Impact of Topography on Rural Cycling Patterns: Case Study of Bugesera District, Rwanda
Abstract
:1. Introduction
2. Literature Review
3. The Study Area
4. Method
4.1. GPS Tracking Survey
4.2. Routing Data Collection
4.3. Bicycle Mobility Patterns Analysis
4.4. GDEMs Analysis
- For extracting ALOS PALSAR DEM:
- Selection of the project study area to download the Advanced Land Observation Satellite (ALOS PALSAR) Phased Array Synthetic Aperture Radar at long frequency and spatial resolution of 12.5 × 12.5 m from the Vertex website (http://vertex.daac.asf.alaska.edu/, accessed on 05 November 2022).
- Choose Dual Beam Fine (DBF) sensor. Then, select the high-resolution option to download the DEM.
- Export the downloaded DEM to the QGIS 3.22.3
- Extracting SRTM DEM:
- Select the study area to download the SRTM with an average frequency and spatial resolution of 1″ × 1″ (approximately 30 × 30 m) from the Agency’s database: EarthExplorer website (https://earthexplorer.usgs.gov/, accessed on 22 October 2022).
- Extracting GPS points DEM:
- Export the coordinates of points and their elevations from the Excel sheet to QGIS 3.22.3.
- Merge Vector layers as per the study areas.
4.5. Slope Line Segment Calculation
- m: slope;
- Δ: A difference or a change;
- Positive slope direction with m > 0, describes an increasing line is increasing going up from left to right.
- Negative slope direction with m < 0, describes a decreasing line going down from left to right.
- Constant function slope with m = 0, describing a horizontal line.
- Undefined Slope, describing vertical line.
5. Results
5.1. Bugesera Mobility Patterns
5.2. Raster Data Analysis
5.3. Slope Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silbernagl, D.; Krismer, N.; Malfertheiner, M.; Specht, G. Optimization of Digital Elevation Models for Routing. In Proceedings of the 28th GI-Workshop on Foundations of Databases (Grundlagen von Datenbanken), Nörten-Hardenberg, Germany, 24–27 May 2016; Available online: http://www.geo-airbusds.com/worlddem/ (accessed on 19 October 2022).
- Oskarbski, J.; Birr, K.; Żarski, K. Bicycle Traffic Model for Sustainable Urban Mobility Planning. Energies 2021, 14, 5970. [Google Scholar] [CrossRef]
- Murei, A.; Mogane, B.; Mothiba, D.P.; Mochware, O.T.W.; Sekgobela, J.M.; Mudau, M.; Musumuvhi, N.; Khabo-Mmekoa, C.M.; Moropeng, R.C.; Momba, M.N.B. Barriers to Water and Sanitation Safety Plans in Rural Areas of South Africa—A Case Study in the Vhembe District, Limpopo Province. Water 2022, 14, 1244. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Clark, B.; Martin, D.T.; Schumacher, Y.O.; McDonald, W.; Stephens, B.; Ma, F.; Thompson, K.; Gore, C.J.; Menaspà, P. Impact of Altitude on Power Output during Cycling Stage Racing. PLoS ONE 2015, 10, e0143028. [Google Scholar] [CrossRef] [PubMed]
- Riverson, J.D.N.; Carapetis, S. Intermediate Means of Transport in Sub-Saharan Africa. In Its Potential for Improving Rural Travel and Transport; World Bank Technical Paper Number 161 Africa Technical Department Series; World Bank: Washington, DC, USA, 1991. [Google Scholar]
- Saddier, S.; Patterson, Z.; Johnson, A.; Chan, M. Mapping the Jitney Network with Smartphones in Accra, Ghana: The Accra Mobile Experiment. Transp. Res. Rec. J. Transp. Res. Board 2016, 2581, 113–122. [Google Scholar] [CrossRef]
- Jalal, S.J.; Musa, T.A.; Ameen, T.H.; Din, A.H.M.; Aris, W.A.W.; Ebrahim, J.M. Optimizing the Global Digital Elevation Models (GDEMs) and accuracy of derived DEMs from GPS points for Iraq’s mountainous areas. Geod. Geodyn. 2020, 11, 338–349. Available online: http://www.keaipublishing.com/geog (accessed on 25 October 2022). [CrossRef]
- Felicísimo, M.A. Modelos Digitales Del Terreno: Introducción y Aplicaciones En Las Ciencias Ambientales; Pentalfa Ediciones: Oviedo, Spain, 1994; ISBN 84-7848-475-2. [Google Scholar]
