Planning Tools to Revitalise Urban Vacant Land from Ecological Perspectives: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy and Keywords
2.3. Study Selection Process
2.4. Data Extraction
3. Results and Discussion
3.1. Characteristics of the Studies
3.2. Study Settings
3.3. Planning Tools to Revive Urban Vacant Land
3.4. Framework to Revitalise Urban Vacant Land: A Stepwise Approach
3.5. Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Németh, J.; Langhorst, J. Rethinking urban transformation: Temporary uses for vacant land. Cities 2014, 40, 143–150. [Google Scholar] [CrossRef]
- McPhearson, T.; Kremer, P.; Hamstead, Z.A. Mapping ecosystem services in New York City: Applying a social-ecological approach in urban vacant land. Ecosyst. Serv. 2013, 5, 11–26. [Google Scholar] [CrossRef]
- Anderson, E.C.; Minor, E.S. Vacant lots: An underexplored resource for ecological and social benefits in cities. Urban For. Urban Green. 2017, 21, 146–152. [Google Scholar] [CrossRef]
- Kim, G. The Public Value of Urban Vacant Land: Social Responses and Ecological Value. Sustainability 2016, 8, 486. [Google Scholar] [CrossRef]
- Hou, D.; Song, Y.; Zhang, J.; Hou, M.; Connor, D.O.; Harclerode, M. Climate change mitigation potential of contaminated land redevelopment: A city-level assessment method. J. Clean. Prod. 2018, 171, 1396–1406. [Google Scholar] [CrossRef]
- Prener, C.G.; Braswell, T.H.; Monti, D.J. St. Louis’s “urban prairie”: Vacant land and the potential for revitalization. J. Urban Aff. 2020, 42, 371–389. [Google Scholar] [CrossRef]
- Schilling, J.; Logan, J. Greening the rust belt: A green infrastructure model for right sizing America’s shrinking cities. J. Am. Plan. Assoc. 2008, 74, 451–466. [Google Scholar] [CrossRef]
- Pallagst, K.; Vargas-Hernández, J.; Hammer, P. Green Innovation Areas—En Route to Sustainability for Shrinking Cities? Sustainability 2019, 11, 6674. [Google Scholar] [CrossRef]
- Laprise, M.; Lufkin, S.; Rey, E. An operational monitoring tool facilitating the transformation of urban brownfields into sustainable neighborhoods. Build. Environ. 2018, 142, 221–233. [Google Scholar] [CrossRef]
- Newman, G.D.; Smith, A.L.; Brody, S.D. Repurposing vacant land through landscape connectivity. Landsc. J. 2017, 36, 37–57. [Google Scholar] [CrossRef]
- Beames, A.; Broekx, S.; Schneidewind, U.; Landuyt, D.; Meulen, M.V.D.; Heijungs, R.; Seuntjens, P. Amenity proximity analysis for sustainable brownfield redevelopment planning. Landsc. Urban Plan. 2018, 171, 68–79. [Google Scholar] [CrossRef]
- Kim, G.; Miller, P.A.; Nowak, D.J. Urban vacant land typology: A tool for managing urban vacant land. Sustain. Cities Soc. 2018, 36, 144–156. [Google Scholar] [CrossRef]
- Kim, G.; Newman, G.; Jiang, B. Urban regeneration: Community engagement process for vacant land in declining cities. Cities 2020, 102, 102730. [Google Scholar] [CrossRef] [PubMed]
- Wesener, A. Temporary urbanism and urban sustainability after a natural disaster: Transitional community-initiated open spaces in Christchurch, New Zealand. J. Urban. 2015, 8, 406–422. [Google Scholar] [CrossRef]
- Patti, D.; Polyak, L. From practice to policy: Frameworks for temporary use. Urban Res. Pract. 2015, 8, 122–134. [Google Scholar] [CrossRef]
- Rall, E.L.; Haase, D. Creative intervention in a dynamic city: A sustainability assessment of an interim use strategy for brownfields in Leipzig, Germany. Landsc. Urban Plan. 2011, 100, 189–201. [Google Scholar] [CrossRef]
