Validating Pedestrian Infrastructure Data: How Well Do Street-View Imagery Audits Compare to Government Field Data?
Abstract
:1. Introduction
2. Background
2.1. Auditing Pedestrian Infrastructure
2.2. Crowdsourcing and Citizen-Based Data Collection
2.3. Project Sidewalk Tool
3. Methods and Data
3.1. Study Context
3.2. Sampling—Comparison Area Selection
3.3. Rater Auditing Process
4. Analysis and Results
4.1. Data Comparison Preprocessing
4.1.1. Curb Ramp
4.1.2. Sidewalk Condition
4.1.3. No Sidewalk
4.1.4. Crosswalk
4.1.5. Pedestrian Signal
4.2. Analysis Comparing Project Sidewalk and Government Data
5. Discussion and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | American Community Survey |
ADA | Americans with Disabilities Act |
AI | Artificial intelligence |
EPA | Environmental Protection Agency |
GPS | Global Positioning System |
GSV | Google Street View |
IRR | Inter-rater reliability |
LiDAR | Light Detection and Ranging |
MHI | Median Household Income |
OGD | Open government data |
OSM | OpenStreetMap |
PPGIS | Public Participation in Geographic Information Systems |
PwDs | People with disabilities |
SVI | Street view imagery |
VGI | Volunteered Geographic Information |
References
- Dadashova, B.; Park, E.S.; Mousavi, S.M.; Dai, B.; Sanders, R. Assessment of Inequity in Bicyclist Crashes Using Bivariate Bayesian Copulas. J. Saf. Res. 2022, 82, 221–232. [Google Scholar] [CrossRef] [PubMed]
- McAndrews, C.; Beyer, K.; Guse, C.; Layde, P. Linking Transportation and Population Health to Reduce Racial and Ethnic Disparities in Transportation Injury: Implications for Practice and Policy. Int. J. Sustain. Transp. 2017, 11, 197–205. [Google Scholar] [CrossRef]
- Eisenberg, Y.; Heider, A.; Gould, R.; Jones, R. Are Communities in the United States Planning for Pedestrians with Disabilities? Findings from a Systematic Evaluation of Local Government Barrier Removal Plans. Cities 2020, 102, 102720. [Google Scholar] [CrossRef]
- Froehlich, J.E.; Eisenberg, Y.; Hosseini, M.; Miranda, F.; Adams, M.; Caspi, A.; Dieterich, H.; Feldner, H.; Gonzalez, A.; De Gyves, C.; et al. The Future of Urban Accessibility for People with Disabilities: Data Collection, Analytics, Policy, and Tools. In ASSETS 2022—Proceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility in Proceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility, New York, NY, USA, 22 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–8. [Google Scholar]
- Lee, E.H.; Jeong, J. Accessible Taxi Routing Strategy Based on Travel Behavior of People with Disabilities Incorporating Vehicle Routing Problem and Gaussian Mixture Model. Travel Behav. Soc. 2024, 34, 100687. [Google Scholar] [CrossRef]
- Levine, K.; Karner, A. Approaching Accessibility: Four Opportunities to Address the Needs of Disabled People in Transportation Planning in the United States. Transp. Policy 2023, 131, 66–74. [Google Scholar] [CrossRef]
- Soliz, A.; Carvalho, T.; Sarmiento-Casas, C.; Sánchez-Rodríguez, J.; El-Geneidy, A. Scaling up Active Transportation across North America: A Comparative Content Analysis of Policies through a Social Equity Framework. Transp. Res. Part A Policy Pract. 2023, 176, 103788. [Google Scholar] [CrossRef]
- Hwang, J. A Factor Analysis for Identifying People with Disabilities’ Mobility Issues in Built Environments. Transp. Res. Part F Traffic Psychol. Behav. 2022, 88, 122–131. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, S.; Li, D.; Bai, Y.; Wang, M. Automatic Concrete Sidewalk Deficiency Detection and Mapping with Deep Learning. Expert Syst. Appl. 2022, 207, 117980. [Google Scholar] [CrossRef]
- Park, K.; Esfahani, H.N.; Novack, V.L.; Sheen, J.; Hadayeghi, H.; Song, Z.; Christensen, K. Impacts of Disability on Daily Travel Behaviour: A Systematic Review. Transp. Rev. 2023, 43, 178–203. [Google Scholar] [CrossRef]
- Schwartz, N.; Buliung, R.; Daniel, A.; Rothman, L. Disability and Pedestrian Road Traffic Injury: A Scoping Review. Health Place 2022, 77, 102896. [Google Scholar] [CrossRef]
- Eisenberg, Y.; Hofstra, A.; Berquist, S.; Gould, R.; Jones, R. Barrier-Removal Plans and Pedestrian Infrastructure Equity for People with Disabilities. Transp. Res. Part D Transp. Environ. 2022, 109, 103356. [Google Scholar] [CrossRef]
- Clarke, P.; Ailshire, J.A.; Bader, M.; Morenoff, J.D.; House, J.S. Mobility Disability and the Urban Built Environment. Am. J. Epidemiol. 2008, 168, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Henly, M.; Brucker, D.L. Transportation Patterns Demonstrate Inequalities in Community Participation for Working-Age Americans with Disabilities. Transp. Res. Part A Policy Pract. 2019, 130, 93–106. [Google Scholar] [CrossRef]
- Project Civic Action Information and Technical Assistance on the Americans with Disabilities Act. Available online: https://archive.ada.gov/civicac.htm (accessed on 28 October 2023).
