Seasonal and Spatial Variations in Particulate Matter, Black Carbon and Metals in Delhi, India’s Megacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- (1)
- Guru Gobind Singh Indraprastha (GGSIP) University Campus (28°41.01′ N; 77°17.00′ E): GGSIP is in Dwarka, in proximity to the international airport of Delhi and the Gurugram area, which is known for its rapid urbanization.
- (2)
- Indian National Army (INA) Market (28°34.01′ N; 77°12.01′ E): INA is in a busy commercial area; this market is a significant hub for shopping and cuisine in Delhi.
- (3)
- Janakpuri (28°37.01′ N; 77°04.01′ E): This residential and commercial area is characterized by open spaces with minimal vegetation. The Janakpuri site is far away from major industrial zones such as Mayapuri.
- (4)
- East Delhi (28°41.01′ N; 77°17.00′ E): East Delhi is located on the east bank of the Yamuna River and is categorized by its high population density and the presence of small-scale industries. The air pollution levels in the East Delhi area are significantly higher.
- (5)
- Mayapuri (28°37.01′ N; 77°06.02′ E): Mayapuri is an area in West Delhi that was previously known for its small-scale industries. However, over time, it has undergone a significant transformation and is now used as a residential area. The existence of metal manufacturers and automotive service facilities increases the local air pollution here.
- (6)
- Chawri Bazar (28°39.01′ N; 77°13.00′ E): Chawri Bazar is one of the oldest markets in Delhi. This area experiences intense traffic that contributes to the high air pollution levels.
2.2. Instrumentation and Sampling Methodology
2.2.1. GRIMM Aerosol Spectrometer
2.2.2. Aethalometer for Black Carbon Measurement
2.3. Trace Metals Analysis Using Energy-Dispersive X-ray Fluorescence (ED-XRF)
2.4. Spatial Analysis through Kriging Technique
3. Results
3.1. Spatial Distribution
3.1.1. Spatial Distribution of Particulate Matter
3.1.2. Spatial Distribution of Inhalable, Thoracic and Alveolic Particles
3.1.3. Spatial Distribution of Black Carbon
3.1.4. Spatial Distribution of Heavy Metals
3.2. Seasonal Variations
3.2.1. Seasonal Variations in Particulate Matter (PM10, PM2.5, and PM1.0)
3.2.2. Seasonal Variations in Inhalable, Thoracic and Alveolic Particles
3.2.3. Seasonal Variations in Black Carbon
3.3. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.; Adeyi, O.; Arnold, R.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; Breysse, P.N.; et al. The Lancet Commission on pollution and health. Lancet 2017, 391, 462–512. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Pandey, A.; Brauer, M.; Cropper, M.L.; Balakrishnan, K.; Mathur, P.; Dey, S.; Dandona, L. Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. Lancet Planet Health 2021, 5, e25–e38. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Guttikunda, S.; Nishadh, K.A. Evolution of India’s PM2.5 pollution between 1998 and 2020 using global reanalysis fields coupled with satellite observations and fuel consumption patterns. Environ. Sci. Atmos. 2022, 2, 1502–1515. [Google Scholar] [CrossRef]
- Goyal, P.; Mishra, D.; Kumar, A. Vehicular emission inventory of criteria pollutants in Delhi. SpringerPlus 2013, 2, 216. [Google Scholar] [CrossRef] [PubMed]
- Guttikunda, S.K.; Goel, R.; Pant, P. Nature of air pollution, emission sources, and management in the Indian cities. Atmos. Environ. 2013, 95, 501–510. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Ravindra, K.; Nagpure, A.S. Air pollution trends over Indian megacities and their local-to-global implications. Atmos. Environ. 2016, 142, 475–495. [Google Scholar] [CrossRef]
- Liu, T.; Marlier, M.E.; de Fries, R.S.; Westervelt, D.M.; Xia, K.R.; Fiore, A.M.; Mickley, L.J.; Cusworth, D.H.; Milly, G. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmos. Environ. 2018, 172, 83–92. [Google Scholar] [CrossRef]
- Garg, A.; Gupta, N.C. The great smog month and spatial and monthly variation in air quality in ambient air in Delhi, India. J. Health Pollut. 2020, 10, 200910. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, G. Air pollution and associated respiratory morbidity in Delhi. Health Care Manag. Sci. 2008, 11, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Laumbach, R.J.; Kipen, H.M. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol. 2012, 129, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Guttikunda, S.K.; Goel, R. Health impacts of particulate pollution in a megacity-Delhi, India. Environ. Dev. 2013, 6, 8–20. [Google Scholar] [CrossRef]
