Kazakhstan’s Infrastructure Programs and Urban Sustainability Analysis of Astana
Abstract
:1. Introduction
- Nurly Zhol: financing large-scale transport projects and formation of regional hub cities (2015–2019, USD 9 billion budget); support of municipal infrastructure, local roads, mobility, and productivity (2020–2025, USD 12.8 billion budget).
- Nurly Zher: subsidies for mortgage lending; subsidies for construction by individuals, cooperatives, and private developers, and construction of rental housing for the socially vulnerable (2017–2019, USD 2.3 billion budget); development of municipal infrastructure including central heating, water supply and sanitation; institutional and regulatory reforms; and increasing housing area by 20.7 million m2 per year (2020–2025, USD 12.6 billion budget).
2. Materials and Methods
2.1. Sustainability Framework for Analyzing Urban Development
2.2. Spatio-Temporal Analysis
- Water: water bodies, including rivers, lakes, wetlands, and artificial reservoirs.
- Wetland: marshes, mudflats, swamps situated on the shallow margins of bays, lakes, ponds, streams, rivers, and manmade reservoirs.
- Vegetation: dense green vegetation, including deciduous, evergreen, and mixed forests.
- Grassland: shrubs, rangelands, cropland and pastures, and sparse vegetation.
- Urban: built-up environment, roads, industrial and commercial complexes.
- Barren land: soil, sand, rocks, dried-up lakebeds, mines, pits, and transitional areas (vegetation clearing for agriculture, wetland drainage for development, temporary exposure of land due to planned construction activities).
- Blue infrastructure: water bodies and their functions in ecosystems, i.e., our LULC types of water and wetlands;
- Green infrastructure: green spaces that enhance ecosystem services and climate resilience, i.e., our LULC types of vegetation and grassland;
- Gray infrastructure: engineered structures that support connectivity and multi-functionality, i.e., our LULC types of urban and barren land.
3. Results
3.1. Sustainability Pillars of Astana’s Development
3.2. Land Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BRI | Belt and Road Initiative |
GRP | Gross Regional Product |
KZT | Kazakhstan tenge |
SDG | Sustainable Development Goals |
Appendix A
Kazakhstan’s Infrastructure Projects and China’s BRI
References
- Thacker, S.; Adshead, D.; Fay, M.; Hallegatte, S.; Harvey, M.; Meller, H.; O’Regan, N.; Rozenberg, J.; Watkins, G.; Hall, J.W. Infrastructure for sustainable development. Nat. Sustain. 2019, 2, 324–331. [Google Scholar] [CrossRef]
- Fay, V.; Toman, M. Infrastructure and Sustainable Development. In Postcrisis Growth and Development: A Development Agenda for the G-20; Fardoust, S., Kim, Y., Sepulveda, C., Eds.; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Larrea, V.; Pelaez, F.; Esenarro, D. Design of a Green Corridor and the Revitalization of the Huatanay River, City of Cuzco, Peru—2024. Urban Sci. 2024, 8, 185. [Google Scholar] [CrossRef]
- Atchison, J. Green and Blue Infrastructure in Darwin; Carbon Economies and the Social and Cultural Dimensions of Valuing Urban Mangroves in Australia. Urban Sci. 2019, 3, 86. [Google Scholar] [CrossRef]
- Infrastructure Outlook. Forecasting Infrastructure Needs and Gaps. 2025. Available online: https://outlook.gihub.org/ (accessed on 8 March 2025).
- Schatz, E. What capital cities say about state and nation building. Natl. Ethn. Politics 2004, 9, 111–140. [Google Scholar]
- Final Report: The Study on the Master Plan for the Development of the City of Astana in the Republic of Kazakhstan; Japan International Cooperation Agency (JICA): Tokyo, Japan, 2001. Available online: https://openjicareport.jica.go.jp/pdf/11652708_01.pdf (accessed on 1 August 2024).
- Atakhanova, Z. Kazakhstan’s oil boom, diversification strategies, and the service sector. Miner. Econ. 2021, 34, 399–409. [Google Scholar]
- Junussova, M. Cities and Local Governments in Central Asia; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Kazakhstan Government. Nurly Zhol State Infrastructure Program. 2015. Available online: https://adilet.zan.kz/rus/docs/U1500001030 (accessed on 15 January 2025).