- Jackson, M.A. Models of Disability and Human Rights: Informing the Improvement of Built Environment Accessibility for People with Disability at Neighborhood Scale? Laws 2018, 7, 10. [Google Scholar] [CrossRef]
- Ai, C.; Tsai, Y. Automated Sidewalk Assessment Method for Americans with Disabilities Act Compliance Using Three-Dimensional Mobile Lidar. Transp. Res. Rec. 2016, 2542, 25–32. [Google Scholar] [CrossRef]
- Deitz, S.; Lobben, A.; Alferez, A. Squeaky Wheels: Missing Data, Disability, and Power in the Smart City. Big Data Soc. 2021, 8, 20539517211047735. [Google Scholar] [CrossRef]
- Rhoads, D.; Rames, C.; Solé-Ribalta, A.; González, M.C.; Szell, M.; Borge-Holthoefer, J. Sidewalk Networks: Review and Outlook. Comput. Environ. Urban Syst. 2023, 106, 102031. [Google Scholar] [CrossRef]
- Saha, M.; Saugstad, M.; Maddali, H.T.; Zeng, A.; Holland, R.; Bower, S.; Dash, A.; Chen, S.; Li, A.; Hara, K.; et al. Project Sidewalk: A Web-Based Crowdsourcing Tool for Collecting Sidewalk Accessibility Data At Scale. In CHI ‘19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 2 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–14. [Google Scholar]
- Hosseini, M.; Saugstad, M.; Miranda, F.; Sevtsuk, A.; Silva, C.T.; Froehlich, J.E. Towards Global-Scale Crowd+AI Techniques to Map and Assess Sidewalks for People with Disabilities. arXiv 2022, arXiv:2206.13677. [Google Scholar]
- Hamraie, A. Mapping Access: Digital Humanities, Disability Justice, and Sociospatial Practice. Am. Q. 2018, 70, 455–482. [Google Scholar] [CrossRef]
- Basiri, A.; Haklay, M.; Foody, G.; Mooney, P. Crowdsourced Geospatial Data Quality: Challenges and Future Directions. Int. J. Geogr. Inf. Sci. 2019, 33, 1588–1593. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.; Yang, D.; Hu, T.; Chen, M.; Zhang, M.; Zhang, G.; Biljecki, F.; Lu, T.; Zou, L.; et al. Crowdsourcing Geospatial Data for Earth and Human Observations: A Review. J. Remote Sens. 2024, 4, 0105. [Google Scholar] [CrossRef]
- Khan, Z.T.; Johnson, P.A. Citizen and Government Co-Production of Data: Analyzing the Challenges to Government Adoption of VGI. Can. Geogr. Géographies Can. 2020, 64, 374–387. [Google Scholar] [CrossRef]
- Lanza, G.; Pucci, P.; Carboni, L. Measuring Accessibility by Proximity for an Inclusive City. Cities 2023, 143, 104581. [Google Scholar] [CrossRef]
- Fonte, C.C.; Antoniou, V.; Bastin, L.; Estima, J.; Arsanjani, J.J.; Bayas, J.-C.L.; See, L.; Vatseva, R. Assessing VGI Data Quality. In Mapping and the Citizen Sensor; Fonte, C.C., Antoniou, V., See, L., Foody, G., Fritz, S., Mooney, P., Olteanu-Raimond, A.-M., Eds.; Ubiquity Press: London, UK, 2017; pp. 137–164. ISBN 978-1-911529-16-3. [Google Scholar]
- Radosevic, N.; Duckham, M.; Saiedur Rahaman, M.; Ho, S.; Williams, K.; Hashem, T.; Tao, Y. Spatial Data Trusts: An Emerging Governance Framework for Sharing Spatial Data. Int. J. Digit. Earth 2023, 16, 1607–1639. [Google Scholar] [CrossRef]
- Mirri, S.; Prandi, C.; Salomoni, P.; Callegati, F.; Campi, A. On Combining Crowdsourcing, Sensing and Open Data for an Accessible Smart City. In Proceedings of the 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, UK, 10–12 September 2014; pp. 294–299. [Google Scholar]
- Dorn, H.; Törnros, T.; Zipf, A. Quality Evaluation of VGI Using Authoritative Data—A Comparison with Land Use Data in Southern Germany. ISPRS Int. J. Geo Inf. 2015, 4, 1657–1671. [Google Scholar] [CrossRef]
