Simplified Numerical Model for Analyzing the Effects of the Urban Heat Island upon Low-Rise Buildings by Using a Free-License Thermal Simulation Program
Abstract
:1. Introduction
2. Methodology
2.1. Weather Files
2.2. Simplified Numerical Model
- For low absorption (α), green and/or reflective surfaces.
- For low incident solar radiation (I), low transmittance, shading vegetation, and/or urban shading methods.
- For high coefficient of radiation and convection heat transfer (ho), urban canyons and/or urban natural ventilation.
2.3. Outdoor Conditions
2.4. Comparison of the Numerical Model with Other Similar Models
2.5. Validation of the Results for Mexico City
2.6. Thermal Indoor Conditions
3. Results and Analysis
3.1. UHI Mitigation Approaches
3.2. Sensitivity Analysis
4. Conclusions
Funding
Conflicts of Interest
Nomenclature
A | Thermal absorption [dimensionless] |
Ρ | Air density [kg/m3] |
φ | Relative humidity [%] |
τ | Thermal transmittance [dimensionless] |
ΔQir | Additional infrared radiation due to the difference between the outdoor temperature and the temperature of the apparent sky [W/m2] |
ΔToutdoor-sky | Difference between outside dry-bulb air temperature and sky mean radiant temperature [K] |
Cp | Specific heat of air [kJ/kgK] |
Fr | Form factor between the element and the sky [dimensionless] |
ho | Coefficient of heat transfer by radiation and convection [W/m2K] |
hr | External radiative heat transfer coefficient [W/m2K] |
IC | Incident solar radiation [W/m2] |
IG | Global solar radiation [W/m2] |
Pv | Actual vapor density [g/m3] |
Pvs | Saturation vapor density [g/m3] |
Td | Temperature of dew point [°C] |
To | Outdoor air temperature [°C] |
Tsol-air | Temperature sol-air [°C] |
TUHW | Temperature due to urban heat waste [°C] |
V | Volume of the space of motor traffic [m3] |
WH | Waste heat [W] |
References
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Mirzae, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Fujita, T. Simulating the CO2 reduction caused by decreasing the airconditioning load in an urban area. Energy Build. 2016, 114, 87–95. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.G.; Rossi, F.; Cotana, F.; Akbari, H. Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Clim. 2018, 24, 551–566. [Google Scholar] [CrossRef]
- Yuan, J.; Emura, K.; Farnham, C.; Sakai, H. Application of glass beads as retro-reflective facades for urban heat island mitigation: Experimental investigation and simulation analysis. Build. Environ. 2016, 105, 140–152. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L.; Bou-Zeid, E.; Yang, J.; Cotana, F. Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance. Appl. Energy 2019, 247, 155–170. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Targino, A.C.; Coraiola, G.C.; Krecl, P. Green or blue spaces? Assessment of the effectiveness and costs to mitigate the urban heat island in a Latin American city. Theor. Appl. Climatol. 2019, 136, 971–984. [Google Scholar] [CrossRef]
- Hirano, Y.; Ihara, T.; Gomi, K.; Fujita, T. Simulation-Based evaluation of the effect of green roofs in office building districts on mitigating the urban heat island effect and reducing CO2 emissions. Sustainability 2019, 11, 2055. [Google Scholar] [CrossRef] [Green Version]
- Manni, M.; Lobaccaro, G.; Goia, F.; Nicolini, A. An inverse approach to identify selective angular properties of retro-reflective materials for urban heat island mitigation. Sol. Energy 2018, 176, 194–210. [Google Scholar] [CrossRef]
- Shen, L.; Sun, J.; Yuan, R. Idealized large-eddy simulation study of interaction between urban heat island and sea breeze circulations. Atmos. Res. 2018, 214, 338–347. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Zhu, W. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res. 2014, 138, 364–377. [Google Scholar] [CrossRef]
