The Carbon Emission Implications of Intensive Urban Land Use in Emerging Regions: Insights from Chinese Cities
Abstract
:1. Introduction
2. Literature Review
3. Method
3.1. Study Area
3.2. Data Description
3.3. Model Development
4. Empirical Results
4.1. Correlation between Variables
4.2. OLS Regression Results
4.3. Spatial Regression Results
5. Discussion
5.1. Policy Implications
5.2. Limitations and Future Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B.G.; Gasser, T.; Ciais, P.; Piao, S.L.; Tao, S.; Balkanski, Y.; Hauglustaine, D.; Boisier, J.P.; Chen, Z.; Huang, M.T.; et al. The Contribution of China’s Emissions to Global Climate Forcing. Nature 2016, 531, 357–361. [Google Scholar] [CrossRef]
- Cai, B.F.; Zhang, L.X. Urban CO2 Emissions in China: Spatial Boundary and Performance Comparison. Energy Policy 2014, 66, 557–567. [Google Scholar] [CrossRef]
- Ali, G.; Pumijumnong, N.; Cui, S.H. Valuation and Validation of Carbon Sources and Sinks through Land Cover/Use Change Analysis: The Case of Bangkok Metropolitan Area. Land Use Policy 2018, 70, 471–478. [Google Scholar] [CrossRef]
- Li, Y.-B.; Wang, Q.-C.; Chang, R. Nature-Based Solutions for Fast-Growing City Regions: A New Spatial Equilibrium Model for Complementary Urban Green Space Planning. J. Clean. Prod. 2024, 462, 142671. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X.Z. Dynamic Interactive Effects of Urban Land-Use Efficiency, Industrial Transformation, and Carbon Emissions. J. Clean. Prod. 2020, 270, 122547. [Google Scholar] [CrossRef]
- Yang, B.; Chen, X.; Wang, Z.Q.; Li, W.D.; Zhang, C.R.; Yao, X.W. Analyzing Land Use Structure Efficiency with Carbon Emissions: A Case Study in the Middle Reaches of the Yangtze River, China. J. Clean. Prod. 2020, 274, 123076. [Google Scholar] [CrossRef]
- Lau, S.S.Y.; Giridharan, R.; Ganesan, S. Multiple and Intensive Land Use: Case Studies in Hong Kong. Habitat Int. 2005, 29, 527–546. [Google Scholar] [CrossRef]
- Liu, K.; Xue, M.; Peng, M.; Wang, C. Impact of Spatial Structure of Urban Agglomeration on Carbon Emissions: An Analysis of the Shandong Peninsula, China. Technol. Forecast. Soc. Chang. 2020, 161, 120313. [Google Scholar] [CrossRef]
- Zhang, R.; Matsushima, K.; Kobayashi, K. Can Land Use Planning Help Mitigate Transport-Related Carbon Emissions? A Case of Changzhou. Land Use Policy 2018, 74, 32–40. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land Use, Total Carbon Emissions Change and Low Carbon Land Management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Xie, H.L.; Zhai, Q.L.; Wang, W.; Yu, J.L.; Lu, F.C.; Chen, Q.R. Does Intensive Land Use Promote a Reduction in Carbon Emissions? Evidence from the Chinese Industrial Sector. Resour. Conserv. Recycl. 2018, 137, 167–176. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the Relationship between Urban Development Intensity and Carbon Dioxide Emissions Using a Panel Data Analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
- Erb, K.H. How a Socio-Ecological Metabolism Approach Can Help to Advance Our Understanding of Changes in Land-Use Intensity. Ecol. Econ. 2012, 76, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Walker, H. Mixed Use Development as an Agent of Sustainability. In Reclaiming the City; Routledge: London, UK, 1996; ISBN 978-0-203-98546-5. [Google Scholar]