- Koukoletsos, T.; Haklay, M.; Ellul, C. Assessing Data Completeness of VGI through an Automated Matching Procedure for Linear Data. Trans. GIS 2012, 16, 477–498. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Minghini, M.; Molinari, M.; Mooney, P. Towards an Automated Comparison of OpenStreetMap with Authoritative Road Datasets. Trans. GIS 2017, 21, 191–206. [Google Scholar] [CrossRef]
- Haklay, M. How Good Is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef]
- Aghaabbasi, M.; Moeinaddini, M.; Shah, M.Z.; Asadi-Shekari, Z. Addressing Issues in the Use of Google Tools for Assessing Pedestrian Built Environments. J. Transp. Geogr. 2018, 73, 185–198. [Google Scholar] [CrossRef]
- Fox, E.H.; Chapman, J.E.; Moland, A.M.; Alfonsin, N.E.; Frank, L.D.; Sallis, J.F.; Conway, T.L.; Cain, K.L.; Geremia, C.; Cerin, E.; et al. International Evaluation of the Microscale Audit of Pedestrian Streetscapes (MAPS) Global Instrument: Comparative Assessment between Local and Remote Online Observers. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 84. [Google Scholar] [CrossRef]
- Goel, R.; Garcia, L.M.T.; Goodman, A.; Johnson, R.; Aldred, R.; Murugesan, M.; Brage, S.; Bhalla, K.; Woodcock, J. Estimating City-Level Travel Patterns Using Street Imagery: A Case Study of Using Google Street View in Britain. PLoS ONE 2018, 13, e0196521. [Google Scholar] [CrossRef]
- Google Google Maps 101: How Imagery Powers Our Map. Available online: https://blog.google/products/maps/google-maps-101-how-imagery-powers-our-map/ (accessed on 30 August 2023).
- Hou, Y.; Quintana, M.; Khomiakov, M.; Yap, W.; Ouyang, J.; Ito, K.; Wang, Z.; Zhao, T.; Biljecki, F. Global Streetscapes—A Comprehensive Dataset of 10 Million Street-Level Images across 688 Cities for Urban Science and Analytics. ISPRS J. Photogramm. Remote Sens. 2024, 215, 216–238. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street View Imagery in Urban Analytics and GIS: A Review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Badland, H.M.; Opit, S.; Witten, K.; Kearns, R.A.; Mavoa, S. Can Virtual Streetscape Audits Reliably Replace Physical Streetscape Audits? J. Urban Health 2010, 87, 1007–1016. [Google Scholar] [CrossRef]
- Sharif, A.; Gopal, P.; Saugstad, M.; Bhatt, S.; Fok, R.; Weld, G.; Asher Mankoff Dey, K.; Froehlich, J.E. Experimental Crowd+AI Approaches to Track Accessibility Features in Sidewalk Intersections Over Time. In Proceedings of the 23rd International ACM SIGACCESS Conference on Computers and Accessibility, ACM Virtual Event, 17 October 2021; pp. 1–5. [Google Scholar]
- Hanibuchi, T.; Nakaya, T.; Inoue, S. Virtual Audits of Streetscapes by Crowdworkers. Health Place 2019, 59, 102203. [Google Scholar] [CrossRef]
- Pliakas, T.; Hawkesworth, S.; Silverwood, R.J.; Nanchahal, K.; Grundy, C.; Armstrong, B.; Casas, J.P.; Morris, R.W.; Wilkinson, P.; Lock, K. Optimising Measurement of Health-Related Characteristics of the Built Environment: Comparing Data Collected by Foot-Based Street Audits, Virtual Street Audits and Routine Secondary Data Sources. Health Place 2017, 43, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Bromm, K.N.; Lang, I.-M.; Twardzik, E.E.; Antonakos, C.L.; Dubowitz, T.; Colabianchi, N. Virtual Audits of the Urban Streetscape: Comparing the Inter-Rater Reliability of GigaPan® to Google Street View. Int. J. Health Geogr. 2020, 19, 31. [Google Scholar] [CrossRef]
- Cain, K.L.; Gavand, K.A.; Conway, T.L.; Geremia, C.M.; Millstein, R.A.; Frank, L.D.; Saelens, B.E.; Adams, M.A.; Glanz, K.; King, A.C.; et al. Developing and Validating an Abbreviated Version of the Microscale Audit for Pedestrian Streetscapes (MAPS-Abbreviated). J. Transp. Health 2017, 5, 84–96. [Google Scholar] [CrossRef]
