Thermal Behaviour of Different Land Uses and Covers in the Urban Environment of the Spanish Mediterranean Based on Landsat Land Surface Temperature
Abstract
:1. Introduction
- -
- determine the variation in land cover and land use around the main urban areas between 1990 and 2018;
- -
- determine the main flows between the two dates;
- -
- derive monthly and annual temperatures for each land cover;
- -
- calculate thermal trends;
- -
- ascertain the monthly thermal behaviour of the main land covers.
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
3. Results
3.1. LULCs in 1990 and 2018 in Castellon
3.2. LULCs in 1990 and 2018 in Valencia
3.3. LULCs in 1990 and 2018 in Alicante
3.4. LULCs in 1990 and 2018 in Elche
3.5. LULCs in 1990 and 2018 in Murcia
3.6. Landsat LSTs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface Temperature in Urban Areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- World Bank Group. Urban Development. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 18 June 2024).
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial Pattern of Greenspace Affects Land Surface Temperature: Evidence from the Heavily Urbanized Beijing Metropolitan Area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Hidalgo-García, D.; Arco-Díaz, J. Spatiotemporal Analysis of the Surface Urban Heat Island (SUHI), Air Pollution and Disease Pattern: An Applied Study on the City of Granada (Spain). Environ. Sci. Pollut. Res. 2023, 30, 57617–57637. [Google Scholar] [CrossRef]
- Bradford, K.; Abrahams, L.; Hegglin, M.; Klima, K. A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania. Environ. Sci. Technol. 2015, 49, 11303–11311. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Onn, C.C.; Yap, S.P.; Yuen, C.W.; Onodagu, P.D. Urban Heat Island Studies with Emphasis on Urban Pavements: A Review. Sustain. Cities Soc. 2020, 63, 102476. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y.; Chen, Q.; He, K.; Ji, X.; Han, C. Discrepant Impacts of Land Use and Land Cover on Urban Heat Islands: A Case Study of Shanghai, China. Ecol. Indic. 2014, 47, 171–178. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban Heat Island Effect: A Systematic Review of Spatio-Temporal Factors, Data, Methods, and Mitigation Measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Zheng, B.; Myint, S.W.; Fan, C. Spatial Configuration of Anthropogenic Land Cover Impacts on Urban Warming. Landsc. Urban Plan. 2014, 130, 104–111. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban Heat Island (UHI) Intensity and Magnitude Estimations: A Systematic Literature Review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Ivajnšič, D.; Kaligarič, M.; Žiberna, I. Geographically Weighted Regression of the Urban Heat Island of a Small City. Appl. Geogr. 2014, 53, 341–353. [Google Scholar] [CrossRef]
- Santamouris, M. Heat Island Research in Europe: The State of the Art. Adv. Build. Energy Res. 2007, 1, 123–150. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Wang, Y. Estimating Local-Scale Urban Heat Island Intensity Using Nighttime Light Satellite Imageries. Sustain. Cities Soc. 2020, 57, 102125. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A Review on the Generation, Determination and Mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between Land Cover and the Surface Urban Heat Island: Seasonal Variability and Effects of Spatial and Thematic Resolution of Land Cover Data on Predicting Land Surface Temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Martin-Vide, J.; Moreno-Garcia, M.C. Probability Values for the Intensity of Barcelona’s Urban Heat Island (Spain). Atmos. Res. 2020, 240, 104877. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Frolking, S.; Zhou, D.; Schneider, A.; Weng, Q.; Yu, P.; Wang, X.; Li, X.; et al. Exploring Diurnal Cycles of Surface Urban Heat Island Intensity in Boston with Land Surface Temperature Data Derived from GOES-R Geostationary Satellites. Sci. Total Environ. 2021, 763, 144224. [Google Scholar] [CrossRef]
