Mapping Deprived Urban Areas Using Open Geospatial Data and Machine Learning in Africa
Abstract
:1. Introduction
- Landscape analysis to identify relevant indicators with corresponding geospatial data that are globally available for modeling.
- Designed and tested machine learning models to predict and characterize deprived areas in multiple cities and on a large scale.
- Analyzed the relative importance of indicators for global mapping. This allows us to know the most relevant indicators as we aim for global mapping.
2. Study Area
3. Materials and Methods
3.1. Conceptualizing Deprived Areas
3.2. Geospatial Indicators
3.3. Geospatial Layer Production
- Must cover the region of interest.
- Must be either vector or raster spatial data.
- Must be as fine a spatial resolution as possible, usually 100 m or finer.
- Temporal resolution must be as close as possible.
- Must be available for all three cities.
3.4. Input Features for Modeling
3.5. Classification Scheme and Sampling
3.6. Modeling
3.7. Model Evaluation
3.8. Analysis of Importance Features
4. Results
4.1. Quantitative Model Performance
4.1.1. Individual City
4.1.2. City to City Model
4.1.3. Generalized Model
4.2. Qualitative Assessment
4.3. Analysis of Important Features
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects the 2018 Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- United Nations. Progress towards the Sustainable Development Goals; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Bruckner, B.; Hubacek, K.; Shan, Y.; Zhong, H.; Feng, K. Impacts of Poverty Alleviation on National and Global Carbon Emissions. Nat. Sustain. 2022, 5, 311–320. [Google Scholar] [CrossRef]
- Bird, J.; Montebruno, P.; Regan, T. Life in a Slum: Understanding Living Conditions in Nairobi’s Slums across Time and Space. Oxf. Rev. Econ. Policy 2017, 33, 496–520. [Google Scholar] [CrossRef]
- World Bank. Poverty and Shared Prosperity 2022: Correcting Course; The World Bank: Washington, DC, USA, 2022; ISBN 978-1-4648-1893-6. [Google Scholar]
- Burke, M.; Driscoll, A.; Lobell, D.B.; Ermon, S. Using Satellite Imagery to Understand and Promote Sustainable Development. Science 2021, 371, eabe8628. [Google Scholar] [CrossRef]
- Dodman, D.; Archer, D.; Mayr, M. Addressing the Most Vulnerable First: Pro-Poor Climate Action in Informal Settlements; UN-HABITAT: Nariobi, Kenya, 2018. [Google Scholar]
- Aiken, E.; Bellue, S.; Karlan, D.; Udry, C.; Blumenstock, J.E. Machine Learning and Phone Data Can Improve Targeting of Humanitarian Aid. Nature 2022, 603, 864–870. [Google Scholar] [CrossRef]
- Kuffer, M.; Wang, J.; Nagenborg, M.; Pfeffer, K.; Kohli, D.; Sliuzas, R.; Persello, C. The Scope of Earth-Observation to Improve the Consistency of the SDG Slum Indicator. ISPRS Int. J. Geoinf. 2018, 7, 428. [Google Scholar] [CrossRef]
- Lilford, R.; Kyobutungi, C.; Ndugwa, R.; Sartori, J.; Watson, S.I.; Sliuzas, R.; Kuffer, M.; Hofer, T.; Porto de Albuquerque, J.; Ezeh, A. Because Space Matters: Conceptual Framework to Help Distinguish Slum from Non-Slum Urban Areas. BMJ Glob. Health 2019, 4, e001267. [Google Scholar] [CrossRef]
- Yeboah, G.; de Albuquerque, J.P.; Troilo, R.; Tregonning, G.; Perera, S.; Shifat Ahmed, S.A.K.; Ajisola, M.; Alam, O.; Aujla, N.; Azam, S.I.; et al. Analysis of Openstreetmap Data Quality at Different Stages of a Participatory Mapping Process: Evidence from Slums in Africa and Asia. ISPRS Int. J. Geoinf. 2021, 10, 265. [Google Scholar] [CrossRef]
- Panek, J.; Sobotova, L. Community Mapping in Urban Informal Settlements: Examples from Nairobi, Kenya. Electron. J. Inf. Syst. Dev. Ctries. 2015, 68, 1–13. [Google Scholar] [CrossRef]
- Slum Dweller International Know Your City. Available online: https://sdinet.org/ (accessed on 15 November 2022).
