Urban Gardening—How Safe Is It?
Abstract
:1. Introduction
2. Urban Air Quality
3. Uptake of Atmospheric Pollutants
4. Bioaccumulation of PAHs
5. Bioaccumulation of Heavy Metals
Heavy Metal | Reference |
---|---|
Cr, Cu, Mn, Ni, Pb, Zn | Gupta et al., 2013 [78] |
As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Sb, Si, Ti, Zn | Augustsson et al., 2023 [79] |
As, Pb | Engel-Di Mauro, 2018 [80] |
As, Cd, Cr, Cu, Ni, Pb, Zn | Samsoe-Petersen et al., 2000 [94] |
As, Cd, Cr, Cu, Ni, Pb, Zn | Warming et al., 2015 [95] |
Cd, Cr, Cu, Ni, Pb, Zn | Säumel et al., 2012 [97] |
As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn, V, Zn | Antisari et al., 2015 [98] |
Al, As, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Rb, Zn | Amato-Lourenco et al., 2016 [99] |
Cd, Cr, Cu Ni, Pb | Pandey et al., 2012 [101] |
Cd, Cu, Zn, Pb | Sharma et al., 2008 [102] |
As, Cd, Cr, Ni, Pb | Esther Pérez-Figueroa et al., 2023 [105] |
As, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn | Rossini-Oliva and López-Núñez, 2021 [106] |
Co, Cr, Cu, Mn, Ni, Pb, Zn | Izquierdo et al., 2015 [107] |
Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, P, Pb, Rb, Se, V, Zn | Izquierdo-Díaz et al., 2023 [108] |
Cd, Pb, Zn | Ziss et al., 2021 [109] |
Ba, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Rb, Zn | Sussa et al., 2022 [110] |
Pb | Sung and Park, 2018 [111] |
6. Human Health Risk of Consuming Contaminated Vegetables
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kingsley, J.; Foenander, E.; Bailey, A. “You feel like you’re part of something bigger”: Exploring motivations for community garden participation in Melbourne, Australia. BMC Public Health 2019, 19, 745. [Google Scholar] [CrossRef] [PubMed]
- Buehler, D.; Junge, R. Global trends and current status of commercial urban rooftop farming. Sustainability 2016, 8, 1108. [Google Scholar] [CrossRef]
- Fjaestad, S.L.; Mackelprang, J.L.; Sugiyama, T.; Chandrabose, M.; Owen, N.; Turrell, G.; Kingsley, J. Associations of time spent gardening with mental wellbeing and life satisfaction in mid-to-late adulthood. J. Environ. Psychol. 2023, 87, 101993. [Google Scholar] [CrossRef]
- Harding, D.; Lukman, K.M.; Jingga, M.; Uchiyama, Y.; Quevedo, J.M.D.; Kohsaka, R. Urban Gardening and Wellbeing in Pandemic Era: Preliminary Results from a Socio-Environmental Factors Approach. Land 2022, 11, 492. [Google Scholar] [CrossRef]
- Veldheer, S.; Tuan, W.J.; Al-Shaar, L.; Wadsworth, M.; Sinoway, L.; Schmitz, K.H.; Gao, X. Gardening is associated with better cardiovascular health status among older adults in the United States: Analysis of the 2019 Behavioral Risk Factor Surveillance System survey. J. Acad. Nutr. Diet. 2023, 123, 761–769. [Google Scholar] [CrossRef]
- Lindemann-Matthies, P.; Brieger, H. Does urban gardening increase aesthetic quality of urban areas? A case study from Germany. Urban For. Urban Green. 2016, 17, 33–41. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Kingsley, J.; Donati, K.; Litt, J.; Shimpo, N.; Blythe, C.; Vávra, J.; Caputo, S.; Milbourne, P.; Diekmann, L.O.; Rose, N. Pandemic gardening: A narrative review, vignettes and implications for future research. Urban For. Urban Green. 2023, 87, 128062. [Google Scholar] [CrossRef]
- Hume, J.A.; Grieger, A.; Kalamkarian, K.; D’Onise, L.G. Smithers, Community gardens and their effects on diet, health, psychosocial and community outcomes: A systematic review. BMC Public Health 2022, 22, 1247. [Google Scholar] [CrossRef]
- Lewis, O.; Home, R.; Kizos, T. Digging for the roots of urban gardening behaviours. Urban For. Urban Green. 2018, 34, 105–113. [Google Scholar] [CrossRef]