- Salimova-Tekay, J. Infrastructure Financing in Kazakhstan; United Nations Economic and Social Commission for Asia and the Pacific: Bangkok, Thailand, 2022; Available online: https://repository.unescap.org/handle/20.500.12870/4340?locale-attribute=es (accessed on 30 November 2024).
- Man, C.Y.; Palmer, D.A. Geo-Mapping Databases of the Belt and Road Initiative. 2022. Figshare Collection. Available online: https://figshare.com/collections/Geo-mapping_databases_of_the_Belt_and_Road_Initiative/6076193 (accessed on 1 November 2024).
- Ascensão, F.; Fahrig, L.; Clevenger, A.P. Environmental challenges for the Belt and Road Initiative. Nat. Sustain. 2018, 1, 206–209. [Google Scholar]
- Butters, C.; Cheshmehzangi, A.; Bakhshoodeh, R. Sustainable Construction: The Embodied Carbon Impact of Infrastructures and Landscaping. Urban Sci. 2024, 8, 76. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Smart Sustainable Cities Profile: Nur-Sultan, Kazakhstan. 2021. Available online: https://www.un-ilibrary.org/content/books/9789210056335 (accessed on 10 December 2024).
- Amirgaliyev, B.; Kuchanskyi, O.; Andrashko, Y.; Yedilkhan, D. A Dynamic Model of Profit Maximization for Carsharing Services: Astana, Republic of Kazakhstan. Urban Sci. 2023, 7, 74. [Google Scholar] [CrossRef]
- Alipbeki, O.; Alipbekova, C.; Sterenharz, A.; Toleubekova, Z.; Aliyev, M.; Mineyev, M.; Amangaliyev, K. A Spatiotemporal Assessment of Land Use and Land Cover Changes in Peri-Urban Areas: A Case Study of Arshaly District, Kazakhstan. Sustainability 2019, 12, 1556. [Google Scholar] [CrossRef]
- Ilyassova, A.; Kantakumar, L.N.; Boyd, D. Urban growth analysis and simulations using cellular automata and geo-informatics: Comparison between Almaty and Astana in Kazakhstan. Geocarto Int. 2021, 36, 520–539. [Google Scholar] [CrossRef]
- Saginov, K.; Berdenov, Z.; Inkarova, Z.; Kakimzhanov, Y.; Mendybayev, E.; Ramazanova, N.; Assylbekov, K.; Safarov, R.; Fomin, I. Comparative Analysis of the Infrastructure of the City of Astana with a Sociological Survey of the Mental Well-Being of Citizens in the Context of the Sustainable Development of the Urban Agglomeration. Sustainability 2024, 16, 8623. [Google Scholar] [CrossRef]
- Kazakhstan Human Development Report. Urbanization as an Accelerator of Inclusive and Sustainable Development; United Nations Development Program: New York, NY, USA, 2019; Available online: https://hdr.undp.org/system/files/documents/nhdr2019kaz.pdf (accessed on 25 January 2025).
- Khamit, A.; Utarbayeva, N.; Shumakova, G.; Makhambetov, M.; Abdullina, A.; Sergeyeva, A. Assessment of the State of the Landscaping System in the City of Aktobe, the Republic of Kazakhstan, under Conditions of Man-Made Load Using Remote Sensing. Urban Sci. 2024, 8, 34. [Google Scholar] [CrossRef]
- Cadavid, P.R.; Cineas, G.; Quintero, L.E.; Zhukova, S. Cities in Eastern Europe and Central Asia. A Story of Urban Growth and Decline; World Bank Group: Washington, DC, USA, 2017; Available online: https://documents1.worldbank.org/curated/en/319131510892209158/pdf/AUS12288-REVISED-PUBLIC-ECABRIEFALLWEB.pdf (accessed on 15 March 2025).
- Paghosyan, A. Quantifying urban growth in 10 post-Soviet cities using Landsat data and machine learning. J. Remote Sens. 2018, 39, 8688–8702. [Google Scholar] [CrossRef]
- United Nations Brundtland Commission. Report of the World Commission on Environment and Development: Our Common Future. 1987. Available online: http://www.un-documents.net/our-common-future.pdf (accessed on 10 January 2025).
