Simultaneous Causality and the Spatial Dynamics of Violent Crimes as a Factor in and Response to Police Patrolling
Abstract
:1. Introduction
2. Theoretical and Empirical Framework
Policing and Crime
3. Data and Methodology
3.1. Database
3.2. Sample Composition
3.3. Methodology
4. Results and Discussions
4.1. Aggregated Data
4.2. Quarterly Data
4.3. Data Segregated by Type of Crime
4.4. Quarterly Analysis of Hotspots
4.5. Research Implications
4.5.1. Theoretical Perspective
4.5.2. Practical and Social Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anwar, A.; Arshed, N.; Anwar, S. Socio-economic determinants of crime: An empirical study of Pakistan. Int. J. Econ. Financ. Issues 2017, 7, 312–322. [Google Scholar]
- Shah, A.H.; Khan, A.U.; Saboor, A.; Iftikhar-ul-Husnain, M. Approximation of crime, poverty, and misery index across quasi-democratic and dictatorship regimes in Pakistan: Static and dynamic analysis. Poverty Public Policy 2022, 14, 50–68. [Google Scholar] [CrossRef]
- Ramão, F.P.; Wadi, Y.M. Espaço urbano e criminalidade violenta: Análise da distribuição espacial dos homicídios no município de Cascavel/PR. Rev. Sociol. E Política 2010, 18, 207–230. [Google Scholar] [CrossRef]
- Ojewale, O. Theorising and illustrating plural policing models in countering armed banditry as hybrid terrorism in northwest Nigeria. Cogent Soc. Sci. 2023, 9, 2174486. [Google Scholar] [CrossRef]
- Boateng, F.D.; Pryce, D.K.; Hsieh, M.-L. The Criminal Police Officer: Understanding Factors That Predict Police Crime in the United States. Crime Delinq. 2023, 69, 1700–1735. [Google Scholar] [CrossRef]
- Nepomuceno, T.C.C.; Daraio, C.; Costa, A.P.C.S. Multicriteria Ranking for the Efficient and Effective Assessment of Police Departments. Sustainability 2021, 13, 4251. [Google Scholar] [CrossRef]
- Moura, J.A.D.; Monteiro, M.B. From education to social justice : A regression examination of education and economic inequality effects on property crimes. Socioecon. Anal. 2024, 2, 94–106. [Google Scholar] [CrossRef]
- De Carvalho, V.D.H.; Costa, A.P.C.S. Exploring Text Mining and Analytics for Applications in Public Security: An in-depth dive into a systematic literature review. Socioecon. Anal. 2023, 1, 5–55. [Google Scholar] [CrossRef]
- Wells, W.; Zhang, Y.; Zhao, J. The effects of gun possession arrests made by a proactive police patrol unit. Polic. Int. J. Police Strateg. Manag. 2012, 35, 253–271. [Google Scholar] [CrossRef]
- Elmes, G.; Roedl, G. The Use of Geospatial Information Technology to Advance Safer College Campuses and Communities. In Crime Modeling and Mapping Using Geospatial Technologies; Leitner, M., Ed.; Geotechnologies and the Environment; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8, pp. 1–10. [Google Scholar]
- Fredrick, V.; Lazarus, V.U.; Emmanuel, M.; Bwala, I.H. Geospatial Appraisal of Crime Hotspot Distribution in Bauchi Metroplis. Am. J. Geogr. Inf. Syst. 2023, 12, 43–50. Available online: http://article.sapub.org/10.5923.j.ajgis.20231201.03.html (accessed on 1 August 2024).
