperature of Twelve Megacities in China from 2000 to 2017. Ecol. Indic. 2021, 125, 107533. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Hu, D. Effects of Urban Morphology on Thermal Comfort at the Micro-Scale. Sustain. Cities Soc. 2022, 86, 104150. [Google Scholar] [CrossRef]
- Santamouris, M. Regulating the Damaged Thermostat of the Cities—Status, Impacts and Mitigation Challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Stone, B., Jr. Urban and Rural Temperature Trends in Proximity to Large US Cities: 1951–2000. Int. J. Climatol. 2007, 27, 1801–1807. [Google Scholar] [CrossRef]
- Assaf, M.N.; Selma, A.; Kacem, M. Spatiotemporal Investigation of Surface Urban Heat Island (SUHI) Using Landsat: Application on African Cities. In Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2023. [Google Scholar]
- O’Malley, C.; Piroozfarb, P.A.E.; Farr, E.R.P.; Gates, J. An Investigation into Minimizing Urban Heat Island (UHI) Effects: A UK Perspective. Energy Procedia 2014, 62, 72–80. [Google Scholar] [CrossRef]
- Shi, L.; Ling, F.; Foody, G.M.; Yang, Z.; Liu, X.; Du, Y. Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China. Int. J. Environ. Res. Public Health 2021, 18, 7242. [Google Scholar] [CrossRef]
- Stamou, A.; Karachaliou, E.; Dosiou, A.; Tavantzis, I.; Stylianidis, E. Exploring Patterns of Surface Urban Heat Island Intensity: A Comparative Analysis of Three Greek Urban Areas. Discov. Cities 2024, 1, 18. [Google Scholar] [CrossRef]
- Hidalgo-García, D.; Arco-Díaz, J. Modeling the Surface Urban Heat Island (SUHI) to Study of Its Relationship with Variations in the Thermal Field and with the Indices of Land Use in the Metropolitan Area of Granada (Spain). Sustain. Cities Soc. 2022, 87, 104166. [Google Scholar] [CrossRef]
- Smith, M.W. Roughness in the Earth Sciences. Earth-Sci. Rev. 2014, 136, 202–225. [Google Scholar] [CrossRef]
- Bottema, M.; Mestayer, P.G. Urban Roughness Mapping—Validation Techniques and Some First Results. J. Wind Eng. Ind. Aerodyn. 1998, 74–76, 163–173. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Chappell, A.; Heritage, G.L. Using Illumination and Shadow to Model Aerodynamic Resistance and Flow Separation: An Isotropic Study. Atmos. Environ. 2007, 41, 5817–5830. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Kerle, N.; Poesen, J.; Hervás, J. Object-Oriented Identification of Forested Landslides with Derivatives of Single Pulse LiDAR Data. Geomorphology 2012, 173–174, 30–42. [Google Scholar] [CrossRef]
- Kent, C.W.; Grimmond, S.; Gatey, D. Aerodynamic Roughness Parameters in Cities: Inclusion of Vegetation. J. Wind Eng. Ind. Aerodyn. 2017, 169, 168–176. [Google Scholar] [CrossRef]
- Stamou, A.; Patias, P. Evaluating the Sustainability Footprint of an Urban Tissue: Estimating Urban Morphology and Surface Roughness Using Satellite Imagery. In Proceedings of the Living Planet Symposium EUROPEAN SPACE AGENCY, Milan, Italy, 19 May 2019. [Google Scholar]
- Brozovsky, J.; Corio, S.; Gaitani, N.; Gustavsen, A. Evaluation of Sustainable Strategies and Design Solutions at High-Latitude Urban Settlements to Enhance Outdoor Thermal Comfort. Energy Build. 2021, 244, 111037. [Google Scholar] [CrossRef]
- Akbari, H. Shade Trees Reduce Building Energy Use and CO2 Emissions from Power Plants. Environ. Pollut. 2002, 116, S119–S126. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, A.d.L.; Vollaro, R.d.L. How High Albedo and Traditional Buildings’ Materials and Vegetation Affect the Quality of Urban Microclimate. A Case Study. Energy Build. 2015, 99, 32–49. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Evapotranspiration Rates in Urban Areas; IAHS Publ: Oxfordshire, UK, 1999. [Google Scholar]
- Cheng, X.; Gulliver, J.S.; Zhu, D. Application of Displacement Height and Surface Roughness Length to Determination Boundary Layer Development Length over Stepped Spillway. Water 2014, 6, 3888–3912. [Google Scholar] [CrossRef]
- Schaudt, K.J. A New Method for Estimating Roughness Parameters and Evaluating the Quality of Observations. J. Appl. Meteorol. 1998, 37, 470–476. [Google Scholar] [CrossRef]