- Siddiqui, A.; Kushwaha, G.; Nikam, B.; Srivastav, S.K.; Shelar, A.; Kumar, P. Analysing the Day/Night Seasonal and Annual Changes and Trends in Land Surface Temperature and Surface Urban Heat Island Intensity (SUHII) for Indian Cities. Sustain. Cities Soc. 2021, 75, 103374. [Google Scholar] [CrossRef]
- Deng, X.; Yu, W.; Shi, J.; Huang, Y.; Li, D.; He, X.; Zhou, W.; Xie, Z. Characteristics of Surface Urban Heat Islands in Global Cities of Different Scales: Trends and Drivers. Sustain. Cities Soc. 2024, 107, 105483. [Google Scholar] [CrossRef]
- Du, J.; Xiang, X.; Zhao, B.; Zhou, H. Impact of Urban Expansion on Land Surface Temperature in Fuzhou, China Using Landsat Imagery. Sustain. Cities Soc. 2020, 61, 102346. [Google Scholar] [CrossRef]
- Chen, F.; Yang, S.; Yin, K.; Chan, P. Challenges to Quantitative Applications of Landsat Observations for the Urban Thermal Environment. J. Environ. Sci. (China) 2017, 59, 80–88. [Google Scholar] [CrossRef]
- Aslan, N.; Koc-San, D. Analysis of Relationship between Urban Heat Island Effect and Land Use/Cover Type Using Landsat 7 ETM+ and Landsat 8 OLI Images. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2016; Volume 41, pp. 821–828. [Google Scholar] [CrossRef]
- Lemus-Canovas, M.; Martin-Vide, J.; Moreno-Garcia, M.C.; Lopez-Bustins, J.A. Estimating Barcelona’s Metropolitan Daytime Hot and Cold Poles Using Landsat-8 Land Surface Temperature. Sci. Total Environ. 2020, 699, 134307. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Bauer, M.E. Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of Surface Urban Heat Island Effects in Landsat Imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Sun, W.; Xiao, X.; Cecilia, J.X.; Jin, C.; Li, X. Impact of Urban Morphology and Landscape Characteristics on Spatiotemporal Heterogeneity of Land Surface Temperature. Sustain. Cities Soc. 2020, 63, 102443. [Google Scholar] [CrossRef]
- Hidalgo-García, D.; Arco-Díaz, J. Modeling the Surface Urban Heat Island (SUHI) to Study of Its Relationship with Variations in the Thermal Field and with the Indices of Land Use in the Metropolitan Area of Granada (Spain). Sustain. Cities Soc. 2022, 87, 104166. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Niza, S. Local Climate Zones in Five Southern European Cities: An Improved GIS-Based Classification Method Based on Copernicus Data. Urban Clim. 2020, 33, 100631. [Google Scholar] [CrossRef]
- Mirchooli, F.; Sadeghi, S.H.; Darvishan, A.K. Analyzing Spatial Variations of Relationships between Land Surface Temperature and Some Remotely Sensed Indices in Different Land Uses. Remote Sens. Appl. Soc. Environ. 2020, 19, 100359. [Google Scholar] [CrossRef]
- Salvati, A.; Coch, H.; Morganti, M. Effects of Urban Compactness on the Building Energy Performance in Mediterranean Climate. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 122, pp. 499–504. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A.; Asmaryan, S. Studying Spatial-Temporal Changes and Relationship of Land Cover and Surface Urban Heat Island Derived through Remote Sensing in Yerevan, Armenia. Build. Environ. 2021, 187, 107390. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Met. Soc. 1982, 108, 551. [Google Scholar] [CrossRef]
- Bala, R.; Prasad, R.; Yadav, V.P. A Comparative Analysis of Day and Night Land Surface Temperature in Two Semi-Arid Cities Using Satellite Images Sampled in Different Seasons. Adv. Space Res. 2020, 66, 412–425. [Google Scholar] [CrossRef]
- Chen, H.; Deng, Q.; Zhou, Z.; Ren, Z.; Shan, X. Influence of Land Cover Change on Spatio-Temporal Distribution of Urban Heat Island —A Case in Wuhan Main Urban Area. Sustain. Cities Soc. 2022, 79, 103715. [Google Scholar] [CrossRef]