- Rumana, H.S.; Sharma, R.C.; Beniwal, V.; Sharma, A.K. A retrospective approach to assess human health risks associated with growing air pollution in urbanized area of Thar Desert, western Rajasthan, India. J. Environ. Health Sci. Eng. 2014, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Dey, S.; Chowdhury, S. Ambient PM2.5 exposure and premature mortality burden in the holy city Varanasi, India. Environ. Pollut. 2017, 226, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Khilnani, G.C.; Tiwari, P. Air pollution in India and related adverse respiratory health effects: Past, present, and future directions. Curr. Opin. Pulm. Med. 2018, 24, 108–116. [Google Scholar] [CrossRef]
- Amoatey, P.; Takdastan, A.; Sicard, P.; Hopke, P.K.; Baawain, M.; Omidvarborna, H.; Allahyari, S.; Esmaeilzadeh, A.; de Marco, A.; Khanaibadi, Y.O. Short and long-term impacts of ambient ozone on health in Ahvaz, Iran. Hum. Ecol. Risk Assess. 2019, 25, 1336–1351. [Google Scholar] [CrossRef]
- Delgado-Saborit, J.M.; Guercio, V.; Gowers, A.M.; Shaddick, G.; Fox, N.C.; Love, S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function, and cognitive decline in adult population. Sci. Total Environ. 2021, 757, 143734. [Google Scholar] [CrossRef]
- Brumberg, H.L.; Karr, C.J.; Bole, A.; Ahdoot, S.; Balk, S.J.; Bernstein, A.S.; Byron, L.G.; Landrigan, P.J.; Marcus, S.M.; Nerlinger, A.L.; et al. Ambient air pollution: Health hazards to children. J. Pediatr. 2021, 147, 2021051484. [Google Scholar] [CrossRef]
- Dominski, F.H.; Branco, J.H.L.; Buonanno, G.; Stabile, L.; da Silva, M.G.; Andrade, A. Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses. Environ. Res. 2021, 201, 111487. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Barthwal, V. Health impact assessment of auto rickshaw and cab drivers due to exposure to vehicular pollution in Delhi: An integrated approach. Environ. Sci. Pollut. Res. 2021, 29, 5124–5133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Song, Q.; Li, J.; Zhang, Y.; Yuan, X.C.; Wang, W.; Yu, Q. Air pollution and mental health: The moderator effect of health behaviors. Environ. Res. Lett. 2021, 16, 044005. [Google Scholar] [CrossRef]
- Jansen, K.L.; Larson, T.V.; Koenig, J.Q.; Mar, T.F.; Fields, C.; Stewart, J.; Lippmann, M. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ. Health Perspect. 2005, 113, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef]
- Cheng, Z.; Jiang, J.; Fajardo, O.; Wang, S.; Hao, J. Characteristics and health impacts of particulate matter pollution in China (2001–2011). Atmos. Environ. 2013, 65, 186–194. [Google Scholar] [CrossRef]
- Wu, J.Z.; Ge, D.D.; Zhou, L.F.; Hou, L.Y.; Zhou, Y.; Li, Q.Y. Effects of particulate matter on allergic respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Manojkumar, N.; Srimuruganandam, B. Health effects of particulate matter in major Indian cities. Int. J. Environ. Health Res. 2021, 31, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Alang, A.K.; Aggarwal, S.G. Five-year Ground-based Observation Trend of PM2.5 and PM10, and Comparison with MERRA-2 Data over India. Asian J. Atmos. Environ. 2022, 16, 2022039. [Google Scholar] [CrossRef]
- Ali Awan, M.; Hassan Ahmed, S.; Rizwan Aslam, M.; Ahmed Qazi, I. Determination of total suspended particulate matter and heavy metals in ambient air of four cities of Pakistan. Iran. J. Energy Environ. 2011, 2, 128–132. [Google Scholar]
- Safo-Adu, G.; Ofosu, F.G.; Carboo, D.; Armah, Y.S. Heavy metals and black carbon assessment of PM10 particulates along Accra–Tema highway in Ghana. Int. J. Sci. Technol. 2014, 3, 467–474. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- Zhou, S.; Yuan, Q.; Li, W.; Lu, Y.; Zhang, Y.; Wang, W. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 2014, 26, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Wallenborn, J.G.; Schladweiler, M.J.; Richards, J.H.; Kodavanti, U.P. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals. Toxicol. Appl. Pharmacol. 2009, 241, 71–80. [Google Scholar] [CrossRef] [PubMed]
- C.S. EN 481, 1993; Workplace Atmospheres-Size Fraction Definitions for Measurement of Airborne Particles. European Committee for Standardization (CEN): Brussels, Belgium, 1993; pp. 1–9.