- Runhaar, H.; Driessen, P.P.J.; Soer, L. Sustainable urban development and the challenge of policy integration: An assessment of planning tools for integrating spatial and environmental planning in the Netherlands. Environ. Plan. B Plan. Des. 2009, 36, 417–431. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Burkman, C.E.; Prajzner, S.P. The value of urban vacant land to support arthropod biodiversity and ecosystem services. Environ. Entomol. 2013, 42, 1123–1136. [Google Scholar] [CrossRef]
- Kim, G.; Miller, P.A.; Nowak, D.J. Assessing urban vacant land ecosystem services: Urban vacant land as green infrastructure in the City of Roanoke, Virginia. Urban For. Urban Green. 2015, 14, 519–526. [Google Scholar] [CrossRef]
- Kowarik, I. Urban wilderness: Supply, demand, and access. Urban For. Urban Green. 2018, 29, 336–347. [Google Scholar] [CrossRef]
- Anderson, E.C.; Minor, E.S. Assessing social and biophysical drivers of spontaneous plant diversity and structure in urban vacant lots. Sci. Total Environ. 2019, 653, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, N.R.; Chiang, L.A.; Hernández, H.J.; Escobar, M.A.H. Vacant lands as refuges for native birds: An opportunity for biodiversity conservation in cities. Urban For. Urban Green. 2020, 49, 126632. [Google Scholar] [CrossRef]
- Kopecká, M.; Szatmári, D.; Rosina, K. Analysis of Urban Green Spaces Based on Sentinel-2A: Case Studies from Slovakia. Land 2017, 6, 25. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Jiang, P. Assessing Impacts of Urban Form on Landscape Structure of Urban Green Spaces in China Using Landsat Images Based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef]
- Haase, D.; Jänicke, C.; Wellmann, T. Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city. Landsc. Urban Plan. 2019, 182, 44–54. [Google Scholar] [CrossRef]
- Kanniah, K.D. Quantifying green cover change for sustainable urban planning: A case of Kuala Lumpur, Malaysia. Urban For. Urban Green. 2017, 27, 287–304. [Google Scholar] [CrossRef]
- Deng, J.; Huang, Y.; Chen, B.; Tong, C.; Liu, P.; Wang, H.; Hong, Y. A methodology to monitor urban expansion and green space change using a time series of multi-sensor SPOT and Sentinel-2A images. Remote Sens. 2019, 11, 1230. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, Y.; Xing, H.; Fu, Y.; Liu, G.; Kang, X.; Mai, X. Understanding the changes in spatial fairness of urban greenery using time-series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay. Sci. Total Environ. 2020, 715, 136763. [Google Scholar] [CrossRef]
- Dinda, S.; Das Chatterjee, N.; Ghosh, S. An integrated simulation approach to the assessment of urban growth pattern and loss in urban green space in Kolkata, India: A GIS-based analysis. Ecol. Indic. 2021, 121, 107178. [Google Scholar] [CrossRef]
- Ucar, Z.; Bettinger, P.; Merry, K.; Akbulut, R.; Siry, J. Estimation of urban woody vegetation cover using multispectral imagery and LiDAR. Urban For. Urban Green. 2018, 29, 248–260. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, W.; Han, L.; Qian, Y. Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology. Urban For. Urban Green. 2018, 31, 230–240. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef] [PubMed]
- Kremer, P.; Hamstead, Z.A.; McPhearson, T. A social-ecological assessment of vacant lots in New York City. Landsc. Urban Plan. 2013, 120, 218–233. [Google Scholar] [CrossRef]
- McClintock, N.; Cooper, J.; Khandeshi, S. Assessing the potential contribution of vacant land to urban vegetable production and consumption in Oakland, California. Landsc. Urban Plan. 2013, 111, 46–58. [Google Scholar] [CrossRef]
- Drake, L.; Ravit, B.; Lawson, L. Developing a Vacant Property Inventory through Productive Partnerships: A University, NGO, and Municipal Planning Collaboration in Trenton, New Jersey. Cities Environ. 2016, 8, 6. [Google Scholar]