- Yi, Y.; Wang, Y.; Li, Y.; Qi, J. Impact of Urban Density on Carbon Emissions in China. Appl. Econ. 2021, 53, 6153–6165. [Google Scholar] [CrossRef]
- Li, J.B.A.; Huang, X.J.; Chuai, X.W.; Yang, H. The Impact of Land Urbanization on Carbon Dioxide Emissions in the Yangtze River Delta, China: A Multiscale Perspective. Cities 2021, 116, 103275. [Google Scholar] [CrossRef]
- Kang, T.; Wang, H.; He, Z.; Liu, Z.; Ren, Y.; Zhao, P. The Effects of Urban Land Use on Energy-Related CO2 Emissions in China. Sci. Total Environ. 2023, 870, 161873. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Lu, H.; Guan, Y.; Feng, L.; He, L.; Qiu, L.; Lu, J. Population Density Regulation May Mitigate the Imbalance between Anthropogenic Carbon Emissions and Vegetation Carbon Sequestration. Sustain. Cities Soc. 2023, 92, 104502. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, H.; Qian, X.-M.; Zhang, L.-Y.; An, B.-W. Can New-Type Urbanization Reduce Urban Building Carbon Emissions? New Evidence from China. Sustain. Cities Soc. 2023, 90, 104410. [Google Scholar] [CrossRef]
- Feng, T.; Zhou, B. Impact of Urban Spatial Structure Elements on Carbon Emissions Efficiency in Growing Megacities: The Case of Chengdu. Sci. Rep. 2023, 13, 9939. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Wu, Y.; Deng, L.; Zheng, B. Analysis on Coupling Relationship of Urban Scale and Intensive Use of Land in China. Cities 2015, 42, 63–69. [Google Scholar] [CrossRef]
- Xia, C.; Dong, Z.; Wu, P.; Dong, F.; Fang, K.; Li, Q.; Li, X.; Shao, Z.; Yu, Z. How Urban Land-Use Intensity Affected CO2 Emissions at the County Level: Influence and Prediction. Ecol. Indic. 2022, 145, 109601. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Xu, F.; Li, S.; Zheng, M.; Gong, J. Urban Development Wave: Understanding Physical Spatial Processes of Urban Expansion from Density Gradient of New Urban Land. Comput. Environ. Urban Syst. 2022, 97, 101867. [Google Scholar] [CrossRef]
- Shang, Y.; Zheng, X.; Han, R.; Liu, W.; Xiao, F. Long-Term Evaluation on Urban Intensive Land Use in Five Fast-Growing Cities of Northern China with GEE Support. Sci. Rep. 2021, 11, 20734. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Song, M.L.; Han, F. Urban Economic Structure, Technological Externalities, and Intensive Land Use in China. J. Clean. Prod. 2017, 152, 47–62. [Google Scholar] [CrossRef]
- Qiao, W.; Gao, J.; Liu, Y.; Qin, Y.; Lu, C.; Ji, Q. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model: A Case Study of Nanjing City, China. Chin. Geogr. Sci. 2017, 27, 735–746. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.G.O.; Zhang, A.Q. Analyzing Spatial Relationships between Urban Land Use Intensity and Urban Vitality at Street Block Level: A Case Study of Five Chinese Megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Qi, J.; Gao, M.; Cheng, S.; Li, K.; Xu, C. City- and County-Level Spatio-Temporal Energy Consumption and Efficiency Datasets for China from 1997 to 2017. Sci. Data 2022, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wang, J.; Wang, S.; Feng, K. The Drivers of Declining CO2 Emissions Trends in Developed Nations Using an Extended STIRPAT Model: A Historical and Prospective Analysis. Renew. Sustain. Energy Rev. 2021, 149, 111328. [Google Scholar] [CrossRef]
