Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets Through Digital Technologies
Abstract
1. Introduction
2. Methodology and Process
2.1. Study Area
2.2. Pedestrian Behaviour
2.3. Video-Cameras for Pedestrian Counting Features
2.4. Pedestrian Counting Procedure
2.5. Data Processing
- 23 November 2023, as a typical day with a regular weekly event;
- 5 March 2024, during a local holiday season;
- 12 May 2024, coinciding with a specific local festivity.
2.6. Establishment of Target Scene Area by Geo-Processing Tools
2.7. Setting Carrying Capacity Standards
Events | Description | Frequency and Duration |
---|---|---|
Cathedral of Valencia visiting hours | Visitors can find a variety of historic, religious and artistic attractions, with the Holy Grail as the main one. | Paid visit hours: Monday–Saturday from 10:30 to 18:30 and Sunday from 14:00 to 17:30 (in summer season until 18:30) Free visit hours: Monday–Saturday from 7:30 to 10:00 and 18:30 to 20:30 Sunday from 7:30 to 13:30 and 17:30 to 20:30 |
Tribunal de las Aguas (Water Tribunal of the plain of Valencia) (Figure 7a) | A traditional event, designated as an Intangible Cultural Heritage by UNESCO, that happens on the Gothic door of the cathedral. | Every Thursday at 12:00 Variable duration |
Mascletà | Firework acoustic spectacle designated as an Intangible Cultural Heritage by UNESCO. Happens on Fallas holiday season in Valencia on the Plaza del Ayuntamiento. | From March 1st to 19th (Fallas season) at 14:00 The duration varies from 6 to 8 min |
Virgen de los Desamparados festivity(Figure 7b) | Various events take place throughout the day, with the most important being the procession of the Virgin from the Basilica to the cathedral. The procession enters through the Baroque door and travels the entire length of Miguelete Street. | Second Sunday of May. D’Infantes’ Mass: 8:00 Procession: 10:30 Pontifical Mass: 12:00 Fireworks (Mascletà): 14:00 |
- The lower abscissa shows the time slots every 30 min during which the data collection took place. Thus, it can be observed that the camera began the data collection at 9:00 and concluded at 19:00.
- The ordinate axis shows ranges related to the number of people counted by the cameras.
- The horizontal lines indicate various comfort thresholds based on proxemic interpersonal distances (Table 3), corresponding to the number of people counted. These lines provide insight into flow density and alert us to potential violations of the established limits.
- The base coloured band of the graph indicates the range of people where the comfort level remains acceptable up until it approaches the saturation point.
- Marks that show the peaks in the number of people indicate the triggers or conditions of concern that are significant enough to prompt a management response. This ensures that the desired conditions are maintained before the threshold is crossed [10].
3. Results and Performance Evaluation
3.1. Real-Time Monitored Persons in the Usable Surface for Visitation of the Target Scene Area on 23 November 2023
3.2. Real-Time Monitored Persons in the Usable Surface for Recreation of the Target Scene Area on 5 March 2024
3.3. Real-Time Monitored Persons in the Usable Surface for Visitation of the Target Scene Area on 12 May 2024
3.4. Comparative Contextual Evaluation of Three Visitation Events
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mehta, V. The Street: A Quintessential Social Public Space; Routledge: Nueva York, NY, USA, 2013; ISBN 9780203067635. [Google Scholar]
- García-Hernández, M.; de la Calle-Vaquero, M.; Yubero, C. Cultural Heritage and Urban Tourism: Historic City Centres under Pressure. Sustainability 2017, 9, 1346. [Google Scholar] [CrossRef]
- Laitinen, R.; Cohen, T.V. Cultural History Of Early Modern Streets. In Cultural History of Early Modern European Streets; BRILL: Leiden, The Nederland, 2009; ISBN 9789047425984. [Google Scholar]