- Hrncir, J.; Song, Q.; Zilecky, P.; Nemet, M.; Jakob, M. Bicycle Route Planning with Route Choice Preferences. In Proceedings of the Prestigious Applications of Intelligent Systems. Prestigious Applications of Intelligent Systems, Prague, Czech Republic, 18–22 August 2014; Schaub, T., Friedrich, G., O´Sullivan, B., Eds.; IOS Press: Amsterdam, The Netherlands, 2014; pp. 1149–1154, ISBN 978-1-61499-418-3. [Google Scholar] [CrossRef]
- Broach, J.; Dill, J.; Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 2012, 46, 1730–1740. [Google Scholar] [CrossRef]
- Winters, M.; Davidson, G.; Kao, D.; Teschke, K. Motivators and deterrents of bicycling: Comparing influences on decisions to ride. Transportation 2011, 38, 153–168. [Google Scholar] [CrossRef]
- Broach, J.; Gliebe, J.; Dill, J. Bicycle route choice model developed using revealed preference GPS data. In Proceedings of the Paper Submitted for Presentation and Publication at the 90th 34 Annual Meeting of the Transportation Research Board January, Washington, DC, USA, 23–27 January 2011. [Google Scholar]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Wang, X.; Holland, D.; Gudmundsson, H. Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz glacier, Antarctica. Remote Sens. Environ. 2018, 206, 218. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ahmad, B.; Shahabi, H. Extracting digital elevation model (DEM) from sentinel-1 satellite imagery: Case study a part of Cameron highlands, Pahang, Malaysia. Int. J. Appl. Manag. Sci. 2018, 4, 109–114. [Google Scholar]
- Ouedraogo, M.; Degre, A.; Debouche, C.; Lisein, J. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. J. Geomorphol. 2014, 214, 339–355. [Google Scholar] [CrossRef]
- Arun, P. A comparative analysis of different DEM interpolation methods. Egypt. J. Remote Sens. Space Sci. 2013, 16, 133. [Google Scholar]
- Mukherjeea, S.; Joshi, P.; Ghoshb, A.; Gargc, R.; Mukhopadhyayd, A. Evaluation of vertical accuracy of open-source digital elevation model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 205. [Google Scholar] [CrossRef]
- D’Ozouville, N.; Deffontaines, B.; Benveniste, J.; Wegmüller, U.; Violette, S.; De Marsily, G. DEM generation using ASAR (ENVISAT) for addressing the lack of freshwater ecosystems management, Santa Cruz Island, Galapagos. Remote Sens. Environ. 2008, 112, 4131. [Google Scholar] [CrossRef]
- Maune, D.F. Digital Elevation Model Technologies and Applications: The Dem User’s Manual; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2007; ISBN 978-1-57083-082-2. [Google Scholar]
- Rexer, M.; Hirt, C. Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v 2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Aust. J. Earth Sci. 2014, 61, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. 2012 Release of a 10m resolution DEM for the Italian territory: Comparison with global coverage DEMs and an aglyph-mode exploration via the web. J. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef] [Green Version]
- Rosi, C.; Gernhardt, S. Urban DEM generation, analysis and enhancement using TanDEM-X. ISPRS J. Photogramm. Remote Sens. 2013, 85, 120. [Google Scholar] [CrossRef]
- Ai, T.; Li, J. A DEM generalization by minor valley branch detection and grid filling. ISPRS J. Photogramm. Remote Sens. 2010, 65, 198. [Google Scholar]
- Pa’suya, M.; Bakar, A.; Din, A.; Aziz, M.; Samad, M.; Mohamad, M. Accuracy assessment of the Tandem-X DEM in the northwestern of peninsular Malaysia using GPS leveling. ASM Sci. J. 2019, 12, 100–106. [Google Scholar]
- Halim, M.A.; Pa’suya, G.; Narashid, R.; Din, A. Accuracy assessment of TanDEM-X 90m digital elevation model in the east of Malysia using GNSS/leveling. In Proceedings of the IEEE 10th Control and System Graduate Research Colloquium (ICSGRC 2019), Shah Alam, Malaysia, 2–3 August 2019; pp. 88–93. [Google Scholar]
- National Institute of Statistics of Rwanda (NISR). EICV3 DISTRICT PROFILE East—Bugesera, 2010. 2011. Available online: https://www.statistics.gov.rw (accessed on 21 August 2022).
- Food and Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/rwanda/our-office-in-rwanda/rwanda-at-a-glance/en/ (accessed on 1 September 2022).