- Hagos, F.; Gebyehu, A. GIS Based Crime Mapping and Analysis Hotspot in the Case of Mekelle City, Tigray Region, Northern Ethiopia. J. Remote Sens. GIS 2023, 12, 1000291. [Google Scholar] [CrossRef]
- Nepomuceno, T.C.C.; Costa, A.P.C.S. Spatial visualization on patterns of disaggregate robberies. Oper. Res. 2019, 19, 857–886. [Google Scholar] [CrossRef]
- Poleto, T.; De Carvalho, V.D.H.; De Oliveira, R.C.P. Applying spatial decision support for maternal mortality analysis in a Brazilian state. Socioecon. Anal. 2023, 1, 92–102. [Google Scholar] [CrossRef]
- Aliabadi, D.E.; Manske, D.; Seeger, L.; Lehneis, R.; Thrän, D. Integrating Knowledge Acquisition, Visualization, and Dissemination in Energy System Models: BENOPTex Study. Energies 2023, 16, 5113. [Google Scholar] [CrossRef]
- Turban, E.; Aronson, E. Decision Support Systems and Intelligent Systems; Prentice-Hall: Hoboken, NJ, USA, 2007. [Google Scholar]
- Balogun, T.F.; Okeke, H.; Chukwukere, C.I. Crime Mapping in Nigeria Using GIS. J. Geogr. Inf. Syst. 2014, 6, 453–466. [Google Scholar] [CrossRef]
- Mohammed, A.; Baiee, W.R. Analysis of Criminal Spatial Events in GIS for predicting hotspots. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Thi-Qar, Iraq, 15–16 July 2020; Volume 928, p. 032071. [Google Scholar] [CrossRef]
- Ratton, J.L.; Daudelin, J. Construction and deconstruction of a homicide reduction policy: The case of pact for life in Pernambuco, Brazil. Int. J. Criminol. Sociol. 2018, 7, 173–183. [Google Scholar] [CrossRef]
- Costa, J.C.D.O.R.; Silva, M.M. A clustering-based approach for identifying groups of municipalities to support the direction of public security policies. Pesqui. Oper. 2022, 42, e257930. [Google Scholar] [CrossRef]
- Figueiredo, C.J.J.; Mota, C.M.; Pereira, D. V Classification of areas using a multiple criteria approach for a public security problem. In Proceedings of the 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 6–9 December 2015; pp. 524–528. [Google Scholar]
- Figueiredo, C.; Mota, C. Learning preferences in a spatial multiple criteria decision approach: An application in public security planning. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1403–1432. [Google Scholar] [CrossRef]
- Menezes, T.; Silveira-Neto, R.; Monteiro, C.; Ratton, J.L. Spatial correlation between homicide rates and inequality: Evidence from urban neighborhoods. Econ. Lett. 2013, 120, 97–99. [Google Scholar] [CrossRef]
- Pereira, D.V.S.; Andresen, M.A.; Mota, C.M.M. A temporal and spatial analysis of homicides. J. Environ. Psychol. 2016, 46, 116–124. [Google Scholar] [CrossRef]
- Rosa, A.G.F.; de Miranda Mota, C.M.; de Figueiredo, C.J.J. A spatial multi-criteria decision analysis framework to reveal vulnerabilities of areas to incidences of street robberies. Appl. Geogr. 2023, 151, 102840. [Google Scholar] [CrossRef]
- Silveira Neto, R.D.M.; da Silva, D.; Cavalcanti, F.M. The spatial association between drugs and urban violence: An analysis for the Metropolitan Region of Recife, Brazil. Spat. Econ. Anal. 2023, 18, 486–506. [Google Scholar] [CrossRef]
- Silva, C.; Melo, S.; Santos, A.; Junior, P.A.; Sato, S.; Santiago, K.; Sá, L. Spatial Modeling for Homicide Rates Estimation in Pernambuco State-Brazil. ISPRS Int. J. Geo-Inf. 2020, 9, 740. [Google Scholar] [CrossRef]
- Carter, S.P.; Carter, S.L.; Dannenberg, A.L. Zoning Out Crime and Improving Community Health in Sarasota, Florida: “Crime Prevention Through Environmental Design”. Am. J. Public Health 2003, 93, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, J.H.; Groff, E.R.; Sorg, E.T.; Haberman, C.P. Citizens’ reactions to hot spots policing: Impacts on perceptions of crime, disorder, safety and police. J. Exp. Criminol. 2015, 11, 393–417. [Google Scholar] [CrossRef]