- Lohwasser, J.; Schaffer, A.; Brieden, A. The Role of Demographic and Economic Drivers on the Environment in Traditional and Standardized STIRPAT Analysis. Ecol. Econ. 2020, 178, 106811. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic Tools for Unpacking the Driving Forces of Environmental Impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Wang, Y.; Lei, H. The Effect of Energy Patents on China’s Carbon Emissions: Evidence from the STIRPAT Model. Technol. Forecast. Soc. Chang. 2021, 173, 121110. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Q.; Hao, J.L.; Ma, W.; Sun, Y.; Wang, X.; Song, Y. Development of an Extended STIRPAT Model to Assess the Driving Factors of Household Carbon Dioxide Emissions in China. J. Environ. Manag. 2023, 325, 116502. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Cao, X.; Dong, X.; Zhen, X. The Effects of Carbon-Related News on Carbon Emissions and Carbon Transfer from a Global Perspective: Evidence from an Extended STIRPAT Model. J. Clean. Prod. 2023, 425, 138974. [Google Scholar] [CrossRef]
- Kashki, A.; Karami, M.; Zandi, R.; Roki, Z. Evaluation of the Effect of Geographical Parameters on the Formation of the Land Surface Temperature by Applying OLS and GWR, A Case Study Shiraz City, Iran. Urban Clim. 2021, 37, 100832. [Google Scholar] [CrossRef]
- Sporkmann, J.; Liu, Y.; Spinler, S. Carbon Emissions from European Land Transportation: A Comprehensive Analysis. Transp. Res. Part D Transp. Environ. 2023, 121, 103851. [Google Scholar] [CrossRef]
- Zheng, S.; Huang, Y.; Sun, Y. Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning. Land 2022, 11, 1343. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Exploring the Spatial Heterogeneity of Urban Heat Island Effect and Its Relationship to Block Morphology with the Geographically Weighted Regression Model. Sustain. Cities Soc. 2022, 76, 103431. [Google Scholar] [CrossRef]
- Wang, Q.-C.; Liu, X.; Jian, I.Y.; Zhang, E.-J.; Hou, Y.-T.; Siu, K.W.M.; Li, Y.-B. Community resilience in city emergency: Exploring the roles of environmental perception, social justice and community attachment in subjective well-being of vulnerable residents. Sustain. Cities Soc. 2023, 97, 104745. [Google Scholar] [CrossRef]
Data | Source |
---|---|
Carbon emissions | China Emission Accounts and Data Sets (CEADs) |
Urban land area | Land survey results sharing application service platform developed by Ministry of Natural Resources in China |
GDP | China City Statistical Yearbook |
Population | |
Wage of labors | |
R&D investment | |
Gross investment in fixed assets | |
Energy consumption | [28] |
VarName | Description | Unit | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|---|
CE | Carbon emissions | 106 tons | 52.148 | 63.152 | 1.804 | 33.167 | 457.757 |
POP | Population | 106 persons | 3.990 | 3.897 | 0.720 | 2.550 | 22.290 |
PCGDP | Per capita GDP | 104 yuan | 101.368 | 36.691 | 25.476 | 93.267 | 208.464 |
EC | Energy consumption intensity | ton/104 yuan | 60.141 | 41.129 | 8.036 | 49.403 | 298.600 |
KI | Capital intensity | 104 yuan/km2 | 62,798.369 | 24,691.143 | 5373.225 | 60,672.016 | 142,505.728 |