- Kumar, P.; Gupta, N.C. Commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi. Sci. Total Environ. 2016, 541, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.T. Introduction to Geographic Information System; Tata McGraw Hill Education Private Limited: New Delhi, India, 2012. [Google Scholar]
- Zhang, H.; Zhan, Y.; Li, J.; Chao, C.Y.; Liu, Q.; Wang, C.; Jia, S.; Ma, L.; Biswas, P. Using Kriging incorporated with wind direction to investigate ground-level PM2.5 concentration. Sci. Total Environ. 2021, 751, 141813. [Google Scholar] [CrossRef] [PubMed]
- Dash, J.P.; Sarangi, A.; Singh, D.K. Spatial variability of groundwater depth and quality parameters in the National Capital Territory of Delhi. Environ. Manag. 2010, 45, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Maloo, S. Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos. Environ. 2005, 39, 6015–6026. [Google Scholar] [CrossRef]
- Shah, M.H.; Shaheen, N.; Jaffar, M.; Khalique, A.; Tariq, S.R.; Manzoor, S. Spatial variations in selected metal contents and particle size distribution in an urban and rural atmosphere of Islamabad, Pakistan. J. Environ. Manag. 2006, 78, 128–137. [Google Scholar] [CrossRef]
- Aksu, A. Sources of metal pollution in the urban atmosphere (A case study: Tuzla, Istanbul). J. Environ. Health Sci. Eng. 2015, 13, 79. [Google Scholar] [CrossRef]
- Shridhar, V.; Khillare, P.S.; Agarwal, T.; Ray, S. Metallic species in ambient particulate matter at rural and urban location of Delhi. J. Hazard. Mater. 2010, 175, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Jalees, M.I.; Asim, Z. Statistical modeling of atmospheric trace metals in Lahore, Pakistan for correlation and source identification. Environ. Earth Sci. 2016, 75, 842. [Google Scholar] [CrossRef]
- Meena, M.; Meena, B.S.; Chandrawat, U.; Rani, A. Seasonal variation of selected metals in particulate matter at an industrial city Kota, India. Aerosol Air Qual. Res. 2016, 16, 990–999. [Google Scholar] [CrossRef]
- Yoo, H.J.; Kim, J.; Yi, S.M.; Zoh, K.D. Analysis of black carbon, particulate matter, and gaseous pollutants in an industrial area in Korea. Atmos. Environ. 2011, 45, 7698–7704. [Google Scholar] [CrossRef]
- Sandeep, P.; Saradhi, I.V.; Pandit, G.G. Seasonal variation of black carbon in fine particulate matter (PM2.5) at the tropical coastal city of Mumbai, India. Bull. Environ. Contam. Toxicol. 2013, 91, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, H.; Pozzoli, L.; Kindap, T.; Demir, G.; Mertoglu, B.; Mihalopoulos, N.; Theodosi, C.; Kanakidou, M.; Im, U.; Unal, A. Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Sci. Total Environ. 2014, 473, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Bisht, D.S.; Srivastava, A.K.; Pipal, A.S.; Taneja, A.; Srivastava, M.K.; Attri, S.D. Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India. Atmos. Res. 2014, 145, 45–56. [Google Scholar] [CrossRef]