- Ratcliffe, J.H.; Taniguchi, T.; Groff, E.R.; Wood, J.D. The Philadelphia Foot Patrol Experiment: A Randomized Controlled Trial of Police Patrol Effectiveness in Violent Crime Hotspots. Criminology 2011, 49, 795–831. [Google Scholar] [CrossRef]
- Caplan, J.M.; Kennedy, L.W. (Eds.) Risk Terrain Modeling Compendium; Rutgers Center on Public Security: Newark, NJ, USA, 2011. [Google Scholar]
- Wang, D.; Ding, W.; Lo, H.; Stepinski, T.; Salazar, J.; Morabito, M. Crime hotspot mapping using the crime related factors—A spatial data mining approach. Appl. Intell. 2013, 39, 772–781. [Google Scholar] [CrossRef]
- Han, Y.; Hu, Y.; Zhu, H.; Wang, F. A cyclically adjusted spatio-temporal kernel density estimation method for predictive crime hotspot analysis. Ann. GIS 2023, 29, 177–191. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, F. An agent-based model for simulating urban crime with improved daily routines. Comput. Environ. Urban Syst. 2021, 89, 101680. [Google Scholar] [CrossRef]
- Jelokhani-Niaraki, M.; Bastami Mofrad, R.; Yazdanpanah Dero, Q.; Hajiloo, F.; Sadeghi-Niaraki, A. A volunteered geographic information system for monitoring and managing urban crimes: A case study of Tehran, Iran. Police Pract. Res. 2020, 21, 547–561. [Google Scholar] [CrossRef]
- de Miranda Mota, C.M.; de Figueiredo, C.J.J.; Pereira, D.V.E.S. Identifying areas vulnerable to homicide using multiple criteria analysis and spatial analysis. Omega 2021, 100, 102211. [Google Scholar] [CrossRef]
- Garcia-Zanabria, G.; Raimundo, M.M.; Poco, J.; Nery, M.B.; Silva, C.T.; Adorno, S.; Nonato, L.G. CriPAV: Street-Level Crime Patterns Analysis and Visualization. IEEE Trans. Vis. Comput. Graph. 2022, 28, 4000–4015. [Google Scholar] [CrossRef] [PubMed]
- Camargo, E.C.G.; Druck, S.; Monteiro, A.M.V.; Freitas, C.C.; Câmara, G. Mapeamento do risco de homicídio com base na co-krigeagem binomial e simulação: Um estudo de caso para São Paulo, Brasil. Cad. Saude Publica 2008, 24, 1493–1508. [Google Scholar] [CrossRef]
- Dewinter, M.; Vandeviver, C.; Vander Beken, T.; Witlox, F. Analysing the police patrol routing problem: A review. ISPRS Int. J. Geo-Inf. 2020, 9, 157. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Chilakamarri, S.; Budda, R.M.; Anifa, A.D.M. A Quantitative Study on Real-Time Police Patrol Route Optimization using Dynamic Hotspot Allocation. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 18–22. [Google Scholar] [CrossRef]
- Santos, S.; Barcellos, C.; Sacarvalho, M. Ecological analysis of the distribution and socio-spatial context of homicides in Porto Alegre, Brazil. Health Place 2006, 12, 38–47. [Google Scholar] [CrossRef]
- Nery, M.B.; Peres, M.F.T.; Cardia, N.; Vicentin, D.; Adorno, S. Regimes espaciais: Dinâmica dos homicídios dolosos na cidade de São Paulo entre 2000 e 2008. Rev. Panam. De Salud Pública 2012, 32, 405–412. [Google Scholar] [CrossRef]
- Pereira, D.V.S.; Mota, C.M.M.; Andresen, M.A. Social Disorganization and Homicide in Recife, Brazil. Int. J. Offender Ther. Comp. Criminol. 2017, 61, 1570–1592. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.T.; Andorffy, T.; Marcon, L. Relationship between some physical spatial variables and four types of street crimes. In Proceedings of the 10th International Space Syntax Symposium, London, UK, 13–17 July 2015; Volume 138, pp. 1–9. [Google Scholar]
- Walker, B.B.; Moura de Souza, C.; Pedroso, E.; Lai, R.S.; Hunter, P.; Tam, J.; Cave, I.; Swanlund, D.; Barbosa, K.G.N. Towards a Situated Spatial Epidemiology of Violence: A Placially-Informed Geospatial Analysis of Homicide in Alagoas, Brazil. Int. J. Environ. Res. Public Health 2020, 17, 9283. [Google Scholar] [CrossRef]
- Gélvez, J. ¿ Cuáles determinantes se relacionan con la percepción de inseguridad ? Un análisis estadístico y espacial para la ciudad de Bogotá, DC. Rev. Crim. 2018, 61, 69–84. [Google Scholar]
- de Melo, S.N.; Pereira, D.V.S.; Andresen, M.A.; Matias, L.F. Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective. Int. J. Offender Ther. Comp. Criminol. 2017, 62, 1967–1991. [Google Scholar] [CrossRef]