- Tandarić, N.; Watkins, C.; Ives, C.D. “In the garden, I make up for what I can’t in the park”: Reconnecting retired adults with nature through cultural ecosystem services from urban gardens. Urban For. Urban Green. 2022, 77, 127736. [Google Scholar] [CrossRef]
- Tomatis, F.; Egerer, M.; Correa-Guimaraes, A.; Navas-Gracia, L.M. Urban gardening in a changing climate: A review of effects, responses and adaptation capacities for cities. Agriculture 2023, 13, 502. [Google Scholar] [CrossRef]
- Scheromm, P. Motivations and practices of gardeners in urban collective gardens: The case of Montpellier. Urban For. Urban Green. 2015, 14, 735–742. [Google Scholar] [CrossRef]
- Walters, S.A.; Stoelzle Midden, K. Sustainability of urban agriculture: Vegetable production on green roofs. Agriculture 2018, 8, 168. [Google Scholar] [CrossRef]
- Uzu, G.; Schreck, E.; Xiong, T.; Macouin, M.; Lévêque, T.; Fayomi, B.; Dumat, C. Urban market gardening in Africa: Foliar uptake of metal (loid)s and their bioaccessibility in vegetables; implications in terms of health risks. Water Air Soil Pollut. 2014, 225, 2185. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Li, L.; Li, J.; Wei, L.; Chi, W.; Hong, L.; Zhao, Q.; Jiang, J. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci. Rep. 2020, 10, 8160. [Google Scholar] [CrossRef]
- Ramesh, A.; Walker, S.A.; Hood, D.; Guill’en, M.D.; Schneider, K.; Weyand, E.H. Bioavailability and Risk Assessment of Orally Ingested Polycyclic Aromatic Hydrocarbons. Int. J. Toxicol. 2004, 23, 301–333. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, J.; Ma, X.; Lu, H. Air pollution forecasts: An overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef] [PubMed]
- Vicente, E.D.; Alves, C.A. An overview of particulate emissions from residential biomass combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- OECD. Compendium of OECD Wee-Being Indicators; OECD: Paris, France, 2011. [Google Scholar]
- Chiarini, B.; D’Agostino, A.; Marzano, E.; Regoli, A. Air quality in urban areas: Comparing objective and subjective indicators in European countries. Ecol. Indic. 2021, 121, 107144. [Google Scholar] [CrossRef]
- Sun, C.; Luo, Y.; Li, J. Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China. J. Clean. Prod. 2018, 172, 488–496. [Google Scholar] [CrossRef]
- Cao, J.; Peng, X.; Xin, D. Feasibility study of prescribed burning for crop residues based on urban air quality assessment. J. Environ. Manage. 2022, 317, 115480. [Google Scholar] [CrossRef]
- de Kok, T.M.; Driece, H.A.; Hogervorst, J.G.; Briede, J.J. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, S.; Liu, M.; Chen, Z.; Xu, J.; Dong, Y. Transport and transformation of atmospheric metals in ecosystems: A review. J. Hazard. Mater. Adv. 2023, 9, 100218. [Google Scholar] [CrossRef]
- Fachinger, F.; Drewnick, F.; Borrmann, S. How villages contribute to their local air quality–The influence of traffic-and biomass combustion-related emissions assessed by mobile mappings of PM and its components. Atmos. Environ. 2021, 263, 118648. [Google Scholar] [CrossRef]
- Keith, L.H. The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Comp. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
- IARC Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2010.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Diesel and Gasoline Engine Exhausts and Some Nitroarenes; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2014; Volume 105, p. 9. [Google Scholar]
- IARC Outdoor Air Pollution. IARC Monographs on the Evaluation of Carcinogenic Risks to Human; International Agency for Research on Cancer: Lyon, France, 2016; Volume 109. [Google Scholar]
- Woodburn, J.; Bielaczyc, P.; Giechaskiel, B. A Technical Overview of Particulate Exhaust Emissions in the Post-RDE Era. In Proceedings of the SAE International Powertrains, Fuels & Lubricants Conference & Exhibition, Krakow, Poland, 6–8 September 2022. [Google Scholar] [CrossRef]