- Salvati, A.; Roura, H.C.; Cecere, C. Assessing the Urban Heat Island and Its Energy Impact on Residential Buildings in Mediterranean Climate: Barcelona Case Study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef]
- Dienst, M.; Lindén, J.; Saladié, Ò.; Esper, J. Detection and Elimination of UHI Effects in Long Temperature Records from Villages—A Case Study from Tivissa, Spain. Urban Clim. 2019, 27, 372–383. [Google Scholar] [CrossRef]
- Barrao, S.; Serrano-Notivoli, R.; Cuadrat, J.M.; Tejedor, E.; Sánchez, M.A.S. Characterization of the UHI in Zaragoza (Spain) Using a Quality-Controlled Hourly Sensor-Based Urban Climate Network. Urban Clim. 2022, 44, 101207. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Cuadrat-Prats, J.M.; Saz-Sánchez, M.A. Spatial Patterns of the Urban Heat Island in Zaragoza (Spain). Clim. Res. 2005, 30, 61–69. [Google Scholar] [CrossRef]
- Alonso, M.S.; Fidalgo, M.R.; Labajo, J.L. The Urban Heat Island in Salamanca (Spain) and Its Relationship to Meteorological Parameters. Clim. Res. 2007, 34, 39–46. [Google Scholar] [CrossRef]
- Gago, E.J.; Berrizbeitia, S.E.; Torres, R.P.; Muneer, T. Effect of Land Use/Cover Changes on Urban Cool Island Phenomenon in Seville, Spain. Energies 2020, 13, 3040. [Google Scholar] [CrossRef]
- Acero, J.A.; Arrizabalaga, J.; Kupski, S.; Katzschner, L. Urban Heat Island in a Coastal Urban Area in Northern Spain. Theor. Appl. Climatol. 2013, 113, 137–154. [Google Scholar] [CrossRef]
- Senciales-González, J.M.; Rodrigo-Comino, J.; Smith, P. Surveying Topographical Changes and Climate Variations to Detect the Urban Heat Island in the City of Málaga (Spain). Geogr. Res. Lett. 2020, 46, 521–543. [Google Scholar] [CrossRef]
- Hidalgo-García, D.; Arco-Díaz, J. Space–Time Analysis of the Earth’s Surface Temperature, Surface Urban Heat Island and Urban Hotspot: Relationships with Variation of the Thermal Field in Andalusia (Spain). Urban Ecosyst. 2023, 26, 525–546. [Google Scholar] [CrossRef]
- Moreno, H.L.; Sánchez, S.-G.; López, M.E.R.; González, F.J.N. Thermal Characterization of Urban Heat Island (UHI) According to Urban Morphology of Madrid. In Proceedings of the III International Congress on Construction and Building Research, Madrid, Spain, 14–16 December 2015. [Google Scholar]
- Lehoczky, A.; Sobrino, J.; Skoković, D.; Aguilar, E. The Urban Heat Island Effect in the City of Valencia: A Case Study for Hot Summer Days. Urban Sci. 2017, 1, 9. [Google Scholar] [CrossRef]
- Quereda, J.; Montón, E.; Quereda, V.; Mollá, B. Significant Climate Warming (1950-2013) in the Spanish Mediterranean: Natural Trend or Urban Heat Island (UHI). Tethys 2016, 2016, 11–20. [Google Scholar] [CrossRef]
- Quereda Sala, J.; Montón Chiva, E.; Quereda Vázquez, M.V.; Mollà Cantavella, B. The Urban Effect (UHI) in Spanish Mediterranean. Wulfenia 2015, 22, 89–100. [Google Scholar]
- World Bank Group. Urban Population (% of Total Population)—Spain. 2024. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=ES (accessed on 19 June 2024).
- Jato-Espino, D. Spatiotemporal Statistical Analysis of the Urban Heat Island Effect in a Mediterranean Region. Sustain. Cities Soc. 2019, 46, 101427. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of Urban Surface Characteristics on Spatiotemporal Pattern of Land Surface Temperature in Kunming of China. Sustain. Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef]
- Quereda, J.; Montón, E.; Quereda, V. Climate Warming in the Spanish Mediterranean: Its Magnitude and Nature. Tethys 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- CNIG. Work from Orto-AMS 1956–1957 CC-BY 4.0 Scne.Es. Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 21 February 2019).