- Schaudt, K.J.; Dickinson, R.E. An Approach to Deriving Roughness Length and Zero-Plane Displacement Height from Satellite Data, Prototyped with BOREAS Data. Agric. For. Meteorol. 2000, 104, 143–155. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Lv, G.; Zhao, K.; Qin, Y.; Ge, J. An Urban-Scale Method for Building Roofs Available Wind Resource Evaluation Based on Aerodynamic Parameters of Urban Sublayer Surfaces. Sustain. Cities Soc. 2022, 80, 103790. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Yigitcanlar, T.; Guaralda, M.; Degirmenci, K.; Liu, A. Spatial Modelling of Urban Wind Characteristics: Review of Contributions to Sustainable Urban Development. Buildings 2024, 14, 737. [Google Scholar] [CrossRef]
- Mirzaei, P.A. CFD Modeling of Micro and Urban Climates: Problems to Be Solved in the New Decade. Sustain. Cities Soc. 2021, 69, 102839. [Google Scholar] [CrossRef]
- Stathopoulos, T.; Baskaran, A. Boundary Treatment for the Computation of Three-Dimensional Wind Flow Conditions around a Building. J. Wind Eng. Ind. Aerodyn. 1990, 35, 177–200. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kim, J.-J. A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons. J. Appl. Meteorol. 1999, 38, 1576–1589. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kim, J.-J.; Fernando, H.J.S. A CFD Model for Simulating Urban Flow and Dispersion. J. Appl. Meteorol. 2003, 42, 1636–1648. [Google Scholar] [CrossRef]
- Yuan, C.; Ng, E. Building Porosity for Better Urban Ventilation in High-Density Cities—A Computational Parametric Study. Build. Environ. 2012, 50, 176–189. [Google Scholar] [CrossRef]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C.H. Improving the Wind Environment in High-Density Cities by Understanding Urban Morphology and Surface Roughness: A Study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef]
- Drew, D.R.; Barlow, J.F.; Lane, S.E. Observations of Wind Speed Profiles over Greater London, UK, Using a Doppler Lidar. J. Wind Eng. Ind. Aerodyn. 2013, 121, 98–105. [Google Scholar] [CrossRef]
- Kent, C.W.; Grimmond, C.S.B.; Gatey, D.; Barlow, J.F. Assessing Methods to Extrapolate the Vertical Wind-Speed Profile from Surface Observations in a City Centre during Strong Winds. J. Wind Eng. Ind. Aerodyn. 2018, 173, 100–111. [Google Scholar] [CrossRef]
- Ng, E. Policies and Technical Guidelines for Urban Planning of High-Density Cities—Air Ventilation Assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- He, Y.; Ren, C.; Mak, H.W.L.; Lin, C.; Wang, Z.; Fung, J.C.H.; Li, Y.; Lau, A.K.H.; Ng, E. Investigations of High-Density Urban Boundary Layer under Summer Prevailing Wind Conditions with Doppler LiDAR: A Case Study in Hong Kong. Urban Clim. 2021, 38, 100884. [Google Scholar] [CrossRef]
- Chen, T.-H.K.; Prishchepov, A.V.; Sabel, C.E. Detecting Urban Form Using Remote Sensing: Spatiotemporal Research Gaps for Sustainable Environment and Human Health. In Earth Data Analytics for Planetary Health; Wen, T.-H., Chuang, T.-W., Tipayamongkholgul, M., Eds.; Springer Nature: Singapore, 2023; pp. 185–217. ISBN 978-981-19876-5-6. [Google Scholar]
- Albizua, L.; Donezar, U.; Ibáñez, J.C. Monitoring Urban Development Consolidation for Regional Management on Water Supply Using Remote Sensing Techniques. Eur. J. Remote Sens. 2012, 45, 283–292. [Google Scholar] [CrossRef]
- Aldred, D.; Wang, J. Object-Oriented Image Classification for Urban Building Boundary Extraction from Ikonos Imagery. In Proceedings of the 28th Canadian Symposium on Remote Sensing and ASPRS Fall Specialty Conference 2007, Ottawa, ON, Canada, 28 October–1 November 2007; pp. 1–10. [Google Scholar]
- Bonafoni, S.; Baldinelli, G.; Verducci, P. Sustainable Strategies for Smart Cities: Analysis of the Town Development Effect on Surface Urban Heat Island through Remote Sensing Methodologies. Sustain. Cities Soc. 2017, 29, 211–218. [Google Scholar] [CrossRef]