- Rienda, I.C.; Nunes, T.; Gonçalves, C.; Vicente, A.; Amato, F.; Lucarelli, F.; Kováts, N.; Hubai, K.; Sainnokhoi, T.A.; Alves, C.A. Road dust resuspension in a coastal Atlantic intermunicipal urban area with industrial facilities: Emission factors, chemical composition and ecotoxicity. Atmos. Res. 2023, 294, 106977. [Google Scholar] [CrossRef]
- Földi, C.; Sauermann, S.; Dohrmann, R.; Mansfeldt, T. Traffic-related distribution of antimony in roadside soils. Environ. Pollut. 2018, 237, 704–712. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhou, J.; Li, M.; Hu, Y.M.; Liu, X.; Zhou, J. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. J. hazard Mater. 2019, 362, 9–16. [Google Scholar] [CrossRef]
- Hu, W.; Huang, B.; Shi, X.; Chen, W.; Zhao, Y.; Jiao, W. Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf. 2013, 98, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Hough, R.L.; Breward, N.; Young, S.D.; Crout, N.M.J.; Tye, A.M.; Moir, A.M.; Thornton, I. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ. Health Perspect. 2004, 112, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements of Group 12 (Previously Group IIb); Trace Elements from Soil to Human; Springer Nature: Berlin/Heidelberg, Germany, 2007; pp. 283–319. [Google Scholar]
- Xu, D.C.; Zhou, P.; Zhan, J.; Gao, Y.; Dou, C.M.; Sun, Q.Y. Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotoxicol. Environ. Saf. 2013, 90, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Beddows, D.C.S.; Dall’Osto, M.; Olatunbosun, O.A.; Harrison, R.M. Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry. Atmos. Environ. 2016, 129, 167–175. [Google Scholar] [CrossRef]
- Vlasov, D.; Ramírez, O.; Luhar, A. Road Dust in Urban and Industrial Environments: Sources, Pollutants, Impacts, and Management. Atmosphere 2022, 13, 607. [Google Scholar] [CrossRef]
- Clarke, L.W.; Jenerette, G.D.; Bain, D.J. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils. Environ. Pollut. 2015, 197, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Whitlow, T.H.; Russell-Anelli, J.; Walter, M.T.; Bassuk, N.L.; Rutzke, M.A. The heavy metal budget of an urban rooftop farm. Sci. Total Environ. 2019, 660, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.P.; Isley, C.F.; Fry, K.L.; Liu, X.; Gillings, M.M.; Rouillon, M.; Soltani, N.S.; Gore, D.B.; Filippelli, G.M. A citizen science approach to identifying trace metal contamination risks in urban gardens. Environt. Internat. 2021, 155, 106582. [Google Scholar] [CrossRef] [PubMed]
- Kabala, C.; Chodak, T.; Szerszen, L.; Karczewska, A.; Szopka, K.; Fratczak, U. Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wroclaw, Poland. Fresenius Environ. Bull. 2009, 18, 1118–1124. [Google Scholar]
- Nabulo, G.; Black, C.R.; Craigon, J.; Young, S.D. Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environ. Pollut. 2012, 162, 389–398. [Google Scholar] [CrossRef]
- Jean-Soro, L.; Le Guern, C.; Bechet, B.; Lebeau, T.; Ringeard, M.F. Origin of trace elements in an urban garden in Nantes, France. J. Soils Sediments 2015, 15, 1802–1812. [Google Scholar] [CrossRef]
- Schram-Bijkerk, D.; Otte, P.; Dirven, L.; Breure, A.M. Indicators to support healthy urban gardening in urban management. Sci. Total Environ. 2018, 621, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Eiguren-Fernandez, A.; Miguel, A.H.; Froines, J.R.; Thurairatnam, S.; Avol, E.L. Seasonal and Spatial Variation of Polycyclic Aromatic Hydrocarbons in Vapor-Phase and PM2.5 in Southern California Urban and Rural Communities. Aerosol. Sci. Tech. 2004, 38, 447–455. [Google Scholar] [CrossRef]