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Elkington, J. Accounting for the triple bottom line. Meas. Bus.Excell. 1998, 2, 18–22. [Google Scholar] [CrossRef]
- Gibson, R.B. Beyond the pillars: Sustainability assessment as a framework for effective integration of social, economic and ecological considerations in significant decision-making. J. Environ. Assess. Policy Manag. 2006, 8, 259–280. [Google Scholar] [CrossRef]
- Cohen, M.A. Systematic Review of Urban Sustainability Assessment Literature. Sustainability 2017, 9, 2048. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, P. Urban sustainability assessment tools: A review. J. Clean. Prod. 2019, 210, 146–158. [Google Scholar] [CrossRef]
- Halla, P.; Merino-Saum, A. Conceptual frameworks in indicator-based assessments of urban sustainability-An analysis of 67 initiatives. Sustain. Dev. 2002, 30, 1056–1071. [Google Scholar] [CrossRef]
- National Statistics Bureau of Kazakhstan. Regions of Kazakhstan. 2023. Available online: https://stat.gov.kz/en/ (accessed on 25 May 2024).
- Howie, P.; Atakhanova, Z. Heterogeneous labor and structural change in low- and middle-income, resource-dependent countries. Econ. Change Restruct. 2020, 53, 297–332. [Google Scholar] [CrossRef]
- Steffen, W.; Sanderson, R.A.; Tyson, P.D.; Jäger, J.; Matson, P.A.; Moore, B., III; Oldfield, F.; Richardson, K.; Schellnhuber, H.-J.; Turner, B.L.; et al. Global Change and the Earth System: A Planet under Pressure, 1st ed.; Springer: Berlin, Germany, 2004; p. 32. [Google Scholar]
- Canepa, E.; Builtjes, P.J.H. Thoughts on Earth System Modeling: From global to regional scale. Earth Sci. Rev. 2017, 171, 456–462. [Google Scholar] [CrossRef]
- Baigaliyeva, M.; Mount, N.; Gosling, S.N.; McGowan, S. Unravelling long-term impact of water abstraction and climate change on endorheic lakes: A case study of Shortandy Lake in Central Asia. PLoS ONE 2024, 19, e0305721. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, M.; Saqib, Z.A.; Hussain, E.; Khan, J.A.; Nazir, A.; Dasti, M.Y.S.; Ali, S.; Niazi, N.K. Remote Sensing-Based Prediction of Temporal Changes in Land Surface Temperature and Land Use-Land Cover (LULC) in Urban Environments. Land 2022, 11, 1610. [Google Scholar] [CrossRef]
- Tayebi, M.; Fim Rosas, J.T.; Mendes, W.D.S.; Poppiel, R.R.; Ostovari, Y.; Ruiz, L.F.C.; dos Santos, N.V.; Cerri, C.E.P.; Silva, S.H.G.; Curi, N.; et al. Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sens. 2021, 13, 2223. [Google Scholar] [CrossRef]
- Lahon, D.; Sahariah, D.; Debnath, J.; Nath, N.; Meraj, G.; Kumar, P.; Hashimoto, S.; Farooq, M. Assessment of Ecosystem Service Value in Response to LULC Changes Using Geospatial Techniques: A Case Study in the Merbil Wetland of the Brahmaputra Valley, Assam, India. ISPRS Int. J. Geo Inf. 2023, 12, 165. [Google Scholar] [CrossRef]
- Amini, S.; Saber, M.; Rabiei-Dastjerdi, H.; Homayouni, S. Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sens. 2022, 14, 2654. [Google Scholar] [CrossRef]
- Zhang, T.; Su, J.; Xu, Z.; Luo, Y.; Li, J. Sentinel-2 Satellite Imagery for Urban Land Cover Classification by Optimized Random Forest Classifier. Appl. Sci. 2021, 11, 543. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- You, H.; Tang, X.; Deng, W.; Song, H.; Wang, Y.; Chen, J. A Study on the Difference of LULC Classification Results Based on Landsat 8 and Landsat 9 Data. Sustainability 2022, 14, 13730. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 232994. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Gao, Y.; Dang, X.; Han, Y. Detailed and automated classification of land use/land cover using machine learning algorithms in Google Earth Engine. Geocarto Int. 2021, 37, 5415–5432. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; p. 964.