- Herfort, B.; Lautenbach, S.; Porto de Albuquerque, J.; Anderson, J.; Zipf, A. The Evolution of Humanitarian Mapping within the OpenStreetMap Community. Sci. Rep. 2021, 11, 3037. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from Space—15 Years of Slum Mapping Using Remote Sensing. Remote Sens. 2016, 8, 455. [Google Scholar] [CrossRef]
- Engstrom, R.; Sandborn, A.; Yu, Q.; Burgdorfer, J.; Stow, D.; Weeks, J.; Graesser, J. Mapping Slums Using Spatial Features in Accra, Ghana. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Mahabir, R.; Crooks, A.; Croitoru, A.; Agouris, P. The Study of Slums as Social and Physical Constructs: Challenges and Emerging Research Opportunities. Reg. Stud. Reg. Sci. 2016, 3, 399–419. [Google Scholar] [CrossRef]
- Thomson, D.R.; Kuffer, M.; Boo, G.; Hati, B.; Grippa, T.; Elsey, H.; Linard, C.; Mahabir, R.; Kyobutungi, C.; Maviti, J.; et al. Need for an Integrated Deprived Area “Slum” Mapping System (IDEAMAPS) in Low- and Middle-Income Countries (LMICs). Soc. Sci. 2020, 9, 80. [Google Scholar] [CrossRef]
- Chakraborty, A.; Wilson, B.; Sarraf, S.; Jana, A. Open Data for Informal Settlements: Toward a User’s Guide for Urban Managers and Planners. J. Urban. Manag. 2015, 4, 74–91. [Google Scholar] [CrossRef]
- Mahabir, R.; Agouris, P.; Stefanidis, A.; Croitoru, A.; Crooks, A.T. Detecting and Mapping Slums Using Open Data: A Case Study in Kenya. Int. J. Digit. Earth 2018, 13, 683–707. [Google Scholar] [CrossRef]
- Kuffer, M.; Owusu, M.; Oliveira, L.; Sliuzas, R.; van Rijn, F. The Missing Millions in Maps: Exploring Causes of Uncertainties in Global Gridded Population Datasets. ISPRS Int. J. Geoinf. 2022, 11, 403. [Google Scholar] [CrossRef]
- Mahabir, R.; Croitoru, A.; Crooks, A.; Agouris, P.; Stefanidis, A. A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities. Urban Sci. 2018, 2, 8. [Google Scholar] [CrossRef]
- Georganos, S.; Hafner, S.; Kuffer, M.; Linard, C.; Ban, Y. A Census from Heaven: Unraveling the Potential of Deep Learning and Earth Observation for Intra-Urban Population Mapping in Data Scarce Environments. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103013. [Google Scholar] [CrossRef]
- Engstrom, R.; Newhouse, D.; Soundararajan, V. Estimating Small Area Population Density Using Survey Data and Satellite Imagery: An Application to Sri Lanka. PLoS ONE 2020, 15, e0237063. [Google Scholar]
- Weeks, J.R.; Getis, A.; Stow, D.A.; Hill, A.G.; Rain, D.; Engstrom, R.; Stoler, J.; Lippitt, C.; Jankowska, M.; Lopez-Carr, A.C.; et al. Connecting the Dots between Health, Poverty and Place in Accra, Ghana. Ann. Assoc. Am. Geogr. 2012, 102, 932–941. [Google Scholar] [CrossRef]
- Engstrom, R.; Pavelesku, D.; Tanaka, T.; Wambile, A. Monetary and Non-Monetary Poverty in Urban Slums in Accra: Combining Geospatial Data and Machine Learning to Study Urban Poverty. CSAE Conf. 2017, 1–45. Available online: http://www.cirje.e.u-tokyo.ac.jp/research/workshops/emf/paper2017/emf0724_2.pdf (accessed on 31 October 2023).