- Bouziani, M.; Goita, K.; He, D.C. Rule-Based Classification of a Very High Resolution Image in an Urban Environment Using Multispectral Segmentation Guided by Cartographic Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3198–3211. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote Sensing Image-Based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Cieślak, I.; Biłozor, A.; Szuniewicz, K. The Use of the CORINE Land Cover (CLC) Database for Analyzing Urban Sprawl. Remote Sens. 2020, 12, 282. [Google Scholar] [CrossRef]
- Stamou, A.; Manika, S.; Patias, P. Estimation of Land Surface Temperature and Urban Patterns Relationship for Urban Heat Island Studies. In Proceedings of the International Conference on “Changing Cities”: Spatial, Morphological, Formal & Socio-economic Dimensions, Skiathos Island, Greece, 18–21 June 2013. [Google Scholar]
- Singh, A.; Gaurav, K.; Rai, A.K.; Beg, Z. Machine Learning to Estimate Surface Roughness from Satellite Images. Remote Sens. 2021, 13, 3794. [Google Scholar] [CrossRef]
- Zribi, M.; Dechambre, M. A New Empirical Model to Retrieve Soil Moisture and Roughness from C-Band Radar Data. Remote Sens. Environ. 2003, 84, 42–52. [Google Scholar] [CrossRef]
- Marzahn, P.; Rieke-Zapp, D.; Ludwig, R. Assessment of Soil Surface Roughness Statistics for Microwave Remote Sensing Applications Using a Simple Photogrammetric Acquisition System. ISPRS J. Photogramm. Remote Sens. 2012, 72, 80–89. [Google Scholar] [CrossRef]
- Kalamaria. Βικιπαίδεια. 2025. Available online: https://en.wikipedia.org/wiki/Kalamaria (accessed on 5 March 2025).
- Main Page ELSTAT—ELSTAT. Available online: https://www.statistics.gr/en/home/ (accessed on 5 March 2025).
- ECMWF. Available online: https://www.ecmwf.int/ (accessed on 20 January 2025).
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- WorldView-2. Available online: https://resources.maxar.com/data-sheets/worldview-2 (accessed on 21 March 2025).
- GEODATA.Gov.Gr. Available online: https://geodata.gov.gr/ (accessed on 29 April 2024).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Yin, C. Fine Crop Classification Based on UAV Hyperspectral Images and Random Forest. ISPRS Int. J. Geo-Inf. 2022, 11, 252. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using Polarimetric and Spatial Features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Svoboda, J.; Štych, P.; Laštovička, J.; Paluba, D.; Kobliuk, N. Random Forest Classification of Land Use, Land-Use Change and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia. Remote Sens. 2022, 14, 1189. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Hobi, M.L.; Ginzler, C. Accuracy Assessment of Digital Surface Models Based on WorldView-2 and ADS80 Stereo Remote Sensing Data. Sensors 2012, 12, 6347–6368. [Google Scholar] [CrossRef]
- Novack, T.; Esch, T.; Kux, H.; Stilla, U. Machine Learning Comparison Between WorldView-2 and QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification. Remote Sens. 2011, 3, 2263–2282. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-429-14397-7. [Google Scholar]
- Weng, Q. Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. Detection of Ventilation Paths Using High-Resolution Roughness Parameter Mapping in a Large Urban Area. Build. Environ. 2009, 44, 198–206. [Google Scholar] [CrossRef]
- Garratt, J. Review: The Atmospheric Boundary Layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Hanna, S.R.; Chang, J.C. Boundary-Layer Parameterizations for Applied Dispersion Modeling over Urban Areas. Bound.-Layer Meteorol. 1992, 58, 229–259. [Google Scholar] [CrossRef]
- Theodoridis, G.; Moussiopoulos, N. Influence of Building Density and Roof Shape on the Wind and Dispersion Characteristics in an Urban Area: A Numerical Study. Environ. Monit. Assess. 2000, 65, 407–415. [Google Scholar] [CrossRef]
- Tadi, M.; Zadeh, M.H.M.; di Milano, P. Urban Porosity. A Morphological Key Category for the Optimization of the CAS’s Environmental and Energy Performance. GSTF J. Eng. Technol. 2017, 4, 138. [Google Scholar]
- Myers, L.; Sirois, M.J. Spearman Correlation Coefficients, Differences Between. In Encyclopedia of Statistical Sciences; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-66719-3. [Google Scholar]