- Jensen, J. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson: Upper Saddle River, NJ, USA, 2015; p. 656. [Google Scholar]
- Congalton, R.G. Remote sensing and geographic information system data integration: Error sources and research issues. Photogramm Eng. Remote Sens. 1991, 57, 677–687. [Google Scholar]
- Valente de Macedo, L.S.; Picavet, M.E.B.; Puppim de Oliveira, J.A.; Shih, W.-Y. Urban green and blue infrastructure: A critical analysis of research on developing countries. J. Clean. Prod. 2022, 313, 127898. [Google Scholar] [CrossRef]
- Egov. Public Services and Online Information. Information on Waste Reduction, Recycling, and Reuse. 2023. Available online: https://egov.kz/cms/en/articles/ecology/waste_reduction_recycling_and_reuse (accessed on 1 December 2024).
- United Nations Educational, Scientific and Cultural Organisation (UNESCO). Saryraka-Steppe and Lakes of Northern Kazakhstan. UNESCO World Heritage Convention. 2024. Available online: https://whc.unesco.org/en/list/1102 (accessed on 10 November 2024).
- Bragina, T.M.; Bragin, E.A. The Most Important Wetlands of North Kazakhstan (Kostanai Oblast and West Part of North-Kazakhstan Oblast); WWF Russia Nature Conservation Publication Series 5; WWF Russia Nature Conservation Publication: Almaty, Kazakhstan, 2000. [Google Scholar]
- IUCN CEM. IUCN Commission on Ecosystem Management Annual Report; IUCN: Gland, Switzerland, 2023; Available online: https://www.iucnrle.org/rle-citation (accessed on 13 November 2024).
- Kovshar, A.F. The Key Wetlands of the North Kazakhstan; WWF Brochure in English and Russian: Almaty, Kazakhstan, 2000. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Razzaghi, A.S. To What Extent Have Nature-Based Solutions Mitigated Flood Loss at a Regional Scale in the Philadelphia Metropolitan Area? Urban Sci. 2023, 7, 122. [Google Scholar] [CrossRef]
- Berlessova, A.A.; Konstantinov, P.I. Local climate zones in the city of Nur-Sultan (Kazakhstan) and their connections with urban heat island and thermal comfort. IOT Conf. Ser. Earth Environ. Sci. 2020, 611, 012060. [Google Scholar] [CrossRef]
- Askar, A.; Abzhanov, N.; Wang, Y.; Zhao, Y.; Lei, J. Temperature variation urban heat island effect in Nur-Sultan during 1973 to 2015. Arid Land Geogr. 2021, 44, 316–326. [Google Scholar]
- Baigaliyeva, M.; Atakhanova, Z.; Kairat, A. Spatiotemporal Variations in Urban Wetlands in Kazakhstan: A Case of the Taldykol Lake System in Astana City. Sustainability 2024, 16, 7077. [Google Scholar] [CrossRef]
- Association for the Conservation of Biodiversity of Kazakhstan (ACBK). Taldykol Nat. Reserve 2022. Available online: https://www.acbk.kz/article/default/view?id=370 (accessed on 5 November 2024).
- Utepov, A.; Jumabayev, S.; Skakova, A.; Salmanova, R.; Kuandykov, A. The economic evaluation of water ecosystem services in urban planning in Nur Sultan, Kazakhstan. Public Policy Adm. 2021, 2, 205–219. [Google Scholar]
- O’Connor, S. Urban development and civic activism in Kazakhstan: Green space preservation in the shadow of spectacle. Cent. Asian Aff. 2023, 10, 52–72. [Google Scholar]
- Singh, B.; Venkatramanan, V.; Deshmukh, B. Monitoring of land use land cover dynamics and prediction of urban growth using Land Change Modeler in Delhi and its environs, India. Environ. Sci. Pollut. Res. 2022, 29, 71534–71554. [Google Scholar] [CrossRef]
- Baga, M.F.; Chen, F.; Lu, L.; Qureshi, S.; Tariq, A.; Wang, S.; Jing, L.; Hamza, S.; Li, Q. Monitoring and Modeling the Patterns and Trends of Urban Growth Using Urban Sprawl Matrix and CA-Markov Model: A Case Study of Karachi, Pakistan. Land 2021, 10, 700. [Google Scholar] [CrossRef]
- Ding, Q.; Pan, T.; Lin, T.; Zhang, C. Urban land-cover changes in major cities in China from 1990 to 2015. Int. J. Environ. Res. Public Health 2022, 19, 16079. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.M.; Kalarickal, J. Housing policy in developing countries: Conjectures and refutations. World Bank Res. Obs. 2005, 20, 233–257. [Google Scholar]
- Karaman, O. Urban renewal in Istanbul: Reconfiguring spaces, robotic lives. Int. J. Urban Reg. Res. 2012, 37, 715–733. [Google Scholar] [CrossRef]
- Kenny, C. Construction, Corruption, and Developing Countrie. World Bank Policy Research Working Paper No. 4227. 2007. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=996954 (accessed on 18 March 2025).