- Singh, B.P.; Kumar, K.; Jain, V.K. Distribution of ring PAHs in particulate/gaseous phase in the urban city of Delhi, India: Seasonal variation and cancer risk assessment. Urb. Clim. 2023, 40, 101010. [Google Scholar] [CrossRef]
- Lehndorff, E.; Schwark, L. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—Part II: Polycyclic aromatic hydrocarbons (PAH). Atmos. Environ. 2004, 38, 3793–3808. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Sánchez-Palencia, Y.; Gallego, J.L.R.; Borrego, Á.G.; Baragaño, D.; Torres, T. Deposition of atmospheric polycyclic aromatic hydrocarbons in rural areas: Current data and historical record from an ombrotrophic peatland. Int. J. Coal Geol. 2023, 268, 104199. [Google Scholar] [CrossRef]
- Quéguiner, S.; Genon, L.M.; Roustan, Y.; Ciffroy, P. Contribution of atmospheric emissions to the contamination of leaf vegetables by persistent organic pollutants (POPs): Application to Southeastern France. Atmos. Environ. 2010, 44, 958–967. [Google Scholar] [CrossRef]
- De Nicola, F.; Baldantoni, D.; Maisto, G.; Alfani, A. Heavy metal and polycyclic aromatic hydrocarbon concentrations in Quercus ilex L. leaves fit an a priori subdivision in site typologies based on human management. Environ. Sci. Pollut. Res. 2017, 24, 11911–11918. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.; Liu, Y.; Li, X.; Lin, X.; Liu, M.; Liu, X. PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China. Sci. Total Environ. 2017, 574, 358–368. [Google Scholar] [CrossRef]
- Birgül, A.; Tasdemir, Y.; Cindoruk, S.S. Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmos. Res. 2011, 101, 341–353. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, M.; Li, Y.; Liu, Y.; Li, S.; Ge, R. Dry and wet deposition of polycyclic aromatic hydrocarbons and comparison with typical media in urban system of Shanghai, China. Atmos. Environ. 2016, 144, 175–181. [Google Scholar] [CrossRef]
- Škrdlíková, L.; Landlová, L.; Klánová, J.; Lammel, G. Wet deposition and scavenging efficiency of gaseous and particulate phase polycyclic aromatic compounds at a central European suburban site. Atmos. Environ. 2011, 45, 4305–4312. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, N.; Mo, Y.; Guo, D.; Liang, Y.; Wu, J.; Chen, F.; Feng, B.; Chen, Y.; Wang, Y. Absorption, accumulation, and distribution of atmospheric metals in rice (Oryza sativa L.). Environ. Exp. Bot. 2024, 219, 105661. [Google Scholar] [CrossRef]
- Gao, P.P.; Xue, P.Y.; Dong, J.W.; Zhang, X.M.; Sun, H.X.; Geng, L.P.; Luo, S.X.; Zhao, J.J.; Liu, W.J. Contribution of PM2. 5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via stomata. J. Hazard. Mater. 2021, 407, 124356. [Google Scholar] [CrossRef] [PubMed]
- Gajbhiye, T.; Pandey, S.K.; Kim, K.H.; Szulejko, J.E.; Prasad, S. Airborne foliar transfer of PM bound heavy metals in Cassia siamea: A less common route of heavy metal accumulation. Sci. Total Environ. 2016, 573, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Zhu, L.; Xing, B.; Chen, B. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes. Sci. Rep. 2017, 7, 46235. [Google Scholar] [CrossRef] [PubMed]
- El-Khatib, A.A.; Barakat, N.A.; Youssef, N.A.; Samir, N.A. Bioaccumulation of heavy metals air pollutants by urban trees. Int. J. Phytoremediat. 2020, 22, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Desalme, D.; Binet, P.; Chiapusio, G. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants. Environ. Sci. Technol. 2013, 47, 3967–3981. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Michell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Davidson, C.I.; Wu, Y.L. Dry deposition of particles and vapors. Acidic Precip. 1990, 3, 103–216. [Google Scholar] [CrossRef]