- Cummings, A.R.; Markandey, N.; Das, H.; Arredondo, C.; Wehenkel, A.; Tiemann, B.L.; Lee, G. The Spill Over of Crime from Urban Centers: An Account of the Changing Spatial Distribution of Violent Crime in Guyana. ISPRS Int. J. Geo-Inf. 2019, 8, 481. [Google Scholar] [CrossRef]
- Hoet, M.J. Crime Concentration and Hot Spot Dynamics: An Examination of Homicides in Santa Fe, Argentina. Int. Criminol. 2023, 3, 313–327. [Google Scholar] [CrossRef]
- Cadena-Urzúa, P.; Briz-Redón, A.; Montes, F. Crime Analysis of the Metropoitan Region of Santiago de Chile: A spatial panel data approach. Soc. Sci. 2022, 11, 443. [Google Scholar] [CrossRef]
- Ramírez, L.R. The Relationship between Crime Levels and Spatial Accessibility to Police Services: The Case of Paraguay. APSE Preprints 2022. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Unwin, D.J. Geographic Information Analysis; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470288573. [Google Scholar]
- Sabbadini, L.L. The Development of Official Social Statistics in Italy with a Life Quality Approach. Soc. Indic. Res. 2011, 102, 39–46. [Google Scholar] [CrossRef]
Approach | Type of Violence | Spatial Analysis Used | Objective (Forecast or Vulnerable Places) | Variables | Country | Reference |
---|---|---|---|---|---|---|
To evaluate the vulnerable places, decision rules were induced based on multiple criteria, spatial analysis, and statistical methods. | Robbery | Classification | Vulnerable | Demographic Social interaction Bus stops | Brazil | [25] |
Risk Terrain Modeling combining map layers (factors) and assigning weights. The results produced a map with risk values that permit the allocation of resources to reduce risk. | Shootings, drug market, gangs’ activities | Hotspots | Forecast crime types’ behavior | Built environment Crime past data | USA | [31] |
Geospatial Discriminant Patterns (GDPatterns) and Hotspot Optimization Tool (HOT) are used to visualize clusters and better identify hotspot zones. Both approaches capture information that kernel density alone does not achieve. | Street robbery, commercial burglary, and larceny | Hotspots | Vulnerable places and hotspots | Population N° of house units Distance to colleges Foreclosed homes | USA | [32] |
Stochastic analysis and a deep learning approach were integrated into a web tool to identify hotspots and forecast new criminal events. | Passerby robbery, commercial burglary, vehicle robbery | Hotspots | Hotspot and forecast | Socioeconomic factors | Brazil | [37] |
Kernel density was adjusted to include temporal crime cycles in the predictive analysis and obtain effective results. | Robbery | Hotspots | Hotspot and forecast | No apply | USA | [33] |
Crime simulation using synthetic agents based on Routine Activity Theory. | Robbery | Hotspots | Vulnerable zones and Hotspots | Police patrols Offender activities Population density | USA | [34] |
Web applications are based on citizens’ reports about crimes and events that occur in the places considered. The app includes geographic information and crime analysis. | Car theft, house theft, murder, bag snatching | Semantic analysis | Vulnerable places | Citizen reports about characteristics of the neighborhood where the criminal events happened | Iran | [35] |
AIS and Municipalities | Region |
---|---|
1—Santo Amaro; 2—Espinheiro; 3—Boa Viagem; 4—Várzea; 5—Apipucos; 6—Jaboatão; 7—Olinda; 8—Paulista; 9—São Lourenço da Mata; 10—Cabo de Santo Agostinho. | Metropolitan Region of Recife |
11—Nazaré da Mata; 12—Vitória de Santo Antão; 13—Palmares; 14—Caruaru; 15—Belo Jardim; 16—Limoeiro; 17—Santa Cruz do Capibaribe; 18—Garanhuns. | Zona da Mata and Agreste |
19—Arcoverde; 20—Afogados da Ingazeira; 21—Serra Talhada; 22—Floresta; 23—Salgueiro; 24—Ouricuri; 25—Cabrobó; 26—Petrolina. | Sertão |