- Massengale, J.; Dover, V. Street Design: The Secret to Great Cities and Towns; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-1-118-06670-6. [Google Scholar]
- Viñals, M.J.; Mayor, M.; Martínez-Sanchis, I.; Teruel, L.; Alonso-Monasterio, P.; Morant, M. Turismo Sostenible y Patrimonio: Herramientas Para La Planificación y Gestión; Editorial Universitat Politècnica de València: Valencia, España, 2017; ISBN 978-84-9048-618-4. [Google Scholar]
- Wagar, J.A. The Carrying Capacity of Wild Lands for Recreation; Forest Science; Society of American Foresters: Washington, DC, USA, 1964. [Google Scholar]
- McCool, S.F.; Lime, D.W. Tourism Carrying Capacity: Tempting Fantasy or Useful Reality? J. Sustain. Tour. 2001, 9, 372–388. [Google Scholar] [CrossRef]
- Coccossis, H.; Mexa, A. The Challenge of Tourism Carrying Capacity Assessment: Theory and Practice; New Directions in Tourism Analysis; Ashgate: Farnham, UK, 2004; ISBN 9780754635697. [Google Scholar]
- Zelenka, J.; Kacetl, J. The Concept of Carrying Capacity in Tourism. Amfiteatru Econ. 2014, 16, 641–654. [Google Scholar]
- IVUMC. Monitoring Guidebook Evaluating Effectiveness of Visitor Use Management; Interagency Visitor Use Management Council Consists: Washington, DC, USA, 2019. [Google Scholar]
- Manning, R.; Lawson, S.; Newman, P.; Laven, D.; Valliere, W. Methodological Issues in Measuring Crowding-Related Norms in Outdoor Recreation. Leis. Sci. 2002, 24, 339–348. [Google Scholar] [CrossRef]
- U.S. Congress. National Park Service and Related Programs; U.S. Government Printing Office: Washington, DC, USA, 2014. [Google Scholar]
- Zacarias, D.A.; Williams, A.T.; Newton, A. Recreation Carrying Capacity Estimations to Support Beach Management at Praia de Faro, Portugal. Appl. Geogr. 2011, 31, 1075–1081. [Google Scholar] [CrossRef]
- Queiroz, R.E.; Ventura, M.A.; Guerreiro, J.A.; Cunha, R.T. da Carrying Capacity of Hiking Trails in Natura 2000 Sites: A Case Study from North Atlantic Islands (Azores, Portugal). Rev. Gestão Costeira Integr. 2014, 14, 233–242. [Google Scholar] [CrossRef]
- Viñals, M.J.; Planelles, M.; Alonso-Monasterio, P.; Morant, M. Recreational Carrying Capacity on Small Mediterranean Islands. Cuad. Tur. 2016, 37, 437–463. [Google Scholar] [CrossRef]
- Guo, W.; Chung, S. Remaking Tourism Carrying Capacity Frameworks for Geoparks. In Proceedings of the 4th International Conference on Advances in Social Science, Humanities, and Management (ASSHM 2016); DEStech Publications, Inc.: Guangzhou, China, 2016; pp. 197–205. [Google Scholar]
- Santos, P.L.A.; Brilha, J. A Review on Tourism Carrying Capacity Assessment and a Proposal for Its Application on Geological Sites. Geoheritage 2023, 15, 47. [Google Scholar] [CrossRef]
- Silva, C.P.; Alves, F.L.; Rocha, R. The Management of Beach Carrying Capacity: The Case of Northern Portugal. J. Coast. Res. 2007, 50, 135–139. [Google Scholar] [CrossRef]
- García Hernández, M. Capacidad de Acogida Turística y Gestión de Flujos de Visitantes En Conjuntos Monumentales: El Caso de La Alhambra. PH Boletín. Doss. Tur. En Ciudad. Históricas 2001, PH 36, 124–137. [Google Scholar] [CrossRef]
- Zubiaga, M.; Izkara, J.L.; Gandini, A.; Alonso, I.; Saralegui, U. Towards Smarter Management of Overtourism in Historic Centres Through Visitor-Flow Monitoring. Sustainability 2019, 11, 7254. [Google Scholar] [CrossRef]
- Petronijević, A. Practical Application of the Tourism Carrying Capacity Concept in Cultural Tourism: Example of the Maritime Museum of Montenegro. Turizam 2022, 26, 114–123. [Google Scholar] [CrossRef]
- Viñals, M.J.; Alonso-Monasterio, P.; Alonso-Monasterio, M. Analysis of the Spatial Standards and Perceptual Components of the Recreational Carrying Capacity Applied to Archaeological Sites: Case Study of Castellet de Bernabé (Llíria, Spain). In Methods and Analysis on Tourism and Environment; Mondéjar Vargas, O., Perez, C., Eds.; Nova Science Publishers: New York, NY, USA, 2013; pp. 109–120. [Google Scholar]