- Giannaros, C.; Nenes, A.; Giannaros, T.M.; Kourtidis, K. A comprehensive approach for the simulation of the Urban Heat Island Effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmos. Res. 2018, 201, 86–101. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Touchaei, A.G.; Akbari, H. Sensitivity analysis of physical parameterizations in WRF for urban climate simulations and heat island mitigation in Montreal. Urban Clim. 2018, 24, 577–599. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang, H.; Sodoudi, S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total Environ. 2019, 650, 3110–3119. [Google Scholar] [CrossRef] [PubMed]
- Naboni, E.; Meloni, M.; Coccolo, S.; Kaempf, J.; Scartezzini, J.-L. An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia 2017, 122, 1111–1116. [Google Scholar] [CrossRef]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Mohammad, T. Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Fisher, D.E.; Liesen, R.J.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Glazer, J.; Crawley, D.B.; Winkelmann, F.C.; Witte, M.J.; Strand, R.K.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2002, 33, 319–331. [Google Scholar]
- Jentsch, M.F.; Bahaj, A.S.; James, P.A. Climate change future proofing of buildings—Generation and assessment of building simulation weather files. Energy Build. 2008, 40, 2148–2168. [Google Scholar] [CrossRef]
- Liu, C. Future weather data set for fourteen UK sites. Data Brief 2016, 8, 1308–1310. [Google Scholar] [CrossRef] [Green Version]
- Jentsch, M.F.; James, P.A.; Bourikas, L.; Bahaj, A.S. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renew. Energy 2012, 55, 514–524. [Google Scholar] [CrossRef]
- Roudsari, M.S.; Pak, M. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the BS 2013: 13th Conference of the International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013; pp. 3128–3135. [Google Scholar]
- Zhu, M.; Pan, Y.; Huang, Z.; Xu, P.; Sha, H. Future hourly weather files generation for studying the impact of climate change on building energy demand in China. In Proceedings of the BS 2013: 13th Conference of the International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013; pp. 967–974. [Google Scholar]
- Candanedo, J.A.; Paradis, É.; Stylianou, M. Building simulation weather forecast files for predictive control strategies. Simul. Ser. 2013, 45, 22–27. [Google Scholar]
- Yang, X.; Tao, J.; Lingye, Y.; Zhu, C.; Penga, L.L. Assessing the impact of urban heat island effect on building cooling load based on the local climate zone scheme. Procedia Eng. 2017, 205, 2839–2846. [Google Scholar] [CrossRef]
- Resende Santosa, L.G.; Afsharia, A.; Norfordb, L.K.; Maob, J. Evaluating approaches for district-wide energy model calibration considering the Urban Heat Island effect. Appl. Energy 2015, 215, 31–40. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Gori, P.; Bianchi, F. Heat transfer study of external convective and radiative coefficients for building applications. Energy Build. 2017, 151, 429–438. [Google Scholar] [CrossRef]
- Wanielista, M.; Kersten, R.; Eaglin, R. Hydrology Water Quantity and Quality Control; John Wiley & Sons: London, UK, 1997. [Google Scholar]
- Bueno, B.; Norford, L.; Hidalgo, J.; Pigeon, G. The urban weather generator. J. Build. Perform. Simul. 2013, 6, 269–281. [Google Scholar] [CrossRef]
- Nakano, A.; Bueno, B.; Norford, L.; Reinhart, C.F. Urban weather generator—A novel workflow for integrating urban heat island effect within urban design process. In Proceedings of the BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015. [Google Scholar]