- Jean-Louis, M.; Sedkaoui, S. Big Data, Open Data and Data Development; John Wiley & Sons, Inc.: London, UK, 2016; ISBN 9781119285205. [Google Scholar]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef]
- Thomson, D.R.; Rhoda, D.A.; Tatem, A.J.; Castro, M.C. Gridded Population Survey Sampling: A Systematic Scoping Review of the Field and Strategic Research Agenda. Int. J. Health Geogr. 2020, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Leyk, S.; Gaughan, A.E.; Adamo, S.B.; De Sherbinin, A.; Balk, D.; Freire, S.; Rose, A.; Stevens, F.R.; Blankespoor, B.; Frye, C.; et al. The Spatial Allocation of Population: A Review of Large-Scale Gridded Population Data Products and Their Fitness for Use. Earth Syst. Sci. Data 2019, 11, 1385–1409. [Google Scholar] [CrossRef]
- Kohli, D.; Warwadekar, P.; Kerle, N.; Sliuzas, R.; Stein, A. Transferability of Object-Oriented Image Analysis Methods for Slum Identification. Remote Sens. 2013, 5, 4209–4228. [Google Scholar] [CrossRef]
- Owusu, M.; Kuffer, M.; Belgiu, M.; Grippa, T.; Lennert, M.; Georganos, S.; Vanhuysse, S. Towards User-Driven Earth Observation-Based Slum Mapping. Comput. Environ. Urban. Syst. 2021, 89, 101681. [Google Scholar] [CrossRef]
- Abascal, A.; Rodríguez-Carreño, I.; Vanhuysse, S.; Georganos, S.; Sliuzas, R.; Wolff, E.; Kuffer, M. Identifying Degrees of Deprivation from Space Using Deep Learning and Morphological Spatial Analysis of Deprived Urban Areas. Comput. Environ. Urban. Syst. 2022, 95, 101820. [Google Scholar] [CrossRef]
- Badmos, O.S.; Rienow, A.; Callo-Concha, D.; Greve, K.; Jürgens, C. Urban Development in West Africa-Monitoring and Intensity Analysis of Slum Growth in Lagos: Linking Pattern and Process. Remote Sens. 2018, 10, 1044. [Google Scholar] [CrossRef]
- Dooley, C.; Boo, G.; Leasure, D.; Tatem, A. Gridded Maps of Building Patterns throughout Sub-Saharan Africa; Version 1.1, Source of Building Footprints “Ecopia Vector Maps Powered by Maxar Satellite Imagery”; University of Southampton: Southampton, UK, 2020. [Google Scholar]
- Thomson, R.D.; Palama, M.; Monika, K.; Andrea, R.; Jimena, J.; Celine, J. Toolkit: Operationalising the IDEAMAPS Network. Approach in Government; IDEAMAPS: Glasgow, UK, 2021. [Google Scholar]
- GSS 2010 Population and Housing Census, Summary of Report of Final Results; Ghana Statistical Service: Accra, Ghana, 2012; pp. 1–117.
- JEI. Lagos Informal Settlement Household Energy Survey. 2021. Available online: https://www.ccacoalition.org/resources/lagos-informal-settlement-household-energy-survey (accessed on 31 October 2023).
