Sensor Placement for the Classification of Multiple Failure Types in Urban Water Distribution Networks
Abstract
1. Introduction
2. Materials and Methods
2.1. Feature (Sensor Locations) Selection with RF–RFE for Sensor Placement
2.1.1. Random Forest Classifier
2.1.2. Recursive Feature Elimination
2.1.3. AE–RF for Failure Identification
2.2. Evaluation
2.3. Data Generation
2.3.1. Study WDN
2.3.2. Failure Scenarios
- (a)
- Normal Operating state
- (b) Cyberattack
- (c) Physical Attack
- (d) Water leakage (conventional physical failure)
2.3.3. Data Generation for System Performance
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. [Google Scholar] [CrossRef]
- Clark, R.M.; Panguluri, S.; Nelson, T.D.; Wyman, R.P. Protecting Drinking Water Utilities from Cyberthreats. J. AWWA 2017, 109, 50–58. [Google Scholar] [CrossRef]
- Acharya, A.; Liu, J.; Shin, S. Evaluating the Multi-Dimensional Resilience of Water Distribution Networks to Contamination Events. Water Supply 2023, 23, 1416–1433. [Google Scholar] [CrossRef]
- Ghimire, A.B.; Parajuli, U.; Bhusal, A.; Parajuli, A.; Banjara, M.; Shin, S. Investigating a Diversified and Decentralized Water Distribution System to Enhance Water Supply Resilience to Disruptive Events. In World Environmental and Water Resources Congress 2023: Adaptive Planning and Design in an Age of Risk and Uncertainty, Proceedings of the World Environmental and Water Resources Congress 2023, Henderson, NV, USA, 21–24 May 2023; ASCE Press: Reston, VA, USA, 2023; pp. 941–951. [Google Scholar] [CrossRef]
- Shin, S.; Lee, S.; Judi, D.R.; Parvania, M.; Goharian, E.; McPherson, T.; Burian, S.J. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems. Water 2018, 10, 164. [Google Scholar] [CrossRef]
- Taormina, R.; Galelli, S.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A. Characterizing Cyber-Physical Attacks on Water Distribution Systems. J. Water Resour. Plan. Manag. 2017, 143, 4017009. [Google Scholar] [CrossRef]
- Yang, G.; Wang, H. Optimal Pressure Sensor Deployment for Leak Identification in Water Distribution Networks. Sensors 2023, 23, 5691. [Google Scholar] [CrossRef]
- Diao, K.; Emmerich, M.; Lan, J.; Yevseyeva, I.; Sitzenfrei, R. Sensor Placement in Water Distribution Networks Using Centrality-Guided Multi-Objective Optimisation. J. Hydroinform. 2023, 25, 2291–2303. [Google Scholar] [CrossRef]
- Salem, A.K.; Abokifa, A.A. Optimal Sensor Placement in Water Distribution Networks Using Dynamic Prediction Graph Neural Networks. Eng. Proc. 2024, 69, 171. [Google Scholar] [CrossRef]
- Khorshidi, M.S.; Nikoo, M.R.; Taravatrooy, N.; Sadegh, M.; Al-Wardy, M.; Al-Rawas, G.A. Pressure Sensor Placement in Water Distribution Networks for Leak Detection Using a Hybrid Information-Entropy Approach. Inf. Sci. 2020, 516, 56–71. [Google Scholar] [CrossRef]
- Du, K.; Yu, J.; Zheng, F.; Xu, W.; Savic, D.; Kapelan, Z. A Robust Multi-Objective Pressure Sensor Placement Method for Burst Detection in Water Distribution Systems. Water Resour. Res. 2024, 60, e2024WR037258. [Google Scholar] [CrossRef]
- Bosco, C.; Raspati, G.S.; Tefera, K.; Rishovd, H.; Ugarelli, R. Protection of Water Distribution Networks against Cyber and Physical Threats: The STOP-IT Approach Demonstrated in a Case Study. Water 2022, 14, 3895. [Google Scholar] [CrossRef]
- Taormina, R.; Galelli, S. Deep-Learning Approach to the Detection and Localization of Cyber-Physical Attacks on Water Distribution Systems. J. Water Resour. Plan. Manag. 2018, 144, 4018065. [Google Scholar] [CrossRef]