- Margenat, A.; Matamoros, V.; Díez, S.; Cañameras, N.; Comas, J.; Bayona, J.M. Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Sci. Total Environ. 2018, 637–638, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, A.; Popek, R.; Nawrot, H.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.P.; Zhang, X.M.; Xue, P.Y.; Dong, J.W.; Dong, Y.; Zhao, Q.L.; Geng, L.P.; Lu, Y.; Zhao, J.J.; Liu, W.J. Mechanism of Pb accumulation in Chinese cabbage leaves: Stomata and trichomes regulate foliar uptake of Pb in atmospheric PM2.5. Environ. Pollut. 2022, 293, 118585. [Google Scholar] [CrossRef] [PubMed]
- Kováts, N.; Hubai, K.; Diósi, D.; Hoffer, A.; Teke, G. Foliar uptake and accumulation of polycyclic aromatic hydrocarbons from diesel emissions. Polycyc. Aromat. Comp. 2022, 42, 6124–6135. [Google Scholar] [CrossRef]
- Glavan, M.; Schmutz, U.; Williams, S.; Corsi, S.; Monaco, F.; Kneafsey, M.; Rodriguez, P.A.G.; Čenič-Istenič, M.; Pintar, M. The economic performance of urban gardening in three European cities–examples from Ljubljana, Milan and London. Urban For. Urban Green. 2018, 36, 100–122. [Google Scholar] [CrossRef]
- Schreck, E.; Bonnard, R.; Laplanche, C.; Leveque, T.; Foucault, Y.; Dumat, C. DECA: A new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example. J. Environ. Manag. 2012, 112, 233–239. [Google Scholar] [CrossRef]
- Schreck, E.; Laplanche, C.; Le Guédard, M.; Bessoule, J.-J.; Austruy, A.; Xiong, T.; Foucault, Y.; Dumat, C. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure. Environ. Pollut. 2013, 179, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Leitão, T.E.; Cameira, M.R.; Costa, H.D.; Pacheco, J.M.; Henriques, M.J.; Martins, L.L.; Mourato, M.P. Environmental quality in urban allotment gardens: Atmospheric deposition, soil, water and vegetable assessment at Lisbon City. Water Air Soil Pollut. 2018, 229, 1–22. [Google Scholar] [CrossRef]
- De Temmerman, L.; Waegeneers, N.; Claeys, N.; Roekens, E. Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: An important step in terrestrial food chain analysis. Environ. Pollut. 2009, 157, 1337–1341. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, J.; Zhu, Z.; Yu, P.; Wang, M.; Huang, Z.; Huang, Y.; Li, Z. Screening of leafy vegetable varieties with low lead and cadmium accumulation based on foliar uptake. Life 2022, 12, 339. [Google Scholar] [CrossRef]
- Gupta, S.; Jena, V.; Jena, S.; Davić, N.; Matić, N.; Radojević, D.; Solanki, J.S. Assessment of heavy metal contents of green leafy vegetables. Croat. J. Food Sci. Technol. 2013, 5, 53–60. [Google Scholar]
- Augustsson, A.; Lundgren, M.; Qvarforth, A.; Engström, E.; Paulukat, C.; Rodushkin, I.; Moreno-Jiménez, E.; Beesley, L.; Trakal, L.; Hough, R.L. Urban vegetable contamination-The role of adhering particles and their significance for human exposure. Sci. Total Environ. 2023, 900, 165633. [Google Scholar] [CrossRef] [PubMed]
- Engel-Di Mauro, S. An exploratory study of potential As and Pb contamination by atmospheric deposition in two urban vegetable gardens in Rome, Italy. J. Soils Sediments 2018, 18, 426–430. [Google Scholar] [CrossRef]
- Kulhánek, A.; Trapp, S.; Sismilich, M.; Jankl, J.; Zimová, M. Crop-specific human exposure assessment for polycyclic aromatic hydrocarbons in Czech soils. Sci. Total Environ. 2005, 339, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Bi, C.; Zhang, J.J.; Chen, Z. Atmospheric deposition and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) based on experimental and computational simulations. Atmos. Environ. 2019, 204, 135–141. [Google Scholar] [CrossRef]
- Watts, A.W.; Ballestero, T.P.; Gardner, K.H. Soil and atmospheric inputs to PAH concentrations in salt marsh plants. Water Air Soil Pollut. 2008, 189, 253–263. [Google Scholar] [CrossRef]