- Pearsall, H. Staying cool in the compact city: Vacant land and urban heating in Philadelphia, Pennsylvania. Appl. Geogr. 2017, 79, 84–92. [Google Scholar] [CrossRef]
- Zefferman, E.P.; McKinney, M.L.; Cianciolo, T.; Fritz, B.I. Knoxville’s urban wilderness: Moving toward sustainable multifunctional management. Urban For. Urban Green. 2018, 29, 357–366. [Google Scholar] [CrossRef]
- Newman, G.; Kim, Y.; Kim, G.; Lee, R.J.; Gu, D.; Forghanparast, K.; Goldberg, D. A python script for longitudinally measuring the duration of vacant land uses. J. Spat. Sci. 2022, 67, 129–141. [Google Scholar] [CrossRef]
- Maldonado López, J.I.; Kim, G.; Lei, Y.; Newman, G.; Suppakittpaisarn, P. An assessment method and typology for the regeneration of vacant land in Quito, Ecuador. Urban For. Urban Green. 2021, 62, 127130. [Google Scholar] [CrossRef]
- Jacobs, S.; Dyson, B.; Shuster, W.D.; Stockton, T. A Structured Decision Approach for Integrating and Analyzing Community Perspectives in Re-Use Planning of Vacant Properties in Cleveland, Ohio. Urban Land Use 2013, 6, 163–188. [Google Scholar] [CrossRef]
- Johnson, M.P.; Hollander, J.; Hallulli, A. Maintain, demolish, re-purpose: Policy design for vacant land management using decision models. Cities 2014, 40, 151–162. [Google Scholar] [CrossRef]
- Kirnbauer, M.; Baetz, B.W. A prototype community-based planning tool for evaluating site suitability for the temporary reuse of vacant lands. Int. J. Urban Sustain. Dev. 2014, 6, 221–240. [Google Scholar] [CrossRef]
- Kirnbauer, M.; Baetz, B. Prototype Decision-Support System for Designing and Costing Municipal Green Infrastructure. J. Urban Plan. Dev. 2014, 140, 04014004. [Google Scholar] [CrossRef]
- Pearsall, H.; Lucas, S.; Lenhardt, J. The contested nature of vacant land in Philadelphia and approaches for resolving competing objectives for redevelopment. Cities 2014, 40, 163–174. [Google Scholar] [CrossRef]
- Eanes, F.; Ventura, S. Inventorying Land Availability and Suitability for Community Gardens in Madison, Wisconsin. Cities Environ. 2015, 8, 2. [Google Scholar]
- Frazier, A.E.; Bagchi-Sen, S. Developing open space networks in shrinking cities. Appl. Geogr. 2015, 59, 1–9. [Google Scholar] [CrossRef]
- Sanches, P.M.; Pellegrino, P.R.M. Greening potential of derelict and vacant lands in urban areas. Urban For. Urban Green. 2016, 19, 128–139. [Google Scholar] [CrossRef]
- Todd, L.F.; Landman, K.; Kelly, S. Phytoremediation: An interim landscape architecture strategy to improve accessibility of contaminated vacant lands in Canadian municipalities. Urban For. Urban Green. 2016, 18, 242–256. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Wu, X.; Li, C.; Wang, X. Effects of different types of mulches and legumes for the restoration of urban abandoned land in semi-arid northern China. Ecol. Eng. 2017, 102, 55–63. [Google Scholar] [CrossRef]
- Morckel, V. Using suitability analysis to select and prioritize naturalization efforts in legacy cities: An example from Flint, Michigan. Urban For. Urban Green. 2017, 27, 343–351. [Google Scholar] [CrossRef]
- Smith, J.P.; Li, X.; Turner, B.L. Lots for greening: Identification of metropolitan vacant land and its potential use for cooling and agriculture in Phoenix, AZ, USA. Appl. Geogr. 2017, 85, 139–151. [Google Scholar] [CrossRef]
- Koch, F.; Bilke, L.; Helbig, C.; Schlink, U. Compact or cool ? The impact of brown fi eld redevelopment on inner-city micro climate. Sustain. Cities Soc. 2018, 38, 31–41. [Google Scholar] [CrossRef]
- Gavrilidis, A.A.; Niță, M.R.; Onose, D.A.; Badiu, D.L.; Năstase, I.I. Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure. Ecol. Indic. 2019, 96, 67–78. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Kelleher, C.; Golden, H.E.; Burkholder, S.; Shuster, W. Urban vacant lands impart hydrological benefits across city landscapes. Nat. Commun. 2020, 11, 1563. [Google Scholar] [CrossRef]