- Housh, M.; Ohar, Z. Model-Based Approach for Cyber-Physical Attack Detection in Water Distribution Systems. Water Res. 2018, 139, 132–143. [Google Scholar] [CrossRef]
- Abokifa, A.A.; Haddad, K.; Lo, C.; Biswas, P. Real-Time Identification of Cyber-Physical Attacks on Water Distribution Systems via Machine Learning–Based Anomaly Detection Techniques. J. Water Resour. Plan. Manag. 2019, 145, 4018089. [Google Scholar] [CrossRef]
- Joaquim, S.; João, M.; Alfeu, S.M.; Ricardo, G. Optimal Management of Water Distribution Networks with Simulated Annealing: The C-Town Problem. J. Water Resour. Plan. Manag. 2016, 142, C4015010. [Google Scholar] [CrossRef]
- Rodriguez, L.; Fernandez, C.; Pantano, N.; Scaglia, G.; Keesman, K.J. Optimizing Sensor Placement for Enhanced Observability in Water Distribution Networks. J. Hydroinform. 2025, 27, 946–959. [Google Scholar] [CrossRef]
- Mahdi, N.M.; Jassim, A.H.; Abulqasim, S.A.; Basem, A.; Ogaili, A.A.F.; Al-Haddad, L.A. Leak Detection and Localization in Water Distribution Systems Using Advanced Feature Analysis and an Artificial Neural Network. Desalin. Water Treat. 2024, 320, 100685. [Google Scholar] [CrossRef]
- Geelen, C.V.C.; Yntema, D.R.; Molenaar, J.; Keesman, K.J. Optimal Sensor Placement in Hydraulic Conduit Networks: A State-Space Approach. Water 2021, 13, 3105. [Google Scholar] [CrossRef]
- Watson, J.-P.; Greenberg, H.J.; Hart, W.E. A Multiple-Objective Analysis of Sensor Placement Optimization in Water Networks. In Critical Transitions in Water and Environmental Resources Management, Proceedings of the World Water and Environmental Resources Congress 2004, Salt Lake City, UT, USA, 27 June 2004; ASCE Press: Reston, VA, USA, 2012; pp. 1–10. [Google Scholar] [CrossRef]
- Guan, Y.; Lv, M.; Li, S.; Su, Y.; Dong, S. Optimized Sensor Placement of Water Supply Network Based on Multi-Objective White Whale Optimization Algorithm. Water 2023, 15, 2677. [Google Scholar] [CrossRef]
- Agathokleous, A.; Xanthos, S.; Christodoulou, S.E. Real-Time Monitoring of Water Distribution Networks. Water Util. J. 2015, 10, 15–24. [Google Scholar]
- Christodoulou, S.E.; Gagatsis, A.; Xanthos, S.; Kranioti, S.; Agathokleous, A.; Fragiadakis, M. Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks. Water Resour. Manag. 2013, 27, 4443–4468. [Google Scholar] [CrossRef]
- Casillas, M.V.; Puig, V.; Garza-Castañón, L.E.; Rosich, A. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms. Sensors 2013, 13, 14984–15005. [Google Scholar] [CrossRef]
- Santos-Ruiz, I.; López-Estrada, F.R.; Puig, V.; Valencia-Palomo, G.; Hernández, H.R. Pressure Sensor Placement for Leak Localization in Water Distribution Networks Using Information Theory. Sensors 2022, 22, 443. [Google Scholar] [CrossRef] [PubMed]
- Sarrate, R.; Blesa, J.; Nejjari, F.; Quevedo, J. Sensor Placement for Leak Detection and Location in Water Distribution Networks. Water Supply 2014, 14, 795–803. [Google Scholar] [CrossRef]
- Jović, A.; Brkić, K.; Bogunović, N. A Review of Feature Selection Methods with Applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2015—Proceedings, Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature Selection in Machine Learning: A New Perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Pascoal, C.; De Oliveira, M.R.; Valadas, R.; Filzmoser, P.; Salvador, P.; Pacheco, A. Robust Feature Selection and Robust PCA for Internet Traffic Anomaly Detection. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1755–1763. [Google Scholar] [CrossRef]
- Fisher, W.D.; Camp, T.K.; Krzhizhanovskaya, V.V. Anomaly Detection in Earth Dam and Levee Passive Seismic Data Using Support Vector Machines and Automatic Feature Selection. J. Comput. Sci. 2017, 20, 143–153. [Google Scholar] [CrossRef]