- Cain, K.L.; Geremia, C.M.; Conway, T.L.; Frank, L.D.; Chapman, J.E.; Fox, E.H.; Timperio, A.; Veitch, J.; Van Dyck, D.; Verhoeven, H.; et al. Development and Reliability of a Streetscape Observation Instrument for International Use: MAPS-Global. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 19. [Google Scholar] [CrossRef]
- Phillips, C.B.; Engelberg, J.K.; Geremia, C.M.; Zhu, W.; Kurka, J.M.; Cain, K.L.; Sallis, J.F.; Conway, T.L.; Adams, M.A. Online versus In-Person Comparison of Microscale Audit of Pedestrian Streetscapes (MAPS) Assessments: Reliability of Alternate Methods. Int. J. Health Geogr. 2017, 16, 27. [Google Scholar] [CrossRef]
- Queralt, A.; Molina-García, J.; Terrón-Pérez, M.; Cerin, E.; Barnett, A.; Timperio, A.; Veitch, J.; Reis, R.; Silva, A.A.P.; Ghekiere, A.; et al. Reliability of Streetscape Audits Comparing On-street and Online Observations: MAPS-Global in 5 Countries. Int. J. Health Geogr. 2021, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Bartzokas-Tsiompras, A.; Bakogiannis, E.; Nikitas, A. Global Microscale Walkability Ratings and Rankings: A Novel Composite Indicator for 59 European City Centres. J. Transp. Geogr. 2023, 111, 103645. [Google Scholar] [CrossRef]
- Kurka, J.M.; Adams, M.A.; Geremia, C.; Zhu, W.; Cain, K.L.; Conway, T.L.; Sallis, J.F. Comparison of Field and Online Observations for Measuring Land Uses Using the Microscale Audit of Pedestrian Streetscapes (MAPS). J. Transp. Health 2016, 3, 278–286. [Google Scholar] [CrossRef]
- Vanwolleghem, G.; Ghekiere, A.; Cardon, G.; De Bourdeaudhuij, I.; D’Haese, S.; Geremia, C.M.; Lenoir, M.; Sallis, J.F.; Verhoeven, H.; Van Dyck, D. Using an Audit Tool (MAPS Global) to Assess the Characteristics of the Physical Environment Related to Walking for Transport in Youth: Reliability of Belgian Data. Int. J. Health Geogr. 2016, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Sun, Y.; Kurka, J.; Geremia, C.; Engelberg, J.K.; Cain, K.; Conway, T.; Sallis, J.F.; Hooker, S.P.; Adams, M.A. Reliability between Online Raters with Varying Familiarities of a Region: Microscale Audit of Pedestrian Streetscapes (MAPS). Landsc. Urban Plan. 2017, 167, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Hamim, O.F.; Kancharla, S.R.; Ukkusuri, S.V. Mapping Sidewalks on a Neighborhood Scale from Street View Images. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 823–838. [Google Scholar] [CrossRef]
- Hosseini, M.; Sevtsuk, A.; Miranda, F.; Cesar, R.M.; Silva, C.T. Mapping the Walk: A Scalable Computer Vision Approach for Generating Sidewalk Network Datasets from Aerial Imagery. Comput. Environ. Urban Syst. 2023, 101, 101950. [Google Scholar] [CrossRef]
- Hou, Q.; Ai, C. A Network-Level Sidewalk Inventory Method Using Mobile LiDAR and Deep Learning. Transp. Res. Part C Emerg. Technol. 2020, 119, 102772. [Google Scholar] [CrossRef]
- Ning, H.; Li, Z.; Wang, C.; Hodgson, M.E.; Huang, X.; Li, X. Converting Street View Images to Land Cover Maps for Metric Mapping: A Case Study on Sidewalk Network Extraction for the Wheelchair Users. Comput. Environ. Urban Syst. 2022, 95, 101808. [Google Scholar] [CrossRef]
- Ning, H.; Ye, X.; Chen, Z.; Liu, T.; Cao, T. Sidewalk Extraction Using Aerial and Street View Images. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 7–22. [Google Scholar] [CrossRef]
- Li, M.; Sheng, H.; Irvin, J.; Chung, H.; Ying, A.; Sun, T.; Ng, A.Y.; Rodriguez, D.A. Marked Crosswalks in US Transit-Oriented Station Areas, 2007–2020: A Computer Vision Approach Using Street View Imagery. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 350–369. [Google Scholar] [CrossRef]