- CNIG. Work from PNOAHISTORICO 2004–2022 CC-BY 4.0 Scne.Es. Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 21 February 2019).
- Rocafort, C.; Dalmau, C.; Chias Carbó, B. España Regional. Planos; Alberto Martín: Barcelona, Spain, 1910; Volume 3. [Google Scholar]
- INE. Municipality Population. 2023. Available online: https://www.ine.es/dynt3/inebase/index.htm?padre=525 (accessed on 3 April 2024).
- Copernicus Land Monitoring Service. CORINE Land Cover 1990 (Vector/Raster 100 m), Europe, 6-Yearly CC-BY 4.0 Scne.Es. Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp# (accessed on 22 February 2024). [CrossRef]
- Copernicus Land Monitoring Service. CORINE Land Cover 2018 (Vector/Raster 100 m), Europe, 6-Yearly. CC-BY 4.0 Scne.Es. Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp# (accessed on 22 February 2024). [CrossRef]
- Copernicus. CORINE Land Cover Nomenclature Guidelines. 2024. Available online: https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/html/ (accessed on 21 February 2024).
- Climate Engine Team. Dataset Information, Landsat NDVI. Available online: https://support.climateengine.org/article/104-datasetsinfo (accessed on 11 July 2024).
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2409. [Google Scholar] [CrossRef]
- Desert Research Institute and University of California Merced. Climate Engine, Version 2.1. (1985–2023). Available online: http://climateengine.org (accessed on 20 March 2024).
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Rico, C.D.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A Summary of the Special Issue on Remote Sensing of Land Change Science with Google Earth Engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, Y.; An, H.; Lei, J.; Li, M.; Song, J.; Han, W. Surface Urban Heat Island and Its Relationship with Land Cover Change in Five Urban Agglomerations in China Based on GEE. Environ. Sci. Pollut. Res. 2022, 29, 82271–82285. [Google Scholar] [CrossRef]
- Purio, M.A.; Yoshitake, T.; Cho, M. Assessment of Intra-Urban Heat Island in a Densely Populated City Using Remote Sensing: A Case Study for Manila City. Remote Sens. 2022, 14, 5573. [Google Scholar] [CrossRef]
- Rejuso, A.M.; Cortes, A.C.; Blanco, A.C.; Cruz, C.A.; Babaan, J.B. Spatio-Temporal Analysis of Urban Heat Island in Mandaue City, Philippines. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2019; Volume 42, pp. 361–367. [Google Scholar] [CrossRef]
- Ravanelli, R.; Nascetti, A.; Cirigliano, V.; Rico, C.D.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring of the Urban Heat Island through Google Earth Engine: A Global Methodology and Its Application to Different Cities of the United States. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 1467–1472. [Google Scholar] [CrossRef]
- Gkatzioura, P.E.; Perakis, K. Analysis of Urban Heat Island (UHI) through Climate Engine and ARCGIS PRO in Different Cities of Bulgaria. In Proceedings of the Eighteenth International Scientific Conference, Virtual Event, 24–27 June 2022. [Google Scholar]
- CNIG. Donwload Center. Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 15 January 2024).
- Stal, C.; Sloover, L.D.; Verbeurgt, J.; Wulf, A.D. On Finding a Projected Coordinate Reference System. Geographies 2022, 2, 245–257. [Google Scholar] [CrossRef]
- Climate Engine Team. On-Demand Insights from Climate and Earth Observations Data. 2024. Available online: https://www.climateengine.org/ (accessed on 20 March 2024).