- African Population and Health Research Center (APHRC). Population and Health Dynamics in Nairobi’s Informal Settlement: Report of the Nairobi Cross-Sectional Slums Survey (NCSS); African Population and Health Research Center (APHRC): Nairobi, Kenya, 2014. [Google Scholar]
- Abascal, A.; Rothwell, N.; Shonowo, A.; Thomson, D.R.; Elias, P.; Elsey, H.; Yeboah, G.; Kuffer, M. “Domains of Deprivation Framework” for Mapping Slums, Informal Settlements, and Other Deprived Areas in LMICs to Improve Urban Planning and Policy: A Scoping Review. Comput. Environ. Urban. Syst. 2022, 93, 101770. [Google Scholar] [CrossRef]
- Merodio, P.; Jimena, O.; Carrillo, J.; Kuffer, M.; Thomson, D.R.; Luis, J.; Quiroz, O.; Villaseñor, E.; Vanhuysse, S.; Abascal, Á.; et al. Earth Observations and Statistics: Unlocking Sociodemographic Knowledge through the Power of Satellite Images. Sustainability 2021, 13, 12640. [Google Scholar] [CrossRef]
- UN-Habitat. State of the World’s Cites 2010/2011: Bridging the Urban Divide; Earthscan: London, UK, 2010. [Google Scholar]
- Friesen, J.; Friesen, V.; Dietrich, I.; Pelz, P.F. Slums, Space, and State of Health—A Link between Settlement Morphology and Health Data. Int. J. Environ. Res. Public Health 2020, 17, 2022. [Google Scholar] [CrossRef]
- Kohli, D.; Sliuzas, R.; Kerle, N.; Stein, A. An Ontology of Slums for Image-Based Classification. Comput. Environ. Urban. Syst. 2012, 36, 154–163. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K.; et al. Global Spatio-Temporally Harmonised Datasets for Producing High-Resolution Gridded Population Distribution Datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High Resolution Global Gridded Data for Use in Population Studies. Sci. Data 2017, 4, 170001. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less Is More: Optimizing Classification Performance through Feature Selection in a Very-High-Resolution Remote Sensing Object-Based Urban Application. GIsci Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Google Earth Google Earth Pro Version 7.8. Available online: https://www.google.com/earth/versions/ (accessed on 20 June 2023).
- Fisher, T.; Gibson, H.; Liu, Y.; Abdar, M.; Posa, M.; Salimi-Khorshidi, G.; Hassaine, A.; Cai, Y.; Rahimi, K.; Mamouei, M. Uncertainty-Aware Interpretable Deep Learning for Slum Mapping and Monitoring. Remote Sens. 2022, 14, 3072. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Breiman, L.; Pavlov, Y.L. Random Forests. In Hands-On Machine Learning with R; CRC Press: Boca Raton, MA, USA, 2019; Volume 45, pp. 1–122. [Google Scholar] [CrossRef]
- Popescu, M.-C.; Balas, V.E.; Popescu-Perescu, L.; Mastorakis, N. Multilayer Perceptron and Neural Networks. WSEAS Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Leonita, G.; Kuffer, M.; Sliuzas, R.; Persello, C. Machine Learning-Based Slum Mapping in Support of Slum Upgrading Programs: The Case of Bandung City, Indonesia. Remote Sens. 2018, 10, 1522. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Vergara, J.R.; Estévez, P.A. A Review of Feature Selection Methods Based on Mutual Information. Neural Comput. Appl. 2015, 24, 175–186. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geosci. Remote Sens. Lett. 2018, 15, 607–611. [Google Scholar] [CrossRef]
- Owusu, M. Deprived Area Mapping Using a Scalable, Transferable and Open-Source Machine Learning Approach; George Washington University: Washington, DC, USA, 2023. [Google Scholar]
- Pratomo, J.; Kuffer, M.; Martinez, J.; Kohli, D. Coupling Uncertainties with Accuracy Assessment in Object-Based Slum Detections, Case Study: Jakarta, Indonesia. Remote Sens. 2017, 9, 1164. [Google Scholar] [CrossRef]