- Temirkhanov, M. Affordable Housing Policy in Kazakhstan: New Approaches are Required. Halyk Research. 2024. Available online: https://halykfinance.kz/download/files/analytics/Halyk_Finance_-_Reformirovanie_zhilischnoy_politiki_yanv_2024.pdf (accessed on 15 March 2025).
- Forbes Kazakhstan. Why Housing Funded by Nuly Zher Program does not Meet the Standards? 2019. Available online: https://forbes.kz/articles/pochemu_jile_vozvodimoe_po_gosprogramme_nrlyi_jer_ne_sootvetstvuet_standartam (accessed on 15 March 2025).
- Steurer, M.; Bayr, C. Measuring urban sprawl using land use data. Land Use Policy 2020, 97, 104799. [Google Scholar]
- Ustaoglu, E.; Williams, B. The Inter-Relationships of Territorial Quality of Life with Residential Expansion and Densification: A Case Study of Regions in EU Member Countries. Urban Sci. 2024, 8, 22. [Google Scholar] [CrossRef]
- Madrazo-Uribeetxebarria, E.; Antín, M.G.; Eguilegor, G.A.; Andrés-Doménech, I. Analysis of the hydraulic performance of permeable pavements on a layer-by-layer basis. Constr. Build. Mater. 2023, 387, 131587. [Google Scholar] [CrossRef]
- Wade, R.; Charlesworth, S. Multiple benefits from surface water management-SUDS. CLEAN Soil Air Water 2014, 42, 109. [Google Scholar] [CrossRef]
- Bellezoni, R.A.; Meng, F.; He, P.; Seto, K.C. Understanding and conceptualizing how urban green and blue infrastructure affects the food, water, and energy nexus: A synthesis of the literature. J. Clean. Prod. 2021, 289, 125825. [Google Scholar]
- Iungman, T.; Cirach, M.; Marando, F.; Barboza, E.P.; Khomenko, S.; Masselot, P.; Quijal-Zamorano, M.; Mueller, N.; Gasparrini, A.; Urquiza, J.; et al. Cooling cities through urban green infrastructure: A health impact assessment of European cities. Lancet 2023, 401, 577–589. [Google Scholar] [PubMed]
- Wu, X.; Tang, W.; Chen, F.; Wang, S.; Bakhtiyorov, Z.; Liu, Y.; Guan, Y. Attribution and risk projections of hydrological drought over water-scarce Central Asia. Earth’s Future 2025, 13, e2024EF005243. [Google Scholar]
- Ma, X.; Zhu, J.; Yan, W.; Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 2021, 781, 146777. [Google Scholar] [PubMed]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater. J. Hydrol. 2008, 350, 114–125. [Google Scholar]
- Seitz, W. Urbanization in Kazakhstan: Desirable cities, unaffordable housing, and the missing rental market. Int. J. Urban Sci. 2020, 25, 135–166. [Google Scholar]
- Enbek. Center of Development of Labor Resources. Demographic Forecast for 2023–2050. 2023. Available online: https://www.enbek.kz/ (accessed on 30 November 2024).
- Ali, K.; Johnson, B.A. Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Sensors 2022, 22, 8750. [Google Scholar] [CrossRef]
- Theres, B.L.; Selvakumar, R. Comparison of landuse/landcover classifier for monitoring urban dynamics using spatially enhanced landsat dataset. Environ. Earth Sci. 2022, 81, 142. [Google Scholar]
- Kulithalai, S.S.P.; Deka, P.C. Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: A machine learning approach. Environ. Sci. Pollut. Res. 2022, 29, 86220–86236. [Google Scholar] [CrossRef]
- Ettehadi Osgouei, P.; Kaya, S.; Sertel, E.; Alganci, U. Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sens. 2019, 11, 345. [Google Scholar] [CrossRef]
- World Bank. South Caucasus and Central Asia: The Belt and Road Initiative. Kazakhstan Country Case Study. 2020. Available online: https://policycommons.net/artifacts/1268276/south-caucasus-and-central-asia-the-belt-and-road-initiative/1848027/ (accessed on 1 November 2024).