- Tian, K.; Bao, H.Y.; Liu, X.P.; Wu, F.Y. Accumulation and distribution of PAHs in winter wheat from areas influenced by coal combustion in China. Environ. Sci. Pollut. Res. 2018, 25, 23780–23790. [Google Scholar] [CrossRef]
- Bidar, G.; Pelfrêne, A.; Schwartz, C.; Waterlot, C.; Sahmer, K.; Marot, F.; Douay, F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables–A review. Sci. Total Environ. 2020, 738, 139569. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: London, UK; Taylor and Francis Group: London, UK, 2011. [Google Scholar] [CrossRef]
- Zhou, J.; Du, B.; Liu, H.; Cui, H.; Zhang, W.; Fan, X.; Cui, J.; Zhou, J. The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice (Oryza sativa L.). J. Hazard. Mater. 2020, 384, 121285. [Google Scholar] [CrossRef]
- Ávila, P.F.; Ferreira da Silva, E.; Candeias, C. Health risk assessment through consumption of vegetables rich in heavy metals: The case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ. Geochem. Health 2017, 39, 565–589. [Google Scholar] [CrossRef] [PubMed]
- Gelman, V.L. Rooftop Vegetables and Urban Contamination: Trace Elements and Polycyclic Aromatic Hydrocarbons in Crops from Helsinki Rooftops. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2017. [Google Scholar]
- Amato-Lourenco, L.F.; Saiki, M.; Saldiva, P.H.; Mauad, T. Influence of air pollution and soil contamination on the contents of polycyclic aromatic hydrocarbons (PAHs) in vegetables grown in urban gardens of Sao Paulo, Brazil. Front. Environ. Sci. 2017, 5, 77. [Google Scholar] [CrossRef]
- Tusher, T.R.; Sarker, M.E.; Nasrin, S.; Kormoker, T.; Proshad, R.; Islam, M.S.; Tareq, A.R.M.; Al Mamun, S.; Tareq, A.R.M. Contamination of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in rooftop vegetables and human health risks in Bangladesh. Toxin. Rev. 2021, 40, 736–751. [Google Scholar] [CrossRef]
- Kováts, N.; Hubai, K.; Sainnokhoi, T.A.; Teke, G. Biomonitoring of polyaromatic hydrocarbon accumulation in rural gardens using lettuce plants. J. Soils Sediments 2021, 21, 106–117. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Samsoe-Petersen, L.; Larsen, E.H.; Andersen, N.L.; Larsen, P.B. Optagelse Af Metaller Og PAH-Forbindelser I Grøntsager Og Frugt, Environmental Project No. 571; Danish Environmental Protection Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- Warming, M.; Hansen, M.G.; Holm, P.E.; Magid, J.; Hansen, T.H.; Trapp, S. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ. Pollut. 2015, 202, 17–23. [Google Scholar] [CrossRef]
- Salvagio Manta, D.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Säumel, I.; Kotsyuk, I.; Hölscher, M.; Lenkereit, C.; Weber, F.; Kowarik, I. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ. Pollut. 2012, 165, 124–132. [Google Scholar] [CrossRef]
- Antisari, L.V.; Orsini, F.; Marchetti, L.; Vianello, G.; Gianquinto, G. Heavy metal accumulation in vegetables grown in urban gardens. Agron. Sustain. Dev. 2015, 35, 1139–1147. [Google Scholar] [CrossRef]
- Amato-Lourenco, L.F.; Moreira, T.C.L.; de Oliveira Souza, V.C.; Barbosa, F., Jr.; Saiki, M.; Saldiva, P.H.N.; Mauad, T. The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil. Environ. Pollut. 2016, 216, 125–134. [Google Scholar] [CrossRef]
- Ma, C.; Liu, F.Y.; Hu, B.; Wei, M.B.; Zhao, J.H.; Zhang, K.; Zhang, H.Z. Direct evidence of lead contamination in wheat tissues from atmospheric deposition based on atmospheric deposition exposure contrast tests. Ecotoxicol. Environ. Saf. 2019, 185, 109688. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Shubhashish, K.; Pandey, J. Dietary intake of pollutant aerosols via vegetables influenced by atmospheric deposition and wastewater irrigation. Ecotoxicol. Environ. Saf. 2012, 76, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environ. Pollut. 2008, 154, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, I.; Pérez-Vázquez, L.; de Pablos-Pons, F.; Fernández-Espinosa, A.J. Toxic metals from atmospheric particulate matter in food species of tomato (Solanum lycopersicum) and strawberry (Fragaria x ananassa) used in urban gardening. A closed chamber study. Chemosphere 2023, 340, 139921. [Google Scholar] [CrossRef]