- Míguez, F.; Gómez-Sagasti, M.T.; Hernández, A.; Artetxe, U.; Blanco, F.; Castañeda, J.H.; Lozano, J.V.; Garbisu, C.; Becerril, J.M. In situ phytomanagement with Brassica napus and bio-stabilised municipal solid wastes is a suitable strategy for redevelopment of vacant urban land. Urban For. Urban Green. 2020, 47, 126550. [Google Scholar] [CrossRef]
- Anderson, E.C.; Minor, E.S. Assessing four methods for establishing native plants on urban vacant land. Ambio 2021, 50, 695–705. [Google Scholar] [CrossRef]
- Costa, P.; Brito-Henriques, E.; Cavaco, C. Interim reuse in urban derelicts: Uncovering the community’s attitudes and preferences through scenario-elicitation. Cities 2021, 111, 103103. [Google Scholar] [CrossRef]
- Lindquist, M.; Campbell-Arvai, V. Co-designing vacant lots using interactive 3D visualizations—Development and application of the Land.Info DSS. Landsc. Urban Plan. 2021, 210, 104082. [Google Scholar] [CrossRef]
- Gobster, P.H.; Hadavi, S.; Rigolon, A.; Stewart, W.P. Measuring landscape change, lot by lot: Greening activity in response to a vacant land reuse program. Landsc. Urban Plan. 2020, 196, 103729. [Google Scholar] [CrossRef]
- Gobster, P.H.; Rigolon, A.; Hadavi, S.; Stewart, W.P. Beyond proximity: Extending the “greening hypothesis” in the context of vacant lot stewardship. Landsc. Urban Plan. 2020, 197, 103773. [Google Scholar] [CrossRef]
- Gobster, P.H.; Rigolon, A.; Hadavi, S.; Stewart, W.P. The condition-care scale: A practical approach to monitoring progress in vacant lot stewardship programs. Landsc. Urban Plan. 2020, 203, 103885. [Google Scholar] [CrossRef]
- Jeong, W.; Stewart, W.P.; Gobster, P.H.; van Riper, C.J. Green Leisure: Resistance and Revitalization of Urban Neighborhoods. Leis. Sci. 2021, 1–21. [Google Scholar] [CrossRef]
- Rigolon, A.; Banerjee, D.; Gobster, P.; Hadavi, S.; Stewart, W. Transferring Vacant Lots to Private Ownership Improves Care and Empowers Residents: Evidence From Chicago. J. Am. Plan. Assoc. 2021, 87, 570–584. [Google Scholar] [CrossRef]
- Dovey, K.; Ristic, M.; Pafka, E. Mapping as Spatial Knowledge. In Mapping Urbanities: Morphologies, Flows, Possibilities; Dovey, K., Pafka, E., Ristic, M., Eds.; Routledge: New York, NY, USA, 2018; pp. 1–16. [Google Scholar]
- Turnhout, E. The effectiveness of boundary objects: The case of ecological indicators. Sci. Public Policy 2009, 36, 403–412. [Google Scholar] [CrossRef]
- Mair, S.; Jones, A.; Ward, J.; Christie, I.; Druckman, A.; Lyon, F. A Critical Review of the Role of Indicators in Implementing the Sustainable Development Goals. In Handbook of Sustainability Science and Research; World Sustainability Series; Springer: Cham, Switzerland, 2018; pp. 41–56. [Google Scholar] [CrossRef]
- Batty, M. Classifying urban models. Environ. Plan. B Plan. Des. 2016, 43, 251–256. [Google Scholar] [CrossRef]
- Yang, J.; Hu, X.; Feng, H.; Marvin, S. Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban For. Urban Green. 2021, 66, 127384. [Google Scholar] [CrossRef]
- Deng, S.; Ma, J.; Zhang, L.; Jia, Z.; Ma, L. Microclimate simulation and model optimization of the effect of roadway green space on atmospheric particulate matter. Environ. Pollut. 2019, 246, 932–944. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Yue, Z.E.J.; Ling, S.K.; Tan, H.H.V. It’s ok to be wilder: Preference for natural growth in urban green spaces in a tropical city. Urban For. Urban Green. 2019, 38, 165–176. [Google Scholar] [CrossRef]