- Matsumoto, Y.; Valdes, M.; Urbano, J.A.; Kobayashi, T.; Lopez, G.; Peña, R. Global solar irradiation in north Mexico City and some comparisons with the south. Energy Procedia 2014, 57, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, Y.; Li, Y.; Lin, B. Stone forest as a small-scale field model for the study of urban climate. Int. J. Climatol. 2018, 38, 3723–3731. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Yin, S.; Chan, P.W. Harmonic analysis of 130-year hourly air temperature in Hong Kong: Detecting urban warming from the perspective of annual and daily cycles. Clim. Dyn. 2018, 51, 613–625. [Google Scholar]
- Rosso, F.; Golasi, I.; Castaldo, V.L.; Piselli, C.; Pisello, A.L.; Salata, F.; Ferrero, M.; Cotana, F.; Vollaro, A.L. On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renew. Energy 2018, 118, 825–839. [Google Scholar] [CrossRef]
- Jauregui, E. Heat island development in Mexico City. Atmos. Environ. 1997, 31, 3821–3831. [Google Scholar] [CrossRef]
- Ballinas, M.; Barradas, V. The actual urban heat island in Mexico City. In Proceedings of the 8th International Conference on Urban Climate, Dublin, UK, 6–l0 August 2012; pp. 173–183. [Google Scholar]
- Barradas, V.L.; Tejeda-Martinez, A.; Jauregui, E. Energy balance measurements in a suburban vegetated area in Mexico City. In Proceedings of the International Conference on Urban Climatology, Essen, Germany, 11–14 June 1999; pp. 4109–4113. [Google Scholar]
- Oropeza-Perez, I.; Ostergaard, P.A.; Remmen, A. Model of natural ventilation by using a coupled thermal-airflow simulation program. Energy Build. 2012, 49, 388–393. [Google Scholar] [CrossRef]
- Oropeza-Perez, I. Development of a cooling-load calculator for the Mexican conditions of climate, construction and occupancy. Procedia Eng. 2017, 205, 1115–1122. [Google Scholar] [CrossRef]
- Oropeza-Perez, I.; Petzold-Rodriguez, A.H.; Bonilla-Lopez, C. Adaptive thermal comfort in the main Mexican climate conditions with and without passive cooling. Energy Build. 2017, 145, 251–258. [Google Scholar] [CrossRef]
- Oshio, H.; Asawa, T. Estimating the solar transmittance of urban trees using airborne LiDAR and radiative transfer simulation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5483–5492. [Google Scholar] [CrossRef]
- Battista, G. Analysis of convective heat transfer at building facades in street canyons. Energy Procedia 2017, 113, 166–173. [Google Scholar] [CrossRef]
- Mexican National Institute of Statistics and Geography (INEGI, initials in Spanish). Available online: https://www.inegi.org.mx/temas/vivienda/ (accessed on 26 March 2020).
Document | Maximum Temperature Difference—Daytime [°C] | Maximum Temperature Difference—Nighttime [°C] |
---|---|---|
Jauregui | 8.7 | 7.8 |
Ballinas et al. | 10.0 | 6.0 |
Barradas et al. | 10.5 | N/A |
This document | 10.3 | 7.3 |
Parameter | Original Value | Mitigation Value |
---|---|---|
Absorption [dimensionless] | 0.7 | 0.35 |
Transmittance [dimensionless] | 0.9 | 0.40 |
Convective coefficient [W/m2K] | 45.7 | 52.8 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oropeza-Perez, I. Simplified Numerical Model for Analyzing the Effects of the Urban Heat Island upon Low-Rise Buildings by Using a Free-License Thermal Simulation Program. Urban Sci. 2020, 4, 30. https://doi.org/10.3390/urbansci4020030
Oropeza-Perez I. Simplified Numerical Model for Analyzing the Effects of the Urban Heat Island upon Low-Rise Buildings by Using a Free-License Thermal Simulation Program. Urban Science. 2020; 4(2):30. https://doi.org/10.3390/urbansci4020030
Chicago/Turabian StyleOropeza-Perez, Ivan. 2020. "Simplified Numerical Model for Analyzing the Effects of the Urban Heat Island upon Low-Rise Buildings by Using a Free-License Thermal Simulation Program" Urban Science 4, no. 2: 30. https://doi.org/10.3390/urbansci4020030
APA StyleOropeza-Perez, I. (2020). Simplified Numerical Model for Analyzing the Effects of the Urban Heat Island upon Low-Rise Buildings by Using a Free-License Thermal Simulation Program. Urban Science, 4(2), 30. https://doi.org/10.3390/urbansci4020030