- Moran, M.E. Where the Crosswalk Ends: Mapping Crosswalk Coverage via Satellite Imagery in San Francisco. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 2250–2266. [Google Scholar] [CrossRef]
- Deitz, S. Outlier Bias: AI Classification of Curb Ramps, Outliers, and Context. Big Data Soc. 2023, 10, 20539517231203669. [Google Scholar] [CrossRef]
- Hara, K.; Sun, J.; Moore, R.; Jacobs, D.; Froehlich, J. Tohme: Detecting Curb Ramps in Google Street View Using Crowdsourcing, Computer Vision, and Machine Learning. In UIST ‘14: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, Proceedings of the 27th annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 5 October 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 189–204. [Google Scholar]
- Hosseini, M.; Miranda, F.; Lin, J.; Silva, C.T. CitySurfaces: City-Scale Semantic Segmentation of Sidewalk Materials. Sustain. Cities Soc. 2022, 79, 103630. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.; Lu, T.; Liu, Y.; Serrano-Estrada, L. Crowdsourced Geospatial Data Is Reshaping Urban Sciences. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103687. [Google Scholar] [CrossRef]
- See, L.; Estima, J.; Pődör, A.; Arsanjani, J.J.; Bayas, J.-C.L.; Vatseva, R. Sources of VGI for Mapping. In Mapping and the Citizen Sensor; See, L., Foody, G., Fritz, S., Mooney, P., Olteanu-Raimond, A.-M., Fonte, C.C., Antoniou, V., Eds.; Ubiquity Press: London, UK, 2017; pp. 13–36. ISBN 978-1-911529-16-3. [Google Scholar]
- Goodchild, M.F. Citizens as Sensors: The World of Volunteered Geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Granell, C.; Ostermann, F.O. Beyond Data Collection: Objectives and Methods of Research Using VGI and Geo-Social Media for Disaster Management. Comput. Environ. Urban Syst. 2016, 59, 231–243. [Google Scholar] [CrossRef]
- Mukherjee, F. Public Participatory GIS. Geogr. Compass 2015, 9, 384–394. [Google Scholar] [CrossRef]
- Tulloch, D. Public Participation GIS (PPGIS). In Encyclopedia of Geographic Information Science; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; pp. 352–354. [Google Scholar]
- Verplanke, J.; McCall, M.K.; Uberhuaga, C.; Rambaldi, G.; Haklay, M. A Shared Perspective for PGIS and VGI. Cartogr. J. 2016, 53, 308–317. [Google Scholar] [CrossRef]
- Ceccaroni, L.; Piera, J. Analyzing the Role of Citizen Science in Modern Research; Advances in Knowledge Acquisition, Transfer, and Management (AKATM) Book Series; Information Science Reference: Hershey, PA, USA, 2017; ISBN 978-1-5225-0962-2. [Google Scholar]
- Haklay, M. Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation. In Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice; Sui, D., Elwood, S., Goodchild, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 105–122. ISBN 978-94-007-4587-2. [Google Scholar]
- Heipke, C. Crowdsourcing Geospatial Data. ISPRS J. Photogramm. Remote Sens. 2010, 65, 550–557. [Google Scholar] [CrossRef]
- Ferster, C.; Fischer, J.; Manaugh, K.; Nelson, T.; Winters, M. Using OpenStreetMap to Inventory Bicycle Infrastructure: A Comparison with Open Data from Cities. Int. J. Sustain. Transp. 2020, 14, 64–73. [Google Scholar] [CrossRef]
- Prandi, C.; Salomoni, P.; Mirri, S. mPASS: Integrating People Sensing and Crowdsourcing to Map Urban Accessibility. In Proceedings of the 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2014; pp. 591–595. [Google Scholar]