- Wilschut, M.; Theuws, P.A.; Duchhart, I. Phytoremediative urban design: Transforming a derelict and polluted harbour area into a green and productive neighbourhood. Environ. Pollut. 2013, 183, 81–88. [Google Scholar] [CrossRef]
- Kim, G. An integrated system of urban green infrastructure on different types of vacant land to provide multiple benefits for local communities. Sustain. Cities Soc. 2018, 36, 116–130. [Google Scholar] [CrossRef]
- Xu, S.; Manzke, N.; De Lange, N.; Zülsdorf, J.; Kada, M.; Ehlers, M. Identification of potential urban development areas and extraction of urban land use information based on open source data. In Proceedings of the 10th International Conference on Environmental Engineering, ICEE 2017, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar] [CrossRef]
- Pelzer, P.; Geertman, S.; van der Heijden, R. Knowledge in communicative planning practice: A different perspective for planning support systems. Environ. Plan. B Plan. Des. 2015, 42, 638–651. [Google Scholar] [CrossRef]
- van Dijk, T.; Ubels, H. How Dutch professionals conduct interactive design sessions to foster ‘shared understanding. Environ. Plan. B Plan. Des. 2016, 43, 464–479. [Google Scholar] [CrossRef]
- Gnatzy, T.; Warth, J.; von der Gracht, H.; Darkow, I.L. Validating an innovative real-time Delphi approach—A methodological comparison between real-time and conventional Delphi studies. Technol. Forecast. Soc. Change 2011, 78, 1681–1694. [Google Scholar] [CrossRef]
- Ganis, M.; Minnery, J.; Mateo-Babiano, I. Planning people–places: A small world network paradigm for masterplanning with people in mind. Environ. Plan. B Plan. Des. 2016, 43, 1075–1095. [Google Scholar] [CrossRef]
Planning Tools to Revitalise Urban Vacant Land | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author/s | Country | Substance-Oriented Tools | Process-Oriented Tools | ||||||||
GIS | Model/Simulation | Indicator System | Field Survey | Experiment | Focus Group | Interview | Delphi Method | Questionnaire Survey | |||
Phase I Mapping and classification | [33] | USA | ● | ||||||||
[34] | USA | ● | |||||||||
[2] | USA | ● | |||||||||
[19] | USA | ● | |||||||||
[35] | USA | ● | ● | ||||||||
[36] | USA | ● | ● | ||||||||
[12] | USA | ● | ● | ||||||||
[37] | USA | ● | |||||||||
[38] | USA | ● | |||||||||
[39] | Ecuador | ● | |||||||||
Phase II Decision-making | [40] | USA | ● | ● | |||||||
[41] | USA | ● | |||||||||
[42] | Canada | ● | |||||||||
[43] | Canada | ● | |||||||||
[44] | USA | ● | ● | ||||||||
[45] * | USA | ● | ● | ● | ● | ||||||
[46] | USA | ● | ● | ||||||||
[47] | Brazil | ● | ● | ||||||||
[48] * | Canada | ● | ● | ● | |||||||
[49] | China | ● | |||||||||
[50] | USA | ● | ● | ||||||||
[10] | USA | ● | ● | ● | |||||||
[51] | USA | ● | |||||||||
[52] | Germany | ● | ● | ||||||||
[53] * | Romania | ● | ● | ● | |||||||
[54] | USA | ● | ● | ||||||||
[55] | USA | ● | |||||||||
[56] | Spain | ● | |||||||||
[57] | USA | ● | |||||||||
[58] * | Portugal | ● | ● | ||||||||
[59] | USA | ● | |||||||||
Phase III Monitoring | [60] | USA | ● | ● | |||||||
[61] | USA | ● | ● | ● | |||||||
[62] | USA | ● | ● | ||||||||
[63] | USA | ● | ● | ||||||||
[64] * | USA | ● | ● | ● | |||||||
Total | 19 | 13 | 11 | 9 | 3 | 3 | 1 | 1 | 4 |
Author | Purpose | Typology |
---|---|---|
[33] | Actual uses of vacant lots | Unused land, private house, commercial/industrial, community garden, park, tree cover in residential streets, sport fields, road, roadside pavement or sidewalk, junk yard, parking lot, non-commercial parking, other. |
[2] | Land cover type | Fine vegetation, coarse vegetation, paved surface, building cover, water. |
[35] | Land cover type | Parcels with structure—vacant building, vacant land, occupied building. Parcels without structure—parking lot, open space (park, garden, or cemetery), utility or rail, lot. |