- Pandey, P.; Patel, D.K.; Khan, A.H.; Barman, S.C.; Murthy, R.C.; Kisku, G.C. Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. J. Environ. Sci. Health A 2013, 48, 730–745. [Google Scholar] [CrossRef]
- Wallace, J.; Corr, D.; Kanaroglou, P. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Sci. Total Environ. 2010, 408, 5086–5096. [Google Scholar] [CrossRef]
- Sharma, K.; Ranjan, R.K.; Lohar, S.; Sharma, J.; Rajak, R.; Gupta, A.; Prakash, A.; Pandey, A.K. Black Carbon Concentration during Spring Season at High Altitude Urban Center in Eastern Himalayan Region of India. Asian J. Atmos. Environ. 2022, 16, 2021149. [Google Scholar] [CrossRef]
- Garg, A.; Kumar, A.; Gupta, N.C. Comprehensive study on impact assessment of lockdown on overall ambient air quality amid COVID-19 in Delhi and its NCR, India. J. Hazard. Mater. Lett. 2021, 2, 100010. [Google Scholar] [CrossRef] [PubMed]
Name of Site (District) | Land-Use Activity | Longitude/Latitude | Relative Traffic Density * | Status of Air Pollution |
---|---|---|---|---|
East Delhi (East) | Residential and industrial | 28°41.01′ N/77°17.00′ E | +++++ | Medium to heavy |
Janakpuri (West) | Residential and commercial | 28°37.01′ N/77°04.01′ E | ++++ | Medium |
Indian National Army (INA) Market (South) | Shopping hub | 28°34.01′ N/77°12.01′ E | +++++ | Medium to heavy |
Mayapuri (West) | Residential and industrial | 28°37.01′ N/77°06.02′ E | +++++ | Medium to heavy |
Chawri Bazar (North) | Market | 28°39.01′ N/77°13.00′ E | +++++ | Medium to heavy |
Guru Gobind Singh Indraprastha (GGSIP) University (South West) | Institutional | 28°41.01′ N/77°17.00′ E | + | Low |
BC | PM10 | PM2.5 | PM1.0 | Inhalable | Thoracic | Alveolic | Al | Si | S | Ca | Fe | Zn | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Summer | ||||||||||||||
BC | 1.00 | |||||||||||||
PM10 | 0.33 | 1.00 | ||||||||||||
PM2.5 | 0.44 | 0.64 | 1.00 | |||||||||||
PM1.0 | 0.50 | 0.53 | 0.98 | 1.00 | ||||||||||
Inhalable | 0.15 | 0.86 | 0.22 | 0.07 | 1.00 | |||||||||
Thoracic | 0.30 | 0.99 | 0.56 | 0.44 | 0.91 | 1.00 | ||||||||
Alveolic | 0.42 | 0.89 | 0.92 | 0.84 | 0.58 | 0.84 | 1.00 | |||||||
Al | −0.13 | 0.03 | −0.34 | −0.28 | −0.02 | 0.04 | −0.22 | 1.00 | ||||||
Si | 0.08 | −0.14 | 0.52 | 0.63 | −0.45 | −0.21 | 0.23 | −0.33 | 1.00 | |||||
S | 0.59 | 0.62 | 0.07 | −0.02 | 0.76 | 0.66 | 0.37 | 0.00 | −0.64 | 1.00 | ||||
Ca | 0.17 | 0.17 | −0.18 | −0.13 | 0.05 | 0.17 | −0.05 | 0.94 | −0.42 | 0.25 | 1.00 | |||
Fe | −0.08 | 0.08 | −0.35 | −0.31 | 0.05 | 0.10 | −0.20 | 0.99 | −0.43 | 0.12 | 0.96 | 1.00 | ||
Zn | 0.26 | 0.79 | 0.28 | 0.14 | 0.95 | 0.83 | 0.59 | −0.31 | −0.32 | 0.76 | −0.21 | −0.24 | 1.00 | |
Pb | 0.29 | 0.82 | 0.25 | 0.10 | 0.97 | 0.86 | 0.58 | −0.19 | −0.43 | 0.84 | −0.07 | −0.11 | 0.99 | 1.00 |