- Lopes Martins, J. Analysis of Tourism Capacity in Historic Centres: The Case of Porto; Universidade do Porto: Porto, Portugal, 2021. [Google Scholar]
- Santos, X.M.; Pena Cabrera, L. Management of Tourist Flows. The Cathedral of Santiago de Compostela. PASOS Rev. Tur. Patrim. Cult. 2014, 12, 719–735. [Google Scholar] [CrossRef]
- Makhadmeh, A.; Al-Badarneh, M.; Rawashdeh, A.; Al-Shorman, A. Evaluating the Carrying Capacity at the Archaeological Site of Jerash (Gerasa) Using Mathematical GIS Modeling. Egypt. J. Remote Sens. Sp. Sci. 2020, 23, 159–165. [Google Scholar] [CrossRef]
- de Almeida, D.S.B. Urban Tourism Crowding Dynamics: Carrying Capacity and Digital Twinning; University Institute of Lisbon: Lisbon, Portugal, 2021. [Google Scholar]
- Jurišić, M.; Plaščak, I.; Rendulić, Ž.; Radočaj, D. GIS-Based Visitor Count Prediction and Environmental Susceptibility Zoning in Protected Areas: A Case Study in Plitvice Lakes National Park, Croatia. Sustainability 2023, 15, 1625. [Google Scholar] [CrossRef]
- de Almeida, D.S.; Simões, R.; Brito e Abreu, F.; Lopes, A.; Boavida-Portugal, I. A Carrying Capacity Calculator for Pedestrians Using OpenStreetMap Data: Application to Urban Tourism and Public Spaces. arXiv 2024, arXiv:2406.16781. [Google Scholar]
- Orozco Carpio, P.R.; Viñals, M.J.; Escudero, P.A.; Rolim, R.C.V.S. Geospatial Tools for Determining Visitor Carrying Capacity in Tourist Streets and Public Spaces of Historic Centres. Heritage 2023, 6, 7100–7114. [Google Scholar] [CrossRef]
- Liu, M.; Li, L.; Li, Q.; Bai, Y.; Hu, C. Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network. ISPRS Int. J. Geo-Inform. 2021, 10, 455. [Google Scholar] [CrossRef]
- Helbing, D.; Molnár, P.; Farkas, I.J.; Bolay, K. Self-Organizing Pedestrian Movement. Environ. Plan. B Plan. Des. 2001, 28, 361–383. [Google Scholar] [CrossRef]
- IVUMC Visitor Use Management Framework. A Guide to Providing Sustainable Outdoor Recreation; Interagency Visitor Use Management Council: Washington, DC, USA, 2016. [Google Scholar]
- Enseñat-Soberanis, F.; Blanco-Gregory, R. Crowding Perception at the Archaeological Site of Tulum, Mexico: A Key Indicator for Sustainable Cultural Tourism. Land 2022, 11, 1651. [Google Scholar] [CrossRef]
- Jacobsen, J.K.S.; Iversen, N.M.; Hem, L.E. Hotspot Crowding and Over-Tourism: Antecedents of Destination Attractiveness. Ann. Tour. Res. 2019, 76, 53–66. [Google Scholar] [CrossRef]
- Hall, E.T. The Hidden Dimension; Reprint (1.; Anchor Books: New York, NY, USA, 1966; ISBN 0385084765. [Google Scholar]
- Carmona, M. Explorations in Urban Design. An Urban Design Research Primer, 1st ed.; Routledge: Nueva York, NY, USA, 2014; ISBN 978-1-4094-6264-4. [Google Scholar]
- Carmona, M.; Heath, T.; Oc, T.; Tiesdell, S. Urban Spaces-Public Places: The Dimensions of Urban Design, 1st ed.; Elsevier: Oxford, UK, 2003; ISBN 0-7506-36327. [Google Scholar]
- Tokarchuk, O.; Barr, J.C.; Cozzio, C. How Much Is Too Much? Estimating Tourism Carrying Capacity in Urban Context Using Sentiment Analysis. Tour. Manag. 2022, 91, 104522. [Google Scholar] [CrossRef]
- Park, H. Measuring & Managing Park Carrying Capacity Final Report: August 2020; University of British Columbia: Vancouver, BC, Canada, 2020. [Google Scholar]
- Teruel-Recio, P.; Vinals, M.J.; Gandia, J.M.; Orozco-Carpio, P.R. Study of Visitor Flows in Heritage Streetscapes Based on Counting People Using Motion-Image Sensors. The Case of Valencia Cathedral (Spain). In Proceedings of the International Congress proceedings: International Congress for Heritage Digital Technologies and Tourism Management HEDIT 2024, Valencia, Spain, 20–21 June 2024; Vinals, M.J., Lopez-Gonzalez, C., Eds.; Editorial Universitat Politècnica de València: Valencia, Spain, 2024; pp. 374–384. [Google Scholar]