- Bitabarova, A.G. Unpacking Sino-Central Asian engagement along the New Silk Road: A case study of Kazakhstan. J. Contemp. East Asia Stud. 2018, 7, 149–173. [Google Scholar] [CrossRef]
- Baniya, S.; Rocha, N.; Ruta, M. Trade Effects of the New Silk Road: A Gravity Analysis; Policy Research Working Paper 8694; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Pomfret, R. The Eurasian Landbridge and China’s Belt and Road Initiative: Demand, supply of services and public policy. World Econ. 2019, 42, 1642–1653. [Google Scholar] [CrossRef]
- Otsuka, S. Central Asia’s Rail Network and the Eurasian Land Bridge. Jpn. Railw. Transp. Rev. 2001, 28, 42–49. Available online: https://www.ejrcf.or.jp/jrtr/jrtr28/pdf/f42_ots.pdf (accessed on 25 October 2024).
- Pomfret, R. The Eurasian Land Bridge: Linking regional value chains along the New Silk Road. Camb. J. Reg. Econ. Soc. 2019, 12, 45–56. [Google Scholar] [CrossRef]
Image ID | Product | Acquisition Date | Bands N | Resolution, m | Cloud Cover, % |
---|---|---|---|---|---|
LE07_154025_20000728 | Landsat 7 | 28 July 2000 | 7 | 30 | 0 |
LE07_155024_20000905 | Landsat 7 | 28 July 2000 | 7 | 30 | 0 |
LC08_154025_20140711 | Landsat 8 | 11 July 2014 | 9 | 30 | 0 |
20230613T061631_20230613T061659_T42UXB | Sentinel 2 | 13 June 2023 | 10 | 10–20 | 0.4 |
20230616T062631_20230616T063148_T42UXB | Sentinel 2 | 16 June 2023 | 10 | 10–20 | 0.1 |
20230603T061631_20230603T062224_T42UXB | Sentinel 2 | 23 June 2023 | 10 | 10–20 | 0.1 |
Indicator | 2000 | 2022 | Growth Rate, % per Year | ||
---|---|---|---|---|---|
2000–2013 | 2014–2022 | ||||
Population (1000 people) | Kazakhstan | 14,902 | 19,503 | 1.0 | 1.6 |
Astana | 381 | 1240 | 5.7 | 5.4 | |
Almaty | 1130 | 2025 | 2.1 | 3.8 | |
Wages (KZT per month) | Kazakhstan | 34,533 | 124,143 | 8.6 | 4.1 |
Astana | 50,085 | 146,510 | 8.6 | 2.4 | |
Almaty | 56,304 | 141,579 | 6.9 | 2.5 | |
Gross Regional Product (KZT 1000 per person) | Kazakhstan | 419 | 2085 | 11.8 | 2.4 |
Astana | 909 | 3018 | 12.3 | −2.4 | |
Almaty | 1115 | 3806 | 11.0 | −1.1 | |
Investment in fixed capital (KZT 1000 per person) | Kazakhstan | 229 | 262 | 2.9 | 0.8 |
Astana | 460 | 517 | 3.0 | 0.1 | |
Almaty | 242 | 321 | 3.3 | 2.5 | |
Value added of construction (percent of GRP) | Kazakhstan | 5.2 | 5.3 | 1.9 | −1.3 |
Astana | 31.3 | 6.4 | −6.9 | −4.0 | |
Almaty | 2.0 | 2.6 | 7.2 | −1.6 | |
Public investment (percent of total investment in fixed capital) | Kazakhstan | 10.4 | 15.6 | −1.6 | −1.2 |
Astana | 44.6 | 16.4 | 0.4 | −6.6 | |
Almaty | 9.6 | 18.8 | 4.7 | −3.1 | |
Investment in residential construction (KZT 1000 per person) | Kazakhstan | 4.2 | 48.1 | 17.8 | 10.7 |