- Abarca-Alvarez, F.J.; Campos-Sánchez, F.S.; Osuna-Pérez, F. Urban Shape and Built Density Metrics through the Analysis of European Urban Fabrics Using Artificial Intelligence. Sustainability 2019, 11, 6622. [Google Scholar] [CrossRef]
- Trossman Haifler, Y.; Fisher-Gewirtzman, D. Spatial Parameters Determining Urban Wellbeing: A Behavioral Experiment. Buildings 2024, 14, 211. [Google Scholar] [CrossRef]
- Eleni, V.; Georgia, P.; Alexandros, S. The Effect of Urban Density, Green Spaces and Mobility Patterns in Cities’ Environmental Quality: An Empirical Study of the Metropolitan Area of Thessaloniki. Spatium 2015, 1, 8–17. [Google Scholar] [CrossRef]
- Gherraz, H.; Guechi, I.; Alkama, D. Quantifying the Effects of Spatial Patterns of Green Spaces on Urban Climate and Urban Heat Island in a Semi-Arid Climate. Bull. Soc. R. Sci. Liège 2020, 89, 164–185. [Google Scholar] [CrossRef]
- Rosso, F.; Pioppi, B.; Pisello, A.L. Pocket Parks for Human-Centered Urban Climate Change Resilience: Microclimate Field Tests and Multi-Domain Comfort Analysis through Portable Sensing Techniques and Citizens’ Science. Energy Build. 2022, 260, 111918. [Google Scholar] [CrossRef]
- Rosso, F.; Pisello, A.L.; Castaldo, V.L.; Fabiani, C.; Cotana, F.; Ferrero, M.; Jin, W. New Cool Concrete for Building Envelopes and Urban Paving: Optics-Energy and Thermal Assessment in Dynamic Conditions. Energy Build. 2017, 151, 381–392. [Google Scholar] [CrossRef]
Number of Trees in RF | Overall Classification Accuracy | Overall Kappa Statistics |
---|---|---|
100 | 86.40% | 0.84 |
150 | 88.43% | 0.88 |
200 | 87.02% | 0.86 |
250 | 86.79% | 0.85 |
Urban Density-Flow Regime | Mean Building Height zH (m) | Zero-Plane Displacement Height zd (m) | Roughness Length zo (m) |
---|---|---|---|
A: Low density—Isolated flow | 5–7 | 2–4 | 0.3–0.8 |
Β: Medium density—Wake interference flow | 7–11 | 3.5–8 | 0.7–1.5 |
C: High density: Skimming flow | 12–20 | 7–15 | 0.8–1.5 |
Porosity Index Values | Classification | Urban Permeability Rationale |
---|---|---|
p < 0.50 | Low Porosity | Restricted airflow |
0.50 ≤ p < 0.70 | Medium Porosity | Moderate air circulation |
0.70 ≤ p < 0.99 | High Porosity | Good ventilation potential |
Correlations | |||||
---|---|---|---|---|---|
Built-Up Area | Airflow Type | Porosity | |||
Spearman’s rho | Built-up area | Correlation Coefficient | 1.000 | 0.641 ** | −0.731 ** |
Sig. (2-tailed) | 0.000 | 0.000 | |||
N | 150 | 150 | 150 | ||
Airflow type | Correlation Coefficient | 0.641 ** | 1.000 | −0.582 ** | |
Sig. (2-tailed) | 0.000 | 0.000 | |||
N | 150 | 150 | 150 | ||
Porosity | Correlation Coefficient | −0.731 ** | −0.582 ** | 1.000 | |
Sig. (2-tailed) | 0.000 | 0.000 | |||
N | 150 | 150 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamou, A.; Karachaliou, E.; Tavantzis, I.; Bakousi, A.; Dosiou, A.; Tsifodimou, Z.-E.; Stylianidis, E. Satellite Imagery for Comprehensive Urban Morphology and Surface Roughness Analysis: Leveraging GIS Tools and Google Earth Engine for Sustainable Urban Planning. Urban Sci. 2025, 9, 213. https://doi.org/10.3390/urbansci9060213
Stamou A, Karachaliou E, Tavantzis I, Bakousi A, Dosiou A, Tsifodimou Z-E, Stylianidis E. Satellite Imagery for Comprehensive Urban Morphology and Surface Roughness Analysis: Leveraging GIS Tools and Google Earth Engine for Sustainable Urban Planning. Urban Science. 2025; 9(6):213. https://doi.org/10.3390/urbansci9060213
Chicago/Turabian StyleStamou, Aikaterini, Eleni Karachaliou, Ioannis Tavantzis, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, and Efstratios Stylianidis. 2025. "Satellite Imagery for Comprehensive Urban Morphology and Surface Roughness Analysis: Leveraging GIS Tools and Google Earth Engine for Sustainable Urban Planning" Urban Science 9, no. 6: 213. https://doi.org/10.3390/urbansci9060213
APA StyleStamou, A., Karachaliou, E., Tavantzis, I., Bakousi, A., Dosiou, A., Tsifodimou, Z.-E., & Stylianidis, E. (2025). Satellite Imagery for Comprehensive Urban Morphology and Surface Roughness Analysis: Leveraging GIS Tools and Google Earth Engine for Sustainable Urban Planning. Urban Science, 9(6), 213. https://doi.org/10.3390/urbansci9060213