- International Association of Public Transport (UITP); Walk21 Foundation. Urban Mobility Indicators for Walking and Public Transport; International Association of Public Transport: Brussels, Belgium, 2019. [Google Scholar]
- Nordback, K.; Kothuri, S.; Petritsch, T.; McLeond, P.; Rose, E.; Twaddell, H. Exploring Pedestrian Counting Procedures; FHWA-HPL- 16-026; U.S. Department of Transportation: Washington, DC, USA, 2016. [Google Scholar]
- Basil Read, J.; Daniels, M.; Harmon, L. Implementing Technology-Based Visitor Counts in Parks: A Methodological Overview. J. Park Recreat. Admi. 2021, 39, 85–103. [Google Scholar] [CrossRef]
- Sevtsuk, A. Estimating Pedestrian Flows on Street Networks. J. Am. Plan. Assoc. 2021, 87, 512–526. [Google Scholar] [CrossRef]
- Amen, M.A.; Afara, A.; Nia, H.A. Exploring the Link between Street Layout Centrality and Walkability for Sustainable Tourism in Historical Urban Areas. Urban Sci. 2023, 7, 67. [Google Scholar] [CrossRef]
- Martí, P.; García-Mayor, C.; Serrano-Estrada, L. Taking the Urban Tourist Activity Pulse through Digital Footprints. Curr. Issues Tour. 2021, 24, 157–176. [Google Scholar] [CrossRef]
- Hung, D.-H.; Hsu, G.-S.; Chung, S.-L.; Saito, H. Real-Time Counting People in Crowded Areas by Using Local Empirical Templates and Density Ratios. IEICE Trans. Inf. Syst. 2012, E95.D, 1791–1803. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Amini, A.; Sobolevsky, S.; Blat, J.; Ratti, C. Analysis of Pedestrian Behaviors through Non-Invasive Bluetooth Monitoring. Appl. Geogr. 2017, 81, 43–51. [Google Scholar] [CrossRef]
- Lee, J.M. Exploring Walking Behavior in the Streets of New York City Using Hourly Pedestrian Count Data. Sustainability 2020, 12, 7863. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Wei, B.; Zhu, Z.; Wang, S. Using Wi-Fi Probes to Evaluate the Spatio-Temporal Dynamics of Tourist Preferences in Historic Districts’ Public Spaces. ISPRS Int. J. Geo-Inf. 2024, 13, 244. [Google Scholar] [CrossRef]
- Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 2007, 24, 45–77. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, E. City Laboratory: Embracing New Data, New Elements, and New Pathways to Invent New Cities. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 1068–1072. [Google Scholar] [CrossRef]
- Ashkanani, A.M.; Roza, A.S.M.; Naghavipour, H. A Design Approach of Automatic Visitor Counting System Using Video Camera. IOSR J. Electr. Electron. Eng. Ver. I 2015, 10, 62–67. [Google Scholar] [CrossRef]
- Goto, I.; Ueda, K.; Matsuda, Y.; Suwa, H.; Yasumoto, K. BLESS: BLE Based Street Sensing for People Counting and Flow Direction Estimation. In Proceedings of the 2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Biarritz, France, 11–15 March 2024; pp. 76–81. [Google Scholar]
- Liu, W.; Salzmann, M.; Fua, P. Context-Aware Crowd Counting. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5094–5103. [Google Scholar]
- Affluences ¿Por Qué Elegir Las Cámaras de Conteo de Personas Para Gestionar Los Flujos de Visitantes? Available online: https://www.pro.affluences.com/es/post/cámaras-de-conteo-de-personas (accessed on 1 July 2024).
- Rapoport, A. Toward a Redefinition of Density. Environ. Behav. 1975, 7, 133–158. [Google Scholar] [CrossRef]
- Döringer, S.; Porst, F.; Stumpf, L.; Heurich, M. The Relationship between Measured Visitor Density and Perceived Crowding Revisited: Predicting Perceived Crowding in Outdoor Recreation. Leis. Sci. 2023, 1–24. [Google Scholar] [CrossRef]
- VisitValencia. Estadísticas de Turismo. Valencia, Spain. 2022. Available online: https://fundacion.visitvalencia.com/sites/default/files/media/downloadable-file/files/Folleto_Estadisticas_2022_WEB.pdf (accessed on 22 October 2024).