- Gullón, P.; Badland, H.M.; Alfayate, S.; Bilal, U.; Escobar, F.; Cebrecos, A.; Diez, J.; Franco, M. Assessing Walking and Cycling Environments in the Streets of Madrid: Comparing On-Field and Virtual Audits. J. Urban Health 2015, 92, 923–939. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Deister, J.; Dieterich, H. Wheelmap: The Wheelchair Accessibility Crowdsourcing Platform. Open Geospat. Data Softw. Stand. 2017, 2, 27. [Google Scholar] [CrossRef]
- Ding, X.; Fan, H.; Gong, J. Towards Generating Network of Bikeways from Mapillary Data. Comput. Environ. Urban Syst. 2021, 88, 101632. [Google Scholar] [CrossRef]
- Mahabir, R.; Schuchard, R.; Crooks, A.; Croitoru, A.; Stefanidis, A. Crowdsourcing Street View Imagery: A Comparison of Mapillary and OpenStreetCam. ISPRS Int. J. Geo. Inf. 2020, 9, 341. [Google Scholar] [CrossRef]
- Danish, M.; Labib, S.M.; Ricker, B.; Helbich, M. A Citizen Science Toolkit to Collect Human Perceptions of Urban Environments Using Open Street View Images. Comput. Environ. Urban Syst. 2025, 116, 102207. [Google Scholar] [CrossRef]
- Xu, L.; Kwan, M.-P.; McLafferty, S.; Wang, S. Predicting Demand for 311 Non-Emergency Municipal Services: An Adaptive Space-Time Kernel Approach. Appl. Geogr. 2017, 89, 133–141. [Google Scholar] [CrossRef]
- Schiff, K.J. Does Collective Citizen Input Impact Government Service Provision? Evidence from SeeClickFix Requests. Public Adm. Rev. 2025, 85, 32–45. [Google Scholar] [CrossRef]
- Hara, K.; Le, V.; Froehlich, J. Combining Crowdsourcing and Google Street View to Identify Street-Level Accessibility Problems. In CHI ‘13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April 2013; ACM: Paris, France, 2013; pp. 631–640. [Google Scholar]
- Senaratne, H.; Mobasheri, A.; Ali, A.L.; Capineri, C.; Haklay, M. A Review of Volunteered Geographic Information Quality Assessment Methods. Int. J. Geogr. Inf. Sci. 2017, 31, 139–167. [Google Scholar] [CrossRef]
- Blatt, A.J. Data Privacy and Ethical Uses of Volunteered Geographic Information. In Health, Science, and Place: A New Model; Blatt, A.J., Ed.; Geotechnologies and the Environment; Springer International Publishing: Cham, Switzerland, 2015; pp. 49–59. ISBN 978-3-319-12003-4. [Google Scholar]
- Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. Benefits, Adoption Barriers and Myths of Open Data and Open Government. Inf. Syst. Manag. 2012, 29, 258–268. [Google Scholar] [CrossRef]
- Zuiderwijk, A.; Janssen, M. Barriers and Development Directions for the Publication and Usage of Open Data: A Socio-Technical View. In Open Government: Opportunities and Challenges for Public Governance; Gascó-Hernández, M., Ed.; Public Administration and Information Technology; Springer: New York, NY, USA, 2014; pp. 115–135. ISBN 978-1-4614-9563-5. [Google Scholar]
- Labbé, D.; Eisenberg, Y.; Snyder, D.; Shanley, J.; Hammel, J.M.; Froehlich, J.E. Multiple-Stakeholder Perspectives on Accessibility Data and the Use of Socio-Technical Tools to Improve Sidewalk Accessibility. Disabilities 2023, 3, 621–638. [Google Scholar] [CrossRef]
- Weld, G.; Jang, E.; Li, A.; Zeng, A.; Heimerl, K.; Froehlich, J.E. Deep Learning for Automatically Detecting Sidewalk Accessibility Problems Using Streetscape Imagery. In ASSETS ‘19: Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility, Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility, New York, NY, USA, 24 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 196–209. [Google Scholar]
- U.S. Department of Justice 2010 ADA Standards for Accessible Design. Available online: https://www.ada.gov/law-and-regs/design-standards/2010-stds/ (accessed on 4 May 2023).