- Duque, J.C.; Patino, J.E.; Betancourt, A. Exploring the Potential of Machine Learning for Automatic Slum Identification from VHR Imagery. Remote Sens. 2017, 9, 895. [Google Scholar] [CrossRef]
- Bergado, J.R.; Persello, C.; Stein, A. Recurrent Multiresolution Convolutional Networks for VHR Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6361–6374. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Engstrom, R.; Pavelesku, D.; Tanaka, T.; Wambile, A. Mapping Poverty and Slums Using Multiple Methodologies in Accra, Ghana. In Proceedings of the 2019 Joint Urban Remote Sensing Event, JURSE 2019, Vannes, France, 22–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3–6. [Google Scholar]
Domains | Indicator | Data Source | Year | Description | Original Spatial Resolution | |
---|---|---|---|---|---|---|
1 | Facilities and service | Distance to health facility | Population Health Unit, Kenya Medical Research Institute—Wellcome Trust Research Programme | 2019 | Distance to health facility | - |
2 | Facilities and service | Distance to major road | OpenStreetMap and WorldPop | 2016 | Distance to major road | 100 m |
3 | Facilities and service | Distance to road intersection | OpenStreetMap and WorldPop | 2016 | Distance to major road intersections | 100 m |
4 | Facilities and service | Distance to major waterway | OpenStreetMap and WorldPop | 2016 | Distance to major waterways | 100 m |
5 | Facilities and service | Distance to minority religious facility | OpenStreetMap | 2019 | Distance to minority religious facility (compared to city average). | - |
6 | Facilities and service | Distance to religious facilities | OpenStreetMap | 2019 | Distance to religious facilities | - |
7 | Facilities and service | Distance to government office | OpenStreetMap | 2022 | Distance to government office | - |
8 | Facilities and service | Access to Finance | HDX and OpenStreetMap | 2020 | Distance to finance | - |
9 | Facilities and service | Access to School | HDX and OpenStreetMap | 2020 | Distance to education facility | - |
10 | Housing | Improve housing prevalence | The Malaria Atlas Project | 2015 | Improved housing prevalence | 5 km |
11 | Physical hazard | Distance to river | WWF HydroSHEDS | 2007 | Distance to river | 15 arc-second resolution |
12 | Physical hazard | Night light | WorldPop | 2012–2016 | VIIRS night-time lights between 2012 and 2016 | 100 m |
13 | Physical hazard | Distance to aquatic vegetation | WorldPop | 2015 | Distance to ESA-CCI-LC aquatic vegetation area edges | 100 m |
14 | Physical hazard | Distance to artificial surface | WorldPop | 2015 | Distance to ESA-CCI-LC artificial surface edges | 100 m |
15 | Physical hazard | Distance to bare area | WorldPop | 2015 | Distance to ESA-CCI-LC bare area edge | 100 m |
16 | Physical hazard | Distance to cultivated area | WorldPop | 2015 | Distance to ESA-CCI-LC cultivated area edges 2015 | 100 m |
17 | Physical hazard | Distance to herbaceous area | WorldPop | 2015 | Distance to ESA-CCI-LC herbaceous area edges 2015 | 100 m |
18 | Physical hazard | Distance to inland water | WorldPop | 2018 | Distance to ESA-CCI-LC inland water (2000–2018) | 100 m |
19 | Physical hazard | Distance to open water coastline | WorldPop | 2020 | Distance to open-water coastline | 100 m |
20 | Physical hazard | Distance to shrub area | WorldPop | 2015 | Distance to ESA-CCI-LC shrub area edges 2015 | 100 m |