Astana | 51.2 | 217.9 | 13.7 | 10.8 | |
Almaty | 4.5 | 133.8 | 30.5 | 10.6 | |
Housing area (m2 per person) | Kazakhstan | 16.1 | 20.8 | 1.7 | 0.7 |
Astana | 12.5 | 25.0 | 5.8 | 0.2 | |
Almaty | 17.0 | 25.8 | 3.4 | 0.7 | |
Rental housing prices (KZT 1000 per m2 per month) | Kazakhstan | 0.5 | 1.5 | 5.1 | 11.9 |
Astana | 1.2 | 2.0 | 3.4 | 1.6 | |
Almaty | 0.8 | 2.6 | 8.7 | 5.5 | |
Light vehicles (per 1000 persons) | Kazakhstan | 71.5 | 200.5 | 10.9 | −1.8 |
Astana | 96.2 | 231.9 | 11.8 | −3.3 | |
Almaty | 146.3 | 239.0 | 9.1 | −4.2 | |
Heavy vehicles (per 1000 persons) | Kazakhstan | 14.4 | 22.9 | 6.0 | −0.9 |
Astana | 12.8 | 19 | 9.4 | −4.2 | |
Almaty | 27.0 | 17 | 0.5 | −2.5 |
Indicator | 2000 | 2022 | Growth Rate, % per Year | ||
---|---|---|---|---|---|
2000–2013 | 2014–2022 | ||||
Poverty rate (individuals with income below national poverty level, percent of total population) | Kazakhstan | 46.7 | 5.2 | −19.7 | 9.3 |
Astana | 7.7 | 1.9 | −15.6 | 23.1 | |
Almaty | 19.4 | 4.8 | −12.5 | 38.9 | |
Income inequality (ratio of top 10% to bottom 10% income levels) | Kazakhstan | 8.8 | 5.7 | −3.4 | 0.1 |
Astana | 7.3 | 4.5 | −3.8 | 1.6 | |
Almaty | 6.0 | 7.2 | 0.0 | 4.5 | |
Infant mortality (per 1000 live births) | Kazakhstan | 19.6 | 7.7 | −4.5 | −4.3 |
Astana | 16.3 | 6.9 | −4.2 | −3.3 | |
Almaty | 14.7 | 7.9 | −2.5 | −3.1 | |
Access to healthcare services (hospital beds per 1000 people) | Kazakhstan | 7.7 | 5.4 | −1.9 | 0.0 |
Astana | 6.6 | 6.4 | 2.4 | 1.9 | |
Almaty | 9.5 | 6.0 | −3.0 | −2.1 | |
Injuries (per 1000 people) | Kazakhstan | 0.22 | 0.13 | −2.4 | −1.9 |
Astana | 0.32 | 0.10 | −1.3 | −6.5 | |
Almaty | 0.21 | 0.09 | −3.7 | −1.2 | |
Crime rate (crimes per 1000 people) | Kazakhstan | 8.0 | 8.3 | 11.9 | −10.7 |
Astana | 7.4 | 12.7 | 29.1 | −14.0 | |
Almaty | 12.9 | 13.7 | 14.8 | −12.4 | |
Public school teachers (per 1000 people) | Kazakhstan | 54 | 51 | 0.0 | −0.1 |
Astana | 97 | 98 | 0.1 | −1.9 | |
Almaty | 77 | 87 | 0.1 | −0.1 | |
Early childhood and preschool programs (enrolled children as per cent of 0–6-year-olds in urban centers) | Kazakhstan | 24.9 | 51 | 4.1 | 1.5 |
Astana | 27.2 | 38.5 | 1.0 | −6.0 | |
Almaty | 29.5 | 47.0 | 1.3 | 11.0 | |
Library customers (users per 1000 people) | Kazakhstan | 3.7 | 3.1 | −0.5 | −0.2 |
Astana | 5.7 | 1.1 | −0.6 | −16.0 | |
Almaty | 5.4 | 3.8 | −1.5 | 11.6 | |
Music performances (concerts per 1000 people) | Kazakhstan | 2.8 | 5.2 | 1.4 | 28.7 |
Astana | 0.8 | 2.1 | 19.2 | 40.6 | |
Almaty | 1.4 | 4.9 | 2.6 | 20.2 | |
Movie theater visits (visitors per 1000 people) | Kazakhstan | 5.2 | 2.2 | −11.6 | 35.3 |
Astana | 2.5 | 0.7 | −13.5 | 45.1 | |
Almaty | 0.9 | 0.6 | −8.9 | 30.1 |