Categorization of color coding based upon the positive and negative correlation of different values range from −1 to +1. | ||||||||||||||
(−1.00) to (−0.75) | (−0.49) to (−0.25) | 0.00 to 0.24 | 0.50 to 0.74 | |||||||||||
(−0.74) to (−0.50) | (−0.24) to (−0.01) | 0.25 to 0.49 | 0.75 to 1.00 |
BC | PM10 | PM2.5 | PM1.0 | Inhalable | Thoracic | Alveolic | Al | Si | S | Ca | Fe | Zn | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter | ||||||||||||||
BC | 1.00 | |||||||||||||
PM10 | 0.71 | 1.00 | ||||||||||||
PM2.5 | 0.82 | 0.97 | 1.00 | |||||||||||
PM1.0 | 0.83 | 0.97 | 1.00 | 1.00 | ||||||||||
Inhalable | 0.62 | 0.98 | 0.91 | 0.92 | 1.00 | |||||||||
Thoracic | 0.70 | 1.00 | 0.96 | 0.96 | 0.99 | 1.00 | ||||||||
Alveolic | 0.78 | 0.98 | 1.00 | 1.00 | 0.94 | 0.98 | 1.00 | |||||||
Al | 0.34 | 0.63 | 0.52 | 0.54 | 0.66 | 0.64 | 0.55 | 1.00 | ||||||
Si | 0.08 | 0.17 | 0.27 | 0.26 | 0.08 | 0.16 | 0.24 | −0.01 | 1.00 | |||||
S | 0.71 | 0.92 | 0.85 | 0.87 | 0.94 | 0.93 | 0.87 | 0.82 | −0.04 | 1.00 | ||||
Ca | −0.13 | 0.29 | 0.04 | 0.09 | 0.43 | 0.31 | 0.11 | 0.65 | −0.24 | 0.51 | 1.00 | |||
Fe | 0.36 | 0.52 | 0.45 | 0.45 | 0.55 | 0.53 | 0.47 | 0.84 | −0.43 | 0.72 | 0.40 | 1.00 | ||
Zn | 0.86 | 0.93 | 0.99 | 0.98 | 0.85 | 0.92 | 0.98 | 0.49 | 0.22 | 0.82 | −0.05 | 0.48 | 1.00 | |
Pb | 0.90 | 0.89 | 0.97 | 0.97 | 0.80 | 0.88 | 0.96 | 0.45 | 0.26 | 0.78 | −0.12 | 0.43 | 0.99 | 1.00 |
Categorization of color coding based upon the positive and negative correlation of different values range from −1 to +1. | ||||||||||||||
(−1.00) to (−0.75) | (−0.49) to (−0.25) | 0.00 to 0.24 | 0.50 to 0.74 | |||||||||||
(−0.74) to (−0.50) | (−0.24) to (−0.01) | 0.25 to 0.49 | 0.75 to 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Garg, A.; Sharma, K.; Nadeem, U.; Sarma, K.; Gupta, N.C.; Kumar, A.; Pandey, A.K. Seasonal and Spatial Variations in Particulate Matter, Black Carbon and Metals in Delhi, India’s Megacity. Urban Sci. 2024, 8, 101. https://doi.org/10.3390/urbansci8030101
Kumar P, Garg A, Sharma K, Nadeem U, Sarma K, Gupta NC, Kumar A, Pandey AK. Seasonal and Spatial Variations in Particulate Matter, Black Carbon and Metals in Delhi, India’s Megacity. Urban Science. 2024; 8(3):101. https://doi.org/10.3390/urbansci8030101
Chicago/Turabian StyleKumar, Pramod, Anchal Garg, Khyati Sharma, Uzma Nadeem, Kiranmay Sarma, Naresh Chandra Gupta, Ashutosh Kumar, and Alok Kumar Pandey. 2024. "Seasonal and Spatial Variations in Particulate Matter, Black Carbon and Metals in Delhi, India’s Megacity" Urban Science 8, no. 3: 101. https://doi.org/10.3390/urbansci8030101
APA StyleKumar, P., Garg, A., Sharma, K., Nadeem, U., Sarma, K., Gupta, N. C., Kumar, A., & Pandey, A. K. (2024). Seasonal and Spatial Variations in Particulate Matter, Black Carbon and Metals in Delhi, India’s Megacity. Urban Science, 8(3), 101. https://doi.org/10.3390/urbansci8030101