21 | Physical hazard | Distance to sparse vegetation | WorldPop | 2015 | Distance to ESA-CCI-LC sparse vegetation area edges 2015 | 100 m |
22 | Physical hazard | Distance to woody tree area | WorldPop | 2015 | Distance to ESA-CCI-LC woody-tree area edges 2015 | 100 m |
23 | Physical hazard | Slope | WorldPop | 2018 | STRM -based slope | 100 m |
24 | Physical hazard | Water stress | World Resource Institute (WRI) | 2010 | Baseline water stress score | 5 × 5 arc minute grid cells |
25 | Physical hazard | Ground water stress | World Resource Institute (WRI) | 2012 | Ground water stress score | 5 × 5 arc minute grid cells |
26 | Physical hazard | Hazard index | UNEP/DEWA/GRID-Europe | 2011 | This dataset includes an estimate of the global risk induced by multiple hazards (tropical cyclone, flood and landslide induced by precipitations). Unit is estimated risk index from 1 (low) to 5 (extreme). It was modeled using global data. | 1 km |
27 | Physical hazard | Air pollution | NASA Socioeconomic Data and Applications Center (SEDAC) | 2016 | The annual concentrations (micrograms per cubic meter) of ground-level fine particulate matter (PM2.5) with dust and sea-salt removed in 2016 | 50 m |
28 | Physical hazard | Biodiversity | GLOBIO | 2015 | Biodiversity (mean species abundance) | 10 arc-second |
29 | Physical hazard | Land cover 2 | GlobeLand30 | 2019 | GlobeLand30 includes 10 land cover classes in total, namely cultivated land, forest, grassland, shrubland, wetland, water bodies, tundra, artificial surface, bare land, perennial snow and ice. | 30 m |
30 | Physical hazard | Normalized Difference Vegetation Index | Desert Research Center, University of Idaho | 2019 | Maximum Normalized Difference Vegetation Index | 30 m |
31 | Physical hazard | Land cover 1 | Copernicus Global Land Service | 2019 | Annual 100 m global land cover maps of 2015 to 2019, generated by Copernicus Global Land service | 100 m |
32 | Physical hazard | Maximum ground temperature | Climatology Lab | 2019 | Maximum ground temperature | 4 km |
33 | Physical hazard | Multihazard distribution | CIESIN | 2005 | The Global Multihazard Frequency and Distribution is a 2.5 min grid presenting a simple multihazard index based solely on summated single-hazard decile values. | 2.5 min grid |
34 | Physical hazard | Climate risk | CHIRPS | 2020 | Average annual climate risk. Rainfall Estimates from Rain Gauge and Satellite Observations | 0.05 × 0.05 degree |
35 | Population | Population count | WorldPop | 2020 | Estimated Population Count 2020 in 100 m grid (WorldPop-UNadj-constrained) | 100 m |
36 | Population | Population count | Meta & CIESIN | 2018 | Estimated Population Count 2018 (HRSL-Facebook) | 1 arc-second |
37 | Social hazard | Pregnancy rate | WorldPop | 2017 | Estimated distributions of pregnancies | 100 m |
38 | Social hazard | Children with Plasmodium falciparum parasite rate | The Malaria Atlas Project | 2017 | Mean Plasmodium falciparum parasite rate in 2–10 year olds. Children with Plasmodium falciparum parasite rate | 5 km |
39 | Social hazard | Pregnant women antenatal care visit | Spatial Data Repository | 2014- 2016 | DHS modeled surface 2014. Percentage of women who had a live birth in the five (or three) years preceding the survey who had 4+ antenatal care visits. | 5 km |
40 | Social hazard | Child stunted | Spatial Data Repository | 2014–2016 | DHS modeled surface 2014. Percentage of children stunted (below −2 SD of height for age according to the WHO standard). | 5 km |