- European Parliament, C. of the E.U. Reglamento (UE) 2016/679 del parlamento europeo Y del consejo de 27 de abril de 2016, relativo A la protección de las personas físicas en lo que respecta AL tratamiento de datos personales Y A LA libre circulación de estos datos Y por el que se deroga LA. In Protección de Datos Personales; Dykinson: Madrid, Spain, 2016; pp. 17–144.
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Li, L. A Crowd Density Detection Algorithm for Tourist Attractions Based on Monitoring Video Dynamic Information Analysis. Complexity 2020, 2020, 6635446. [Google Scholar] [CrossRef]
- Rodriguez, M.; Laptev, I.; Sivic, J.; Audibert, J.-Y. Density-Aware Person Detection and Tracking in Crowds. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2423–2430. [Google Scholar]
- Orozco Carpio, P.R.; Viñals, M.J.; López-González, M.C. 3D Point Cloud and GIS Approach to Assess Street Physical Attributes. Smart Cities 2024, 7, 991–1006. [Google Scholar] [CrossRef]
- Giannoulaki, M.; Christoforou, Z. Pedestrian Walking Speed Analysis: A Systematic Review. Sustainability 2024, 16, 4813. [Google Scholar] [CrossRef]
- National Academies of Sciences Engineering and Medicine. Highway Capacity Manual 7th Edition: A Guide for Multimodal Mobility Analysis, 7th ed.; National Academies Press: Washington, DC, USA, 2022; ISBN 978-0-309-27566-8. [Google Scholar]
Features | |
---|---|
Wired or wireless networks | Allows connection to network via wired Internet or radio WI-FI. |
Tracking | Real-time tracking of people, with high clarity and resolution and filtering people and other objects. |
C2K QHD | 2560 × 1440 sharp definition image recording. |
Night vision | High vision capability even at night in full colour. |
Motion detection | Calculation system reports movement in vision box, differentiating between different types of movement of different elements. |
Secure storage | Store up to 256 GB of 2 K QHD video locally a microSD card, providing convenient access to video footage. |
Mini PC | Central system with detection and calculation process algorithm, with HD graphics card. |
Specifications | |
---|---|
Protection | IP68 security camera. |
Placement | For both indoors and outdoors. Optimum heights between 3 and 10 m |
Detection angle | For person counting, an azimuthal angle between 20° and 40° is recommended. |
Lens system | 1 f:3.18 mm lens. |
Image sensor | There is 1 optical sensor per camera: 25.4/3 mm (1/3”) with night vision capability. |
Night vision distance | 30 m. |
Led type | 850 nm wavelength IR. |
Video | Maximum resolution 2160 × 1440 pixels. |
Total megapixels | 4 MP. |
Supported video format | H.264. |
Frame rate | 15 pps. |
Radio connection | WI-FI 802.11 b/g Wi-Fi 4 (802.11 n) with speed of 150 Mbp. |
Power supply | AC: 100–240 Vac, at 50/60 Hz. With DC output voltage of 9 Vdc at 0.6 A. |
Environmental conditions | It operates between −20 °C and +45 °C and relative humidity between 10 and 90%. |
Distance Classification Based on Hall [35] | Proxemic Distance Radio (m) | People Counted in the Camera | Comfort Level |
---|---|---|---|
Personal close distance | 0.45–0.80 | 216 | Critical |
Personal not-close distance | 0.80–1.20 | 74 | Acceptable |
Social close distance | 1.20–2.00 | 36 | Very acceptable |
Social not-close distance | 2.00–3.50 | 14 | Suitable |
Public distance | >3.50 | 8 | Very suitable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viñals, M.J.; Orozco Carpio, P.R.; Teruel, P.; Gandía-Romero, J.M. Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets Through Digital Technologies. Urban Sci. 2024, 8, 190. https://doi.org/10.3390/urbansci8040190
Viñals MJ, Orozco Carpio PR, Teruel P, Gandía-Romero JM. Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets Through Digital Technologies. Urban Science. 2024; 8(4):190. https://doi.org/10.3390/urbansci8040190
Chicago/Turabian StyleViñals, María José, Patricio R. Orozco Carpio, Penélope Teruel, and José M. Gandía-Romero. 2024. "Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets Through Digital Technologies" Urban Science 8, no. 4: 190. https://doi.org/10.3390/urbansci8040190
APA StyleViñals, M. J., Orozco Carpio, P. R., Teruel, P., & Gandía-Romero, J. M. (2024). Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets Through Digital Technologies. Urban Science, 8(4), 190. https://doi.org/10.3390/urbansci8040190