- Ustebay, S.; Turgut, Z.; Aydin, M.A. Intrusion Detection System with Recursive Feature Elimination by Using Random Forest and Deep Learning Classifier. In Proceedings of the International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism, IBIGDELFT 2018—Proceedings, Ankara, Turkey, 3–4 December 2019; pp. 71–76. [Google Scholar] [CrossRef]
- Soldevila, A.; Blesa, J.; Tornil-Sin, S.; Fernandez-Canti, R.M.; Puig, V. Sensor Placement for Classifier-Based Leak Localization in Water Distribution Networks Using Hybrid Feature Selection. Comput. Chem. Eng. 2018, 108, 152–162. [Google Scholar] [CrossRef]
- Wang, S.; Ding, Z.; Fu, Y. Feature Selection Guided Auto-Encoder. Proc. AAAI Conf. Artif. Intell. 2017, 31, 2725–2731. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Wang, H.; Jin, Y. Anomaly Detection of Time Series with Smoothness-Inducing Sequential Variational Auto-Encoder. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1177–1191. [Google Scholar] [CrossRef]
- Kunang, Y.N.; Nurmaini, S.; Stiawan, D.; Zarkasi, A.; Jasmir, F. Automatic Features Extraction Using Autoencoder in Intrusion Detection System. In Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, Pangkal, Indonesia, 2–4 October 2019; pp. 219–224. [Google Scholar] [CrossRef]
- Ditthapron, A.; Banluesombatkul, N.; Ketrat, S.; Chuangsuwanich, E.; Wilaiprasitporn, T. Universal Joint Feature Extraction for P300 EEG Classification Using Multi-Task Autoencoder. IEEE Access 2019, 7, 68415–68428. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, Q.; Meng, Z.; Liu, X.; Jin, Q.; Su, R. Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE. Genes 2018, 9, 301. [Google Scholar] [CrossRef]
- Rogers, J.; Gunn, S. Identifying Feature Relevance Using a Random Forest. In Subspace, Latent Structure and Feature Selection, Proceedings of the Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, 23–25 February 2005, Revised Selected Papers; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2006; Volume 3940, pp. 173–184. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X.; Yu, X. Machine Learning Model and Strategy for Fast and Accurate Detection of Leaks in Water Supply Network. J. Infrastruct. Preserv. Resil. 2021, 2, 10. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Joseph, K.; Shetty, J.; Patnaik, R.; Matthew, N.S.; Van Staden, R.; Liyanage, W.P.; Powell, G.; Bennett, N.; Sharma, A.K. Early Leak and Burst Detection in Water Pipeline Networks Using Machine Learning Approaches. Water 2025, 17, 2164. [Google Scholar] [CrossRef]
- Jun, S.; Jung, D. Exploration of Deep Learning Leak Detection Model across Multiple Smart Water Distribution Systems: Detectable Leak Sizes with AMI Meters. Water Res. X 2025, 29, 100332. [Google Scholar] [CrossRef]
- Ghimire, A.B.; Magar, B.A.; Parajuli, U.; Shin, S. Impacts of Missing Data Imputation on Resilience Evaluation for Water Distribution System. Urban Sci. 2024, 8, 177. [Google Scholar] [CrossRef]
- Noy, K.; Alex, F.; Mashor, H. Detecting Cyber-Physical Attacks in Water Distribution Systems: One-Class Classifier Approach. J. Water Resour. Plan. Manag. 2020, 146, 04020060. [Google Scholar] [CrossRef]
- Taormina, R.; Galelli, S.; Douglas, H.C.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A. A Toolbox for Assessing the Impacts of Cyber-Physical Attacks on Water Distribution Systems. Environ. Model. Softw. 2019, 112, 46–51. [Google Scholar] [CrossRef]