41 | Social hazard | DPT3 vaccine | Spatial Data Repository | 2014–2016 | DHS modeled surface 2018. Percentage of children 12–23 months who had received DPT3 vaccination. | 5 km |
42 | Social hazard | Delivery at health Facility | Spatial Data Repository | 2014–2016 | DHS modeled surface 2014. Percentage of live births in the five (or three) years preceding the survey delivered at a health facility. | 5 km |
43 | Social hazard | Household with improve water source | Spatial Data Repository | 2014 | DHS modeled surface 2018. Percentage of the de jure population living in households whose main source of drinking water is an improved source. | 5 km |
44 | Social hazard | Household with insecticide-treated bednet | Spatial Data Repository | 2014 | DHS modeled surface 2018. Percentage of the de facto household population who could sleep under an ITN if each ITN in the household were used by up to two people. | 5 km |
45 | Social hazard | Men literature rate | Spatial Data Repository | 2014 | DHS modeled surface 2018. Percentage of men who are literate. | 5 km |
46 | Social hazard | Children receiving measles vaccine | Spatial Data Repository | 2014 | DHS modeled surface 2014. Percentage of children 12–23 months who had received Measles vaccination. | 5 km |
47 | Social hazard | Household using open defecation | Spatial Data Repository | 2014 | DHS modeled surface 2014. Percentage of the de jure population living in households whose main type of toilet facility is no facility (open defecation). | 5 km |
48 | Social hazard | Unmet need for family planning | Spatial Data Repository | 2014 | DHS modeled surface 2014. Percentage of currently married or in union women with an unmet need for family planning. | 5 km |
49 | Social hazard | Women literacy rate | Spatial Data Repository | 2016 | DHS modeled surface 2014. Percentage of women who are literate. | 5 km |
50 | Social hazard | Ethno-linguistic group | IMB | 2020 | Number of ethno-linguistic groups in 100 m cell. | 100 m |
51 | unplanned urbanization | Building count | WorldPop | 2020 | Counts of buildings that fall within 100 m grid cell. | 100 m |
52 | unplanned urbanization | Building density | WorldPop | 2020 | Measure of the number of buildings per grid cell area. | 100 m |
53 | unplanned urbanization | Rural/urban classification | WorldPop | 2018 | Urban/rural classification based on building patterns in that area. | 100 m |
Class | Accra | Lagos | Nairobi |
---|---|---|---|
Deprived | 1740 | 480 | 1300 |
Non-deprived | 5080 | 600 | 2650 |
Total | 6820 | 1080 | 3950 |
City | Input Feature Set | Model | Precision | Recall | F1-Deprived | F1-Macro |
---|---|---|---|---|---|---|
Accra | All | RF | 0.68 | 0.88 | 0.77 | 0.74 |
MLP | 0.64 | 0.92 | 0.75 | 0.70 | ||
XGBoost | 0.79 | 0.47 | 0.59 | 0.73 | ||
User-defined | RF | 0.71 | 0.84 | 0.77 | 0.78 | |
MLP | 0.67 | 0.76 | 0.71 | 0.78 | ||
XGBoost | 0.78 | 0.59 | 0.67 | 0.62 | ||
Lagos | All | RF | 0.80 | 0.51 | 0.62 | 0.72 |
MLP | 0.84 | 0.53 | 0.65 | 0.72 | ||
XGBoost | 0.81 | 0.33 | 0.47 | 0.62 | ||
User-defined | RF | 0.45 | 0.80 | 0.86 | 0.71 | |
MLP | 0.57 | 0.80 | 0.67 | 0.72 | ||
XGBoost | 0.98 | 0.53 | 0.70 | 0.78 | ||
Nairobi | All | RF | 0.81 | 0.64 | 0.72 | 0.78 |
MLP | 0.56 | 0.36 | 0.44 | 0.73 | ||
XGBoost | 0.79 | 0.46 | 0.58 | 0.68 | ||
User-defined | RF | 0.78 | 0.76 | 0.77 | 0.78 | |
MLP | 0.74 | 0.73 | 0.73 | 0.73 | ||
XGBoost | 0.77 | 0.73 | 0.74 | 0.74 |
City | Test City | Input Feature Set | Model | Precision | Recall | F1-Deprived | F1-Macro |
---|---|---|---|---|---|---|---|
Accra | Lagos | All | RF | 0.89 | 0.37 | 0.52 | 0.66 |
MLP | 0.39 | 0.40 | 0.40 | 0.47 | |||