[12] | Land cover type | Post-industrial sites, unattended sites with vegetation, derelict sites, natural sites, transportation-related sites. |
[39] | Potential use in economic, ecological, sociocultural, and policy respects | Abandoned land, undeveloped land, post-industrial land, land held for speculation, derelict land. |
Author | Objective | Criteria/Indicators |
---|---|---|
[47] | Identifying the greening potential of derelict and vacant lands in urban areas. | Ecology—habitat diversity, impact on the surroundings, connectivity with other green spaces, priority for ecological restoration, viability for ecological restoration. Stormwater—stormwater retention and treatment (volume and quality). Community—mobility, pedestrian pathway and cycle routes, accessibility, deficit in terms of green spaces, potential for use by the community, social inclusion, and cohesion. |
[45] | Community garden site suitability index. | Adjacent water sources, solar access, size, vehicular access, surface and vegetation, land-use conflicts. |
[50] | Using suitability analysis to select and prioritise naturalisation efforts in legacy cities. | Contiguous vacant land, prospective vacant land, ownership, green land use, parks, green buffer, industrial land use, water features, property values, population change. |
[53] | The framework assesses which model of UGS is best for planning based on available vacant lands in a city’s urban functional zone. | Management cost, ease of construction, acceptance, efficiency in combating climate change, air quality improvement efficiency, income generation, biodiversity benefits and conservation, social network simulation, specificity (dependent on natural characteristics). |
[10] | Socioenvironmental factors via which to determine development potential and ecological values of vacant land. | Population, soil, property value, land cover, land use, Federal Emergency Management Agency (FEMA) flood plains, hurricane risk zones, conservation area, proximity to amenities. |
[42] | Site suitability index for determining the temporary reuse of vacant land. | Neighbourhood quality, development potential, visual quality, compatibility, transportation, vulnerable populations. |
[60,61,62,63] | Assess vacant land management in response to a vacant parcel reuse program (condition–care scale). | Mismanaged, unmanaged, periodically managed, regularly managed, small-scale gardens and other cues to care, moderate-scale gardens and other cues to care, extensive gardens and other cues to care. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad Selamat, I.A.; Maruthaveeran, S.; Mohd Yusof, M.J.; Shahidan, M.F. Planning Tools to Revitalise Urban Vacant Land from Ecological Perspectives: A Systematic Review. Urban Sci. 2023, 7, 58. https://doi.org/10.3390/urbansci7020058
Mohamad Selamat IA, Maruthaveeran S, Mohd Yusof MJ, Shahidan MF. Planning Tools to Revitalise Urban Vacant Land from Ecological Perspectives: A Systematic Review. Urban Science. 2023; 7(2):58. https://doi.org/10.3390/urbansci7020058
Chicago/Turabian StyleMohamad Selamat, Izyan Ayuni, Sreetheran Maruthaveeran, Mohd Johari Mohd Yusof, and Mohd Fairuz Shahidan. 2023. "Planning Tools to Revitalise Urban Vacant Land from Ecological Perspectives: A Systematic Review" Urban Science 7, no. 2: 58. https://doi.org/10.3390/urbansci7020058
APA StyleMohamad Selamat, I. A., Maruthaveeran, S., Mohd Yusof, M. J., & Shahidan, M. F. (2023). Planning Tools to Revitalise Urban Vacant Land from Ecological Perspectives: A Systematic Review. Urban Science, 7(2), 58. https://doi.org/10.3390/urbansci7020058