- Difallah, D.E.; Demartini, G.; Cudré-Mauroux, P. Pick-a-Crowd: Tell Me What You Like, and I’ll Tell You What to Do. In WWW ‘13 Companion: Proceedings of the 22nd International Conference on World Wide Web, Proceedings of the 22nd International Conference on World Wide Web, New York, NY, USA, 13 May 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 367–374. [Google Scholar]
- Hansen, D.L.; Schone, P.J.; Corey, D.; Reid, M.; Gehring, J. Quality Control Mechanisms for Crowdsourcing: Peer Review, Arbitration, & Expertise at Familysearch Indexing. In CSCW ‘13: Proceedings of the 2013 Conference on Computer Supported Cooperative Work Companion, Proceedings of the 2013 Conference on Computer Supported Cooperative Work, New York, NY, USA, 23 February 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 649–660. [Google Scholar]
- Li, C.; Zhang, Z.; Saugstad, M.; Safranchik, E.; Kulkarni, C.; Huang, X.; Patel, S.; Iyer, V.; Althoff, T.; Froehlich, J.E. LabelAId: Just-in-Time AI Interventions for Improving Human Labeling Quality and Domain Knowledge in Crowdsourcing Systems. In CHI ‘24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, Proceedings of the CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 11 May 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 1–21. [Google Scholar]
- Froehlich, J.E. Live Project Sidewalk Stats. Available online: https://observablehq.com/@jonfroehlich/live-project-sidewalk-stats (accessed on 1 April 2025).
- Saha, M.; Chauhan, D.; Patil, S.; Kangas, R.; Heer, J.; Froehlich, J.E. Urban Accessibility as a Socio-Political Problem: A Multi-Stakeholder Analysis. Proc. ACM Hum. Comput. Interact. 2021, 4, 1–26. [Google Scholar] [CrossRef]
- City of Seattle Seattle City GIS Open Data: Transportation Datasets. Available online: https://data-seattlecitygis.opendata.arcgis.com/search?tags=transportation (accessed on 1 August 2023).
- EPA. Smart Location Mapping. U.S. Environmental Protection Agency. 2023. Available online: https://www.epa.gov/smartgrowth/smart-location-mapping (accessed on 8 November 2023).
- Pew Research Center. Trends in Income and Wealth Inequality. Pew Research Center’s Social & Demographic Trends Project 2020; Pew Research Center: Washington, DC, USA, 2020. [Google Scholar]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology, 4th ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2018; ISBN 978-1-5063-9566-1. [Google Scholar]
- Foody, G.; Long, G.; Schultz, M.; Olteanu-Raimond, A.-M. Assuring the Quality of VGI on Land Use and Land Cover: Experiences and Learnings from the LandSense Project. Geo-Spat. Inf. Sci. 2024, 27, 16–37. [Google Scholar] [CrossRef]
- Rice, R.M.; Aburizaiza, A.O.; Rice, M.T.; Qin, H. Position Validation in Crowdsourced Accessibility Mapping. Cartographica 2016, 51, 55–66. [Google Scholar] [CrossRef]
- Bolten, N.; Amini, A.; Hao, Y.; Ravichandran, V.; Stephens, A.; Caspi, A. Urban Sidewalks: Visualization and Routing for Individuals with Limited Mobility. In Proceedings of the 1st International ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, Seatle, WA, USA, 3 November 2015; pp. 122–125. [Google Scholar]
- NC-BPAID National Collaboration on Bike, Pedestrian, and Accessibility Infrastructure Data. Available online: https://github.com/dotbts/BPA (accessed on 15 December 2024).