Category | Type of Violent Crime |
---|---|
Category 1 | To be defined, reckoning, stray bullets, disagreement in a criminal group—except drugs, confrontation with the police, confrontation with public security agent, confrontation with criminal(s), deceit, death squad, financial interest, robbery, self-defense, uninformed, others, witness elimination, citizen’s reaction to a crime, theft, and personal revenge. |
Category 2 | Intrafamily fights against a man, intrafamily fights against a woman, family fights, intimate-affective conflicts against a man, intimate-affective conflicts against a woman, misunderstanding (neighbors), quarrels (other circumstances), traffic or transit quarrels, arguments between neighbors, drunkenness, femicide, and brawl. |
Category 3 | Disagreement in a criminal group—illicit drugs, gang dispute, disputes over territory or market—illicit drugs, narcotics/drugs, and debt retaliation—illicit drugs. |
AIS 1. | AIS 2 | AIS 3 | AIS 4 | ||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | Variable | Coefficient |
CVP Crime | 24 | CVP Crime | - | CVP Crime | 65 | CVP Crime | 69 |
CVLI Crime | 5786 | CVLI Crime | - | CVLI Crime | - | CVLI Crime | - |
AIS 5 | AIS 6 (126) | AIS 6 (330) | AIS 7 | ||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | Variable | Coefficient |
CVP Crime | - | CVP Crime | 30 | CVP Crime | 22 | CVP Crime | 23 |
CVLI Crime | 1622 | CVLI Crime | 611 | CVLI Crime | 474 | CVLI Crime | - |
Estimates | First Model | Second Model |
---|---|---|
Intercept | 122.31 | 0.21623 |
Coefficient | 103.63 | 0.00001 |
Significance (intercept) | <0.0001 * | <0.0001 * |
Significance (coefficient) | <0.001 * | <0.001 * |
Koenker (BP) | 0.9440 | 0.01862 * |
Overestimated features | 214 | 1051 |
Underestimated features | 4 | 1 |
Effectiveness | 0.9149 | 0.5895 |
Type of Regression | 3° Q 2019 | 4° Q 2019 | 1° Q 2020 | 2° Q 2020 |
---|---|---|---|---|
Crime explaining patrolling | 570.68 | 1027.84 | 951.70 | 1008.45 |
Patrolling explaining crime | 0.00001 | 0.00001 | 0.000011 | 0.000006 |
Crime explaining patrolling | ||||
3° Q 2019 | 4° Q 2019 | 1° Q 2020 | 2° Q 2020 | |
Category 1 | 670.489272 | 1280.559165 | 2287.141385 | 1815.948869 |
Category 2 | - | 238.555169 | 185.759307 | 618.882126 |
Category 3 | 491.644236 | 876.639317 | 691.419614 | 814.366004 |
Patrolling explaining crime | ||||
3° Q 2019 | 4° Q 2019 | 1° Q 2020 | 2° Q 2020 | |
Category 1 | 0.000008 | 0.000009 | 0.000006 | 0.000003 |
Category 2 | - | <0.00001 | <0.00001 | <0.00001 |
Category 3 | 0.000001 | 0.000001 | 0.000005 | 0.000002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, R.A.; Taques, F.H.; Nepomuceno, T.C.C.; Figueiredo, C.J.J.d.; Poleto, T.; de Carvalho, V.D.H. Simultaneous Causality and the Spatial Dynamics of Violent Crimes as a Factor in and Response to Police Patrolling. Urban Sci. 2024, 8, 132. https://doi.org/10.3390/urbansci8030132
Lima RA, Taques FH, Nepomuceno TCC, Figueiredo CJJd, Poleto T, de Carvalho VDH. Simultaneous Causality and the Spatial Dynamics of Violent Crimes as a Factor in and Response to Police Patrolling. Urban Science. 2024; 8(3):132. https://doi.org/10.3390/urbansci8030132
Chicago/Turabian StyleLima, Rayane Araújo, Fernando Henrique Taques, Thyago Celso Cavalcante Nepomuceno, Ciro José Jardim de Figueiredo, Thiago Poleto, and Victor Diogho Heuer de Carvalho. 2024. "Simultaneous Causality and the Spatial Dynamics of Violent Crimes as a Factor in and Response to Police Patrolling" Urban Science 8, no. 3: 132. https://doi.org/10.3390/urbansci8030132
APA StyleLima, R. A., Taques, F. H., Nepomuceno, T. C. C., Figueiredo, C. J. J. d., Poleto, T., & de Carvalho, V. D. H. (2024). Simultaneous Causality and the Spatial Dynamics of Violent Crimes as a Factor in and Response to Police Patrolling. Urban Science, 8(3), 132. https://doi.org/10.3390/urbansci8030132