- Mejjad, N.; Rossi, A.; Pavel, A.B. The Coastal Tourism Industry in the Mediterranean: A Critical Review of the Socio-Economic and Environmental Pressures & Impacts. Tour. Manag. Perspect. 2022, 44, 101007. [Google Scholar] [CrossRef]
- Masot, A.N.; Alonso, G.C.; Moriche, Á.E. Spatial Analysis of the Rural-Urban Structure of the Spanish Municipalities. ISPRS Int. J. Geo-Inf. 2020, 9, 213. [Google Scholar] [CrossRef]
- Jiménez-Olivencia, Y.; Ibáñez-Jiménez, Á.; Porcel-Rodríguez, L.; Zimmerer, K. Land Use Change Dynamics in Euro-Mediterranean Mountain Regions: Driving Forces and Consequences for the Landscape. Land Use Policy 2021, 109, 105721. [Google Scholar] [CrossRef]
- López Ortiz, M.I.; Melgarejo Moreno, J. Evolución Histórica de La Agricultura de La Provincia de Alicante, 1900–2000. In Libro Jubilar en Homenaje al Profesor Antonio Gil Olcina. Edición ampliada; Servicio de Publicaciones de la Universidad de Alicante: Alicante, Spain, 2016; pp. 1063–1085. [Google Scholar] [CrossRef]
- Hrushka, V.V.; Horozhankina, N.A.; Boyko, Z.V.; Korneyev, M.V.; Nebaba, N.A. Transport Infrastructure of Spain as a Factor in Tourism Development. J. Geol. Geogr. Geoecol. 2021, 30, 429–440. [Google Scholar] [CrossRef]
- Martí, P.; García-Mayor, C. The Huerta Agricultural Landscape in the Spanish Mediterranean Arc: One Landscape, Two Perspectives, Three Specific Huertas. Land 2020, 9, 460. [Google Scholar] [CrossRef]
- McCormick, M.P.; Thomason, L.W.; Trepte, C.R. Atmospheric Effects of the Mt Pinatubo Eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Medhaug, I.; Stolpe, M.B.; Fischer, E.M.; Knutti, R. Reconciling Controversies about the “Global Warming Hiatus”. Nature 2017, 545, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Buyantuyev, A.; Wu, J. Urban Heat Islands and Landscape Heterogeneity: Linking Spatiotemporal Variations in Surface Temperatures to Land-Cover and Socioeconomic Patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Founda, D.; Pierros, F.; Petrakis, M.; Zerefos, C. Interdecadal Variations and Trends of the Urban Heat Island in Athens (Greece) and Its Response to Heat Waves. Atmos. Res. 2015, 161–162, 1–13. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Melas, D. Study of the Urban Heat Island in a Coastal Mediterranean City: The Case Study of Thessaloniki, Greece. Atmos. Res. 2012, 118, 103–120. [Google Scholar] [CrossRef]
- Montaner-Fernández, D.; Morales-Salinas, L.; Rodriguez, J.S.; Cárdenas-Jirón, L.; Huete, A.; Fuentes-Jaque, G.; Pérez-Martínez, W.; Cabezas, J. Spatio-Temporal Variation of the Urban Heat Island in Santiago, Chile during Summers 2005–2017. Remote Sens. 2020, 12, 3345. [Google Scholar] [CrossRef]
- MacLachlan, A.; Biggs, E.; Roberts, G.; Boruff, B. Urbanisation-Induced Land Cover Temperature Dynamics for Sustainable Future Urban Heat Island Mitigation. Urban Sci. 2017, 1, 38. [Google Scholar] [CrossRef]
- Bahi, H.; Rhinane, H.; Bensalmia, A.; Fehrenbach, U.; Scherer, D. Effects of Urbanization and Seasonal Cycle on the Surface Urban Heat Island Patterns in the Coastal Growing Cities: A Case Study of Casablanca, Morocco. Remote Sens. 2016, 8, 829. [Google Scholar] [CrossRef]