- Dai, S.; Li, Y.; Stein, A.; Yang, S.; Jia, P. Street View Imagery-Based Built Environment Auditing Tools: A Systematic Review. Int. J. Geogr. Inf. Sci. 2024, 38, 1136–1157. [Google Scholar] [CrossRef]
- Liu, X.; Wu, K.; Kulkarni, M.; Saugstad, M.; Rapo, P.A.; Freiburger, J.; Hosseini, M.; Li, C.; Froehlich, J.E. Towards Fine-Grained Sidewalk Accessibility Assessment with Deep Learning: Initial Benchmarks and an Open Dataset. In Proceedings of the Proceedings of the 26th International ACM SIGACCESS Conference on Computers and Accessibility, Association for Computing Machinery, New York, NY, USA, 27 October 2024; pp. 1–12. [Google Scholar]
- Ponti, M.; Seredko, A. Human-Machine-Learning Integration and Task Allocation in Citizen Science. Humanit. Soc. Sci. Commun. 2022, 9, 1–15. [Google Scholar] [CrossRef]
Walkability Score 1 | Median Household Income 2 | ||
---|---|---|---|
Low USD 40,100 or Less | Medium USD 40,100–USD 120,400 | High USD 120,400 or More | |
Low (5.76–10.5) | 1 | 3 | 2 |
Medium (10.51–15.25) | 1 | 3 | 2 |
High (15.26–20) | 1 | 3 | 2 |
Label Type | Round One | Round Two | Round Three | ||||||
---|---|---|---|---|---|---|---|---|---|
Seattle | Cook/DuPage | Total | Seattle | DuPage | Total | Seattle | DuPage | Total | |
Curb Ramps | 0.827 | 0.927 | 0.888 | 0.939 | 0.934 | 0.937 | N/A | N/A | N/A |
Missing Curb Ramps | 0.875 | N/A | N/A | 0.741 | 0.666 | 0.749 | N/A | N/A | N/A |
Surface Problems/Obstacles | 0.440 | 0.565 | 0.523 | 0.528 | 0.598 | 0.582 | 0.661 | 0.701 | 0.694 |
No Sidewalk | 0.683 | 0.663 | 0.690 | 0.878 | 0.734 | 0.785 | N/A | N/A | N/A |
Crosswalk | 0.853 | 0.946 | 0.910 | 0.941 | 0.922 | 0.931 | N/A | N/A | N/A |
Pedestrian Signal | 0.454 | 0.818 | 0.697 | 0.541 | 0.990 | 0.835 | N/A | N/A | N/A |
Label Type | Seattle | DuPage | ||||
---|---|---|---|---|---|---|
N * | % Agreement Presence | % Agreement Severity | N | % Agreement Presence | % Agreement Severity | |
Curb Ramp | 193 | 89.9 | 63.8 | 93 | 93.5 | 20.8 |
Obstacles and Surface Problems | 431 i | 90.8 | 81.6 | 273 | 100 ii | 46.1 |
No Sidewalk | 238 | 98.7 | n/a | 178 | 100 | n/a |
Crosswalk | 44 | 81.8 | 81.1 | n/a | n/a | n/a |
Pedestrian Signal | 20 | 75 | n/a | n/a | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askari, S.; Snyder, D.; Li, C.; Saugstad, M.; Froehlich, J.E.; Eisenberg, Y. Validating Pedestrian Infrastructure Data: How Well Do Street-View Imagery Audits Compare to Government Field Data? Urban Sci. 2025, 9, 130. https://doi.org/10.3390/urbansci9040130
Askari S, Snyder D, Li C, Saugstad M, Froehlich JE, Eisenberg Y. Validating Pedestrian Infrastructure Data: How Well Do Street-View Imagery Audits Compare to Government Field Data? Urban Science. 2025; 9(4):130. https://doi.org/10.3390/urbansci9040130
Chicago/Turabian StyleAskari, Sajad, Devon Snyder, Chu Li, Michael Saugstad, Jon E. Froehlich, and Yochai Eisenberg. 2025. "Validating Pedestrian Infrastructure Data: How Well Do Street-View Imagery Audits Compare to Government Field Data?" Urban Science 9, no. 4: 130. https://doi.org/10.3390/urbansci9040130
APA StyleAskari, S., Snyder, D., Li, C., Saugstad, M., Froehlich, J. E., & Eisenberg, Y. (2025). Validating Pedestrian Infrastructure Data: How Well Do Street-View Imagery Audits Compare to Government Field Data? Urban Science, 9(4), 130. https://doi.org/10.3390/urbansci9040130