Growth Rate, % per Year | |||||
---|---|---|---|---|---|
Indicator | 2000 | 2022 | 2000–2013 | 2014–2022 | |
Municipal solid waste (kg per person) | Kazakhstan | - | 196 | - | 1.5 |
Astana | - | 242 | - | 5.4 | |
Almaty | - | 239 | - | 6.4 | |
Air pollution, emissions from point sources (tons per person) | Kazakhstan | 0.16 | 0.12 | −1.2 | −1.2 |
Astana | 0.12 | 0.05 | −2.8 | −6.1 | |
Almaty | 0.01 | 0.02 | 1.0 | 2.3 | |
Drinking water supply (m3 per person) | Kazakhstan | 66 | 63.8 | −0.3 | 0.3 |
Astana | 116.8 | 81.8 | −1.9 | −1.5 | |
Almaty | 231 | 124.3 | −3.0 | −2.0 | |
Forestry services (KZT per person) | Kazakhstan | 337.9 | 331.5 | 3.8 | 0.1 |
Astana | 748.6 | 930.5 | 10.2 | −2.5 | |
Almaty | - | 110.7 | 3.0 | ||
Electricity production (1000 kWh per person) | Kazakhstan | 3465 | 6095 | 4.0 | 1.5 |
Astana | 3494 | 3294 | −0.7 | 2.0 | |
Almaty | 4159 | 4399 | 2.1 | 4.0 | |
Central heat production (Giga Calories per person) | Kazakhstan | 4.4 | 5.1 | 2.2 | −1.4 |
Astana | 7.5 | 7.3 | −1.4 | −0.4 | |
Almaty | 4.2 | 4.4 | 0.6 | −5.2 | |
Non-metallic mineral products output (KZT 1000 per person) | Kazakhstan | 2.6 | 21.8 | 19.3 | 3.4 |
Astana | 8.6 | 56.6 | 20.4 | 0.4 | |
Almaty | 3.9 | 22.7 | 20.8 | −1.3 |
LULC Types | km2 | % Change per Year | |||
---|---|---|---|---|---|
2000 | 2014 | 2023 | 2000–2014 | 2014–2023 | |
Water | 33 | 34 | 28 | 0.2 | −2.1 |
Wetland | 20 | 26 | 9 | 1.9 | −11.1 |
Vegetation | 144 | 150 | 144 | 0.3 | −0.5 |
Grassland | 529 | 455 | 374 | −1.1 | −2.1 |
Urban | 69 | 109 | 218 | 3.3 | 8 |
Barren | 5 | 26 | 27 | 12.5 | 0.4 |
Blue infrastructure per capita | 0.00014 | 0.00007 | 0.00003 | −4.4 | −10.4 |
Green infrastructure per capita | 0.00177 | 0.00074 | 0.00038 | −6.0 | −7.1 |
Gray infrastructure per capita | 0.00019 | 0.00017 | 0.00018 | −1.1 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atakhanova, Z.; Baigaliyeva, M. Kazakhstan’s Infrastructure Programs and Urban Sustainability Analysis of Astana. Urban Sci. 2025, 9, 100. https://doi.org/10.3390/urbansci9040100
Atakhanova Z, Baigaliyeva M. Kazakhstan’s Infrastructure Programs and Urban Sustainability Analysis of Astana. Urban Science. 2025; 9(4):100. https://doi.org/10.3390/urbansci9040100
Chicago/Turabian StyleAtakhanova, Zauresh, and Marzhan Baigaliyeva. 2025. "Kazakhstan’s Infrastructure Programs and Urban Sustainability Analysis of Astana" Urban Science 9, no. 4: 100. https://doi.org/10.3390/urbansci9040100
APA StyleAtakhanova, Z., & Baigaliyeva, M. (2025). Kazakhstan’s Infrastructure Programs and Urban Sustainability Analysis of Astana. Urban Science, 9(4), 100. https://doi.org/10.3390/urbansci9040100