- Evola, G.; Gagliano, A.; Fichera, A.; Marletta, L.; Martinico, F.; Nocera, F.; Pagano, A. UHI Effects and Strategies to Improve Outdoor Thermal Comfort in Dense and Old Neighbourhoods. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 134, pp. 692–701. [Google Scholar] [CrossRef]
- Yenneti, K.; Ding, L.; Prasad, D.; Ulpiani, G.; Paolini, R.; Haddad, S.; Santamouris, M. Urban Overheating and Cooling Potential in Australia: An Evidence-Based Review. Climate 2020, 8, 126. [Google Scholar] [CrossRef]
- Lai, J.; Zhan, W.; Voogt, J.; Quan, J.; Huang, F.; Zhou, J.; Bechtel, B.; Hu, L.; Wang, K.; Cao, C.; et al. Meteorological Controls on Daily Variations of Nighttime Surface Urban Heat Islands. Remote Sens. Environ. 2021, 253, 112198. [Google Scholar] [CrossRef]
- Elshater, A.; Abusaada, H.; Alfiky, A.; El-Bardisy, N.; Elmarakby, E.; Grant, S. Workers’ Satisfaction Vis-à-Vis Environmental and Socio-Morphological Aspects for Sustainability and Decent Work. Sustainability 2022, 14, 1699. [Google Scholar] [CrossRef]
- Zhang, Y.; Teoh, B.K.; Zhang, L. Multi-Objective Optimization for Energy-Efficient Building Design Considering Urban Heat Island Effects. Appl. Energy 2024, 376, 124117. [Google Scholar] [CrossRef]
Municipalities | Population | % Provincial |
---|---|---|
Castellon | 176,238 | 29.18 |
Valencia | 807,693 | 30.41 |
Alicante | 349,282 | 17.91 |
Elche | 238,293 | 12.22 |
Murcia | 469,177 | 30.22 |
Level 1 | Level 2 | Codes |
---|---|---|
Artificial surfaces | Urban fabric | 11 |
Artificial surfaces | Industrial, commercial and transport units | 12 |
Artificial surfaces | Mine, dump and construction sites | 13 |
Artificial surfaces | Artificial, non-agricultural vegetated areas | 14 |
Agricultural areas | Arable land | 21 |
Agricultural areas | Permanent crops | 22 |
Agricultural areas | Pastures | 23 |
Agricultural areas | Heterogeneous agricultural areas | 24 |
Forest and seminatural areas | Forests | 31 |
Forest and seminatural areas | Scrub and/or herbaceous vegetation associations | 32 |
Forest and seminatural areas | Open spaces with little or no vegetation | 33 |
Wetlands | Inland wetlands | 41 |
Wetlands | Maritime wetlands | 42 |
Wetlands | Inland waters | 51 |
Wetlands | Marine waters | 52 |
Package | Tasks |
---|---|
geodata 0.5-9 | Administrative boundaries |
sf 1.0-16 | Spatial data processing |
utils 4.3.1 | Reading csv files |
data.table 1.14.8 | Linking CORINE layers with categories |
dlookr 0.6.3 | Outlier imputation |
imputeTS 3.3 | Missing data imputation |
tidyverse 2.0.0 | Data processing, results by areas and comparative tables 1990–2018 |
ggplot 2 3.5.1 | Graphic visualisation |
grDevices 4.3.1 | Saving graphs and maps |
Urban Area | Total Flows | Analysed Flows | Outliers | Missing Data | Observations |
---|---|---|---|---|---|
Castellon | 79 | 16 | 21 | 208 | 29,013 |
Valencia | 106 | 20 | 54 | 199 | 36,868 |
Alicante | 86 | 18 | 38 | 186 | 34,880 |
Elche | 96 | 20 | 66 | 215 | 39,525 |
Murcia | 94 | 23 | 18 | 612 | 29,795 |
(a) | |||||||