XGBoost | 0.82 | 0.38 | 0.52 | 0.65 | |||
Lagos | User-defined | RF | 0.78 | 0.56 | 0.65 | 0.73 | |
MLP | 0.95 | 0.01 | 0.02 | 0.38 | |||
XGBoost | 0.81 | 0.39 | 0.52 | 0.70 | |||
Nairobi | All | RF | 0.80 | 0.48 | 0.60 | 0.76 | |
MLP | 0.81 | 0.01 | 0.02 | 0.40 | |||
XGBoost | 0.69 | 0.58 | 0.63 | 0.72 | |||
Nairobi | User-defined | RF | 0.78 | 0.54 | 0.64 | 0.73 | |
MLP | 0.31 | 0.02 | 0.04 | 0.38 | |||
XGBoost | 0.84 | 0.24 | 0.37 | 0.59 | |||
Lagos | Accra | All | RF | 0.52 | 0.53 | 0.52 | 0.69 |
MLP | 0.40 | 0.64 | 0.50 | 0.64 | |||
XGBoost | 0.46 | 0.87 | 0.61 | 0.70 | |||
Accra | User-defined | RF | 0.50 | 0.92 | 0.64 | 0.73 | |
MLP | 0.43 | 0.55 | 0.48 | 0.65 | |||
XGBoost | 0.48 | 0.85 | 0.62 | 0.71 | |||
Nairobi | All | RF | 0.78 | 0.48 | 0.59 | 0.71 | |
MLP | 0.39 | 0.62 | 0.48 | 0.62 | |||
XGBoost | 0.73 | 0.63 | 0.68 | 0.75 | |||
Nairobi | User-defined | RF | 0.68 | 0.70 | 0.69 | 0.75 | |
MLP | 0.95 | 0.02 | 0.04 | 0.40 | |||
XGBoost | 0.66 | 0.70 | 0.68 | 0.74 | |||
Nairobi | Accra | All | RF | 0.64 | 0.61 | 0.63 | 0.76 |
MLP | 0.31 | 0.34 | 0.32 | 0.55 | |||
XGBoost | 0.27 | 0.49 | 0.35 | 0.51 | |||
Accra | User-defined | RF | 0.44 | 0.87 | 0.59 | 0.68 | |
MLP | 0.30 | 0.61 | 0.40 | 0.53 | |||
XGBoost | 0.36 | 0.17 | 0.23 | 0.53 | |||
Lagos | All | RF | 0.73 | 0.07 | 0.13 | 0.43 | |
MLP | 0.34 | 0.02 | 0.09 | 0.37 | |||
XGBoost | 0.50 | 0.24 | 0.33 | 0.51 | |||
Lagos | User-defined | RF | 0.60 | 0.25 | 0.35 | 0.54 | |
MLP | 0.43 | 0.87 | 0.57 | 0.42 | |||
XGBoost | 0.52 | 0.07 | 0.13 | 0.43 |
Input Feature | Model | Precision | Recall | F1-Deprived | F1-Macro | |
---|---|---|---|---|---|---|
Accra | All | RF | 0.77 | 0.84 | 0.80 | 0.89 |
MLP | 0.50 | 0.58 | 0.54 | 0.74 | ||
XGBoost | 0.84 | 0.24 | 0.37 | 0.59 | ||
User-defined | RF | 0.81 | 0.86 | 0.84 | 0.91 | |
MLP | 0.67 | 0.70 | 0.69 | 0.82 | ||
XGBoost | 0.78 | 0.48 | 0.59 | 0.71 | ||
Lagos | All | RF | 0.42 | 0.99 | 0.59 | 0.63 |
MLP | 0.47 | 0.65 | 0.54 | 0.67 | ||
XGBoost | 0.49 | 0.88 | 0.63 | 0.72 | ||
User-defined | RF | 0.43 | 0.96 | 0.59 | 0.64 | |
MLP | 0.47 | 0.88 | 0.61 | 0.71 | ||
XGBoost | 0.42 | 0.91 | 0.58 | 0.64 | ||
Nairobi | All | RF | 0.68 | 0.92 | 0.78 | 0.73 |
MLP | 0.72 | 0.69 | 0.70 | 0.71 | ||
XGBoost | 0.76 | 0.85 | 0.82 | 0.79 | ||
User-defined | RF | 0.71 | 0.88 | 0.79 | 0.76 | |
MLP | 0.69 | 0.87 | 0.77 | 0.74 | ||
XGBoost | 0.75 | 0.78 | 0.77 | 0.76 |
City | Input Feature Set | Threshold |
---|---|---|
Accra | All | 0.67 |
User-defined | 0.75 | |
Lagos | All | 0.69 |
User-defined | 0.85 | |
Nairobi | All | 0.57 |
User-defined | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owusu, M.; Engstrom, R.; Thomson, D.; Kuffer, M.; Mann, M.L. Mapping Deprived Urban Areas Using Open Geospatial Data and Machine Learning in Africa. Urban Sci. 2023, 7, 116. https://doi.org/10.3390/urbansci7040116
Owusu M, Engstrom R, Thomson D, Kuffer M, Mann ML. Mapping Deprived Urban Areas Using Open Geospatial Data and Machine Learning in Africa. Urban Science. 2023; 7(4):116. https://doi.org/10.3390/urbansci7040116
Chicago/Turabian StyleOwusu, Maxwell, Ryan Engstrom, Dana Thomson, Monika Kuffer, and Michael L. Mann. 2023. "Mapping Deprived Urban Areas Using Open Geospatial Data and Machine Learning in Africa" Urban Science 7, no. 4: 116. https://doi.org/10.3390/urbansci7040116
APA StyleOwusu, M., Engstrom, R., Thomson, D., Kuffer, M., & Mann, M. L. (2023). Mapping Deprived Urban Areas Using Open Geospatial Data and Machine Learning in Africa. Urban Science, 7(4), 116. https://doi.org/10.3390/urbansci7040116