- Jaligot, R.; Kemajou, A.; Chenal, J. A new approach to spatial analysis of motorcycle taxis activities—The case of Port-au-Prince, Haiti. Urban Plan. Transp. Res. 2017, 5, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Kemajou, A.; Jaligot, R.; Bosch, M.; Chenal, J. Assessing motorcycle taxi activity in Cameroon using GPS devices. J. Transp. Geogr. 2019, 79, 102472. [Google Scholar] [CrossRef]
- Van Zuidam, R.A. Terrain Analysis and Classification Using Aerial Photographs: A Geomorphological Approach; ITC Textbook of Photo-Interpretation; International Institute for Aerial Survey and Earth Sciences: Enschede, The Netherlands, 1979. [Google Scholar]
Attributes | Frequency | Description | ||
---|---|---|---|---|
1 | Sectors | 2 | Nyamata & Mayange | |
GEOGRAPHY OF STUDIED AREA | Cells | 9 | Kagenge, Murama, Maranyundo, Kibenga, Gakamba, Nyamata ville, Nyamata Ville, Muramo, Gakamba | |
Villages | 27 | Biryogo, Rusagara, Kamugenzi, Rukora, Gatare, Rutukura, Kiruhura, Gatare 3, Rugarama, Rugarama 2, Ruhanga, Nyabivumu, Muyange, Gataraga, Taba, Gahwiji B, Gitaramuka, Kavumu, Gahwiji A, Rwarusaku, Ruhorobero, Ragarama, Rwakibirizi 2, Kivugiza, Gashwiji A, Kindonyi, Murambi | ||
2 | PARTICIPANTS USE OF BIKE | Bicycle used for Business only | 7 | Bike taxi, Wholesale for food products |
Bicycle used for Business & Personal Use | 38 | Bike taxi, Wholesale for food products and fetching water, looking for grass for animals | ||
Bicycle used for Personal Use only | 5 | Student and fetching water, looking for grass for animals, going to buy groceries and other home needs and movement |
No | Symbology | Description |
---|---|---|
1 | Blue dash | The blue dashed lines in all maps in Figure 6 represent areas with low cycling mobility. |
2 | Blue line | The blue lines in all maps, which are the accumulation of dark blue, represent the areas with the highest mobility. |
3 | Green line | The green lines on Map 2 in Figure 6 represent the road networks collected by the Rwanda Transport Development Agency (RTDA). |
4 | Pink line | The pink lines on Map 3 in Figure 6 represent the Open Street Maps (OSM) road networks. |
5 | Brown line | The brown lines on Map 3 in Figure 6 represent the merging of the Rwanda road networks with the OSM road network. |
No | Name of the GDEM | Projected Coordinate System | Spatial Resolution (m) | Minimum and Maximum Elevation (m) | Range (m) |
---|---|---|---|---|---|
1 | ALOS PALSAR | EPSG:32735-WGS 84/UTM zone 35S | 12.5 | 1323–1641 | 318 |
2 | SRTM | EPSG:4326-WGS 84 | 30 | 1333–1535 | 202 |
Slope Class | Nature, Process and Natural Conditions |
---|---|
0°–2° (0–2%) | Flat or almost flat, no significant denudation process |
2°–4° (2–7%) | Gentle, low-velocity land movement, sheet, and soil erosion (sheet and wind erosion), marsh erosion. |
4°–8° (7–15%) | Softer, the same as above, but with a higher magnitude. |
8°–16° (15–30%) | Slightly steep, lots of ground movement and erosion, especially landslides which are flat. |
16°–35° (30–70%) | Denudation processes and land movements are frequent and intensive. |
35°–55° (70–140%) | Very steep, the rocks generally begin to unfold, a very intensive denudation process, have begun to produce reworking material. |
>55 >140% | Very steep, exposed rocks, a very strong denudation process and prone to rock falls, rarely cultivated plants (limited). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munyaka, J.-C.B.; Chenal, J.; Sebarenzi, A.G.; Mrani, R.; Konou, A.A. Impact of Topography on Rural Cycling Patterns: Case Study of Bugesera District, Rwanda. Urban Sci. 2023, 7, 8. https://doi.org/10.3390/urbansci7010008
Munyaka J-CB, Chenal J, Sebarenzi AG, Mrani R, Konou AA. Impact of Topography on Rural Cycling Patterns: Case Study of Bugesera District, Rwanda. Urban Science. 2023; 7(1):8. https://doi.org/10.3390/urbansci7010008
Chicago/Turabian StyleMunyaka, Jean-Claude Baraka, Jérôme Chenal, Alexis Gatoni Sebarenzi, Rim Mrani, and Akuto Akpedze Konou. 2023. "Impact of Topography on Rural Cycling Patterns: Case Study of Bugesera District, Rwanda" Urban Science 7, no. 1: 8. https://doi.org/10.3390/urbansci7010008
APA StyleMunyaka, J. -C. B., Chenal, J., Sebarenzi, A. G., Mrani, R., & Konou, A. A. (2023). Impact of Topography on Rural Cycling Patterns: Case Study of Bugesera District, Rwanda. Urban Science, 7(1), 8. https://doi.org/10.3390/urbansci7010008