- Ouyang, X.; Ma, J.; Zhang, R.; Li, P.; Gao, M.; Sun, C.; Weng, L.; Chen, Y.; Yan, S.; Li, Y. Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. J. Hazard. Mater. 2022, 431, 128624. [Google Scholar] [CrossRef] [PubMed]
- Esther Pérez-Figueroa, C.; Salazar-Moreno, R.; Fitz Rodríguez, E.; López Cruz, I.L.; Schmidt, U.; Dannehl, D. Heavy Metals Accumulation in Lettuce and Cherry Tomatoes Cultivated in Cities. Pol. J. Environ. Stud. 2023, 32, 2293–2308. [Google Scholar] [CrossRef]
- Rossini-Oliva, S.; López-Núñez, R. Potential toxic elements accumulation in several food species grown in urban and rural gardens subjected to different conditions. Agronomy 2021, 11, 2151. [Google Scholar] [CrossRef]
- Izquierdo, M.; De Miguel, E.; Ortega, M.F.; Mingot, J. Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere 2015, 135, 312–318. [Google Scholar] [CrossRef]
- Izquierdo-Díaz, M.; Hansen, V.; Barrio-Parra, F.; De Miguel, E.; You, Y.; Magid, J. Assessment of lettuces grown in urban areas for human consumption and as bioindicators of atmospheric pollution. Ecotoxicol. Environ. Saf. 2023, 256, 114883. [Google Scholar] [CrossRef]
- Ziss, E.; Friesl-Hanl, W.; Götzinger, S.; Noller, C.; Puschenreiter, M.; Watzinger, A.; Hood-Nowotny, R. Exploring the potential risk of heavy metal pollution of edible cultivated plants in urban gardening contexts using a citizen science approach in the project “Heavy metal city-zen”. Sustainability 2021, 13, 8626. [Google Scholar] [CrossRef]
- Sussa, F.V.; Furlan, M.R.; Victorino, M.; Figueira, R.C.; Silva, P.S. Essential and non-essential elements in lettuce produced on a rooftop urban garden in São Paulo metropolitan region (Brazil) and assessment of human health risks. J. Radioanal. Nucl. Chem. 2022, 331, 5869–5879. [Google Scholar] [CrossRef]
- Sung, C.Y.; Park, C.B. The effect of site-and landscape-scale factors on lead contamination of leafy vegetables grown in urban gardens. Landsc. Urban Plan. 2018, 177, 38–46. [Google Scholar] [CrossRef]
- Buscaroli, E.; Braschi, I.; Cirillo, C.; Fargue-Lelièvre, A.; Modarelli, G.C.; Pennisi, G.; Righini, I.; Specht, K.; Orsini, F. Reviewing chemical and biological risks in urban agriculture: A comprehensive framework for a food safety assessment of city region food systems. Food Control 2021, 126, 108085. [Google Scholar] [CrossRef] [PubMed]
PAH |
---|
Naphthalene |
Acenaphthylene |
Fluorene |
Phenanthrene |
Anthracene |
Fluoranthene |
Pyrene |
Benzo(a)anthracene |
Chrysene |
Benzo(b)fluoranthene |
Benzo(k)fluoranthene |
Benzo(e)pyrene |
Benzo(a)pyrene |
Indeno1,2,3CD-Pyrene |
Dibenzo[a,h]anthracene |
Benzo(g,h,i)perylene |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubai, K.; Kováts, N.; Eck-Varanka, B. Urban Gardening—How Safe Is It? Urban Sci. 2024, 8, 91. https://doi.org/10.3390/urbansci8030091
Hubai K, Kováts N, Eck-Varanka B. Urban Gardening—How Safe Is It? Urban Science. 2024; 8(3):91. https://doi.org/10.3390/urbansci8030091
Chicago/Turabian StyleHubai, Katalin, Nora Kováts, and Bettina Eck-Varanka. 2024. "Urban Gardening—How Safe Is It?" Urban Science 8, no. 3: 91. https://doi.org/10.3390/urbansci8030091
APA StyleHubai, K., Kováts, N., & Eck-Varanka, B. (2024). Urban Gardening—How Safe Is It? Urban Science, 8(3), 91. https://doi.org/10.3390/urbansci8030091