- Klise, K.A.; Hart, D.; Moriarty, D.M.; Bynum, M.L.; Murray, R.; Burkhardt, J.; Haxton, T. Water Network Tool for Resilience (WNTR) User Manual; Sandia National Lab.: Albuquerque, NM, USA, 2017. [CrossRef]
- Muranho, J.; Ferreira, A.; Sousa, J.; Gomes, A.; Marques, A.S. Pressure-Driven Simulation of Water Distribution Networks: Searching for Numerical Stability. Environ. Sci. Proc. 2020, 2, 48. [Google Scholar] [CrossRef]
- Crowl, D.A.; Louvar, J.F. Chemical Process Safety: Fundamentals with Applications; Pearson Education: London, UK, 2001. [Google Scholar]
Attack Summary | Compromised Components | Period (h) |
---|---|---|
Attack on Communication channel (Tank water level and PLC) | Tanks and PLCs | 96, 108, 120, 132 |
Alteration of Control Logic in PLCs | PLCs and pumps | 96, 108, 120, 132 |
Denial of Service (DOS) attacks in between PLCs | PLC to PLC | 96, 108, 120, 132 |
Attack concealment (scenario 1) | Tanks, PLCs, and SCADA | 96, 108, 120, 132 |
Attack concealment (scenario 2) | PLCs, Pumps and SCADA | 96, 108, 120, 132 |
Attack concealment (scenario 3) | PLC to PLC and SCADA | 96, 108, 120, 132 |
Attack Summary | Compromised Components | Period (h) |
---|---|---|
Pump turned on physically | Pump 1 to 11 | 96, 108, 120, 132 |
Pump turned off physically | Pump 1 to 11 | 96, 108, 120, 132 |
Leakage Element | Diameter of Leak (m) | Period (h) |
---|---|---|
Leakage on every junction (one junction at each node) | 0.05 | 96 |
Sensor Selection Option | Failure State | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
Leakage-based sensor placement | Normal | 0.98 | 0.99 | 0.98 | 0.99 |
Leakage | 1.00 | 0.99 | 1.00 | ||
Cyberattack-based sensor placement | Normal | 0.96 | 0.98 | 0.97 | 0.98 |
Cyberattack | 0.99 | 0.98 | 0.98 | ||
Physical-attack-based sensor placement | Normal | 0.92 | 0.97 | 0.94 | 0.95 |
Physical attack | 0.97 | 0.93 | 0.95 |
Sensor Selection Option | Failure State | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
Multiple-failure event-based sensor placement | Normal | 0.95 | 0.99 | 0.97 | 0.90 |
Cyberattack | 0.75 | 0.81 | 0.78 | ||
Leakage | 0.97 | 0.98 | 0.98 | ||
Physical attack | 0.57 | 0.40 | 0.47 |
Sensor Selection Option | Leakage Identification | Cyber-Attack Identification | Physical Attack Identification | Multiple Failure Event Identification |
---|---|---|---|---|
Leakage-based sensor placement | 0.99 | 0.97 | 0.94 | 0.88 |
Cyberattack-based sensor placement | 0.99 | 0.98 | 0.95 | 0.92 |
Physical attack-based sensor placement | 0.99 | 0.98 | 0.95 | 0.92 |
Multiple-failure event-based sensor placement | 0.99 | 0.98 | 0.94 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parajuli, U.; Magar, B.A.; Ghimire, A.B.; Shin, S. Sensor Placement for the Classification of Multiple Failure Types in Urban Water Distribution Networks. Urban Sci. 2025, 9, 413. https://doi.org/10.3390/urbansci9100413
Parajuli U, Magar BA, Ghimire AB, Shin S. Sensor Placement for the Classification of Multiple Failure Types in Urban Water Distribution Networks. Urban Science. 2025; 9(10):413. https://doi.org/10.3390/urbansci9100413
Chicago/Turabian StyleParajuli, Utsav, Binod Ale Magar, Amrit Babu Ghimire, and Sangmin Shin. 2025. "Sensor Placement for the Classification of Multiple Failure Types in Urban Water Distribution Networks" Urban Science 9, no. 10: 413. https://doi.org/10.3390/urbansci9100413
APA StyleParajuli, U., Magar, B. A., Ghimire, A. B., & Shin, S. (2025). Sensor Placement for the Classification of Multiple Failure Types in Urban Water Distribution Networks. Urban Science, 9(10), 413. https://doi.org/10.3390/urbansci9100413