Urban Area | Urban Fabric | Urban Fabric | Ind., Com., and Transp. 1 | Ind., Com., and Transp. 1 | Artificial Total | ||
1990 | 2018 | 1990 | 2018 | 2018 | |||
Castellon | 18.9 | 40.4 | 7.7 | 29.0 | 69.4 | ||
Valencia | 61.6 | 80.3 | 26.2 | 52.5 | 132.8 | ||
Alicante | 33.4 | 67.8 | 8.5 | 20.8 | 88.6 | ||
Elche | 21.4 | 48.1 | 5.9 | 20.6 | 68.7 | ||
Murcia | 34.8 | 59.8 | 8.2 | 28.4 | 88.2 | ||
(b) | |||||||
Urban Area | Arable Land | Arable Land | Perm. Crop 2 | Perm. Crop 2 | Het. Agr. 3 | Het. Agr. 3 | Agric. Total 4 |
1990 | 2018 | 1990 | 2018 | 1990 | 2018 | 2018 | |
Castellon | 0.0 | 1.3 | 244 | 189.0 | 23.1 | 13.0 | 203.3 |
Valencia | 45.1 | 38.4 | 81.2 | 42.3 | 45.6 | 35.8 | 116.5 |
Alicante | 6.8 | 8.1 | 53.2 | 15.5 | 135.0 | 56.0 | 79.6 |
Elche | 16.0 | 46.8 | 54.2 | 37.0 | 214.0 | 111.0 | 194.8 |
Murcia | 17.0 | 32.8 | 120.0 | 69.2 | 160.0 | 122.0 | 224.0 |
Urban Area | Urb. Urb. 1 | Ind. Ind. 2 | Pcrop. Pcrop. 3 | Hga. Hga. 4 | Scrub. Scrub. 5 | Urban Nucleus |
---|---|---|---|---|---|---|
Castellon | 26.4 | 29.1 | 24.9 | 25.2 | 24.6 | 27.1 |
Valencia | 27.1 | 29.7 | 26.9 | 27.5 | 26.0 | 27.6 |
Alicante | 27.7 | 30.0 | 28.3 | 28.7 | 28.3 | 28.3 |
Elche | 28.1 | 30.2 | 28.0 | 28.0 | 27.9 | 28.7 |
Murcia | 28.3 | 30.5 | 26.6 | 27.6 | 28.0 | 28.4 |
Urban Area | Hga. 1 | Pcrop. 2 | Scrub. 3 | UHI (°C) |
---|---|---|---|---|
Castellon | 0.434 | 0.484 | 0.451 | 2.69 |
Valencia | 0.311 | 0.390 | 0.416 | 1.56 |
Alicante | 0.270 | 0.291 | 0.231 | 0.42 |
Elche | 0.274 | 0.310 | 0.246 | 1.11 |
Murcia | 0.334 | 0.368 | 0.263 | 2.02 |
Urban Area | Urb. Urb. 1 | Pcrop. Urb. 2 | Ind. Ind. 3 | Pcrop. Ind. 4 | Pcrop. Pcrop. 5 | Hga. Hga. 6 | Hga Pcrop. 7 |
---|---|---|---|---|---|---|---|
Castellon | 0.104 | 0.127 | 0.125 | 0.184 | 0.115 | 0.078 | 0.082 |
Valencia | 0.112 | 0.109 | 0.138 | 0.137 | 0.111 | 0.116 | 0.099 |
Alicante | 0.106 | 0.099 | 0.129 | 0.123 | 0.096 | 0.097 | 0.068 |
Elche | 0.110 | 0.106 | 0.146 | 0.152 | 0.105 | 0.101 | 0.094 |
Murcia | 0.111 | 0.127 | 0.168 | 0.127 | 0.107 | 0.108 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montón Chiva, E.; Quereda Sala, J. Thermal Behaviour of Different Land Uses and Covers in the Urban Environment of the Spanish Mediterranean Based on Landsat Land Surface Temperature. Urban Sci. 2024, 8, 147. https://doi.org/10.3390/urbansci8030147
Montón Chiva E, Quereda Sala J. Thermal Behaviour of Different Land Uses and Covers in the Urban Environment of the Spanish Mediterranean Based on Landsat Land Surface Temperature. Urban Science. 2024; 8(3):147. https://doi.org/10.3390/urbansci8030147
Chicago/Turabian StyleMontón Chiva, Enrique, and José Quereda Sala. 2024. "Thermal Behaviour of Different Land Uses and Covers in the Urban Environment of the Spanish Mediterranean Based on Landsat Land Surface Temperature" Urban Science 8, no. 3: 147. https://doi.org/10.3390/urbansci8030147
APA StyleMontón Chiva, E., & Quereda Sala, J. (2024). Thermal Behaviour of Different Land Uses and Covers in the Urban Environment of the Spanish Mediterranean Based on Landsat Land Surface Temperature. Urban Science, 8(3), 147. https://doi.org/10.3390/urbansci8030147