LI | Labor intensity | 104 yuan/km2 | 14,944.241 | 18,862.591 | 4419.651 | 10,665.803 | 191,161.483 |
RI | R&D investment intensity | 104 yuan/km2 | 455.877 | 487.395 | 14.318 | 325.203 | 3663.048 |
PI | Population intensity | Persons/km2 | 8965.525 | 2510.175 | 3668.224 | 8781.204 | 19,151.251 |
OI | Land output intensity | 104 yuan/km2 | 89,843.150 | 39,425.188 | 13,276.021 | 81,801.656 | 292,739.561 |
lnCE | lnPOP | lnPCGDP | lnEC | lnKI | lnLI | lnRI | lnPI | lnOI | |
---|---|---|---|---|---|---|---|---|---|
lnCE | 1 | ||||||||
lnPOP | 0.524 *** | 1 | |||||||
lnPCGDP | 0.363 *** | 0.364 *** | 1 | ||||||
lnEC | 0.033 | −0.455 *** | −0.654 *** | 1 | |||||
lnKI | −0.001 | −0.037 | 0.389 *** | −0.332 *** | 1 | ||||
lnLI | 0.123 | 0.329 *** | 0.329 *** | −0.363 *** | 0.113 | 1 | |||
lnRI | 0.087 | 0.494 *** | 0.580 *** | −0.748 *** | 0.249 ** | 0.342 *** | 1 | ||
lnPI | −0.181 * | 0.312 *** | −0.075 | −0.374 *** | 0.352 *** | 0.322 *** | 0.355 *** | 1 | |
lnOI | 0.182 * | 0.497 *** | 0.771 *** | −0.775 *** | 0.544 *** | 0.476 *** | 0.702 *** | 0.577 *** | 1 |
All Cities | VIF | High per Capita GDP Cites | Middle per Capita GDP Cities | Low per Capita GDP Cities | |
---|---|---|---|---|---|
lnPOP | 0.868 *** | 1.67 | 0.531 * | 0.987 *** | 0.848 *** |
(9.067) | (2.308) | (6.914) | (4.945) | ||
lnPCGDP | 0.479 | 2.84 | 2.260 * | 1.182 | −0.651 |
(1.874) | (2.039) | (1.114) | (−1.179) | ||
lnKI | 0.286 | 1.82 | −0.384 | 0.554 | 0.654 * |
(1.748) | (−0.812) | (1.940) | (2.436) | ||
lnLI | 0.029 | 1.36 | −0.284 | −0.004 | 0.389 |
(0.329) | (−1.430) | (−0.032) | (1.550) | ||
lnRI | −0.285 ** | 2.15 | −0.329 | −0.409 * | −0.076 |
(−3.332) | (−1.806) | (−2.313) | (−0.559) | ||
lnPI | −1.100 *** | 2.22 | −0.002 | −1.110 * | −1.929 ** |
(−3.792) | (−0.004) | (−2.555) | (−3.190) | ||
_cons | 8.598 *** | 1.117 | 3.260 | 12.606 ** | |
(3.666) | (0.123) | (0.554) | (3.290) | ||
N | 153 | 39 | 51 | 63 | |
Adj. R2 | 0.454 | 0.349 | 0.502 | 0.292 |
Indicator | Value |
---|---|
Moran I | 0.213 |
Z Score | 7.418 |
p Value | 0.000 |
Indicator | Value |
---|---|
R2 | 0.624 |
Adj. R2 | 0.530 |
AICc | 320.593 |
Sigma Squared | 0.403 |
Sigma Squared MLE | 0.323 |
Effective Degrees of Freedom | 122.515 |
Adjusted Critical Value of Pseudo-t Statistics | 2.467 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Wang, Q.-C.; Shen, G.Q. The Carbon Emission Implications of Intensive Urban Land Use in Emerging Regions: Insights from Chinese Cities. Urban Sci. 2024, 8, 75. https://doi.org/10.3390/urbansci8030075
He P, Wang Q-C, Shen GQ. The Carbon Emission Implications of Intensive Urban Land Use in Emerging Regions: Insights from Chinese Cities. Urban Science. 2024; 8(3):75. https://doi.org/10.3390/urbansci8030075
Chicago/Turabian StyleHe, Ping, Qian-Cheng Wang, and Geoffrey Qiping Shen. 2024. "The Carbon Emission Implications of Intensive Urban Land Use in Emerging Regions: Insights from Chinese Cities" Urban Science 8, no. 3: 75. https://doi.org/10.3390/urbansci8030075
APA StyleHe, P., Wang, Q. -C., & Shen, G. Q. (2024). The Carbon Emission Implications of Intensive Urban Land Use in Emerging Regions: Insights from Chinese Cities. Urban Science, 8(3), 75. https://doi.org/10.3390/urbansci8030075