Sustainable Urban Transport Development by Applying a Fuzzy-AHP Model: A Case Study from Mersin, Turkey
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- American Public Transportation Association (APTA). Available online: https://www.apta.com/ (accessed on 10 November 2018).
- Güner, S. Measuring the quality of public transportation systems and ranking the bus transit routes using multi-criteria decision making techniques. Case Stud. Transp. Policy 2018, 6, 214–224. [Google Scholar] [CrossRef]
- Duleba, S.; Mishina, T.; Shimazaki, Y. A dynamic analysis on public bus transport’s supply quality by using AHP. Transport 2012, 27, 268–275. [Google Scholar] [CrossRef]
- Suman, H.K.; Bolia, N.B.; Tiwari, G. Comparing public bus transport service attributes in Delhi and Mumbai: Policy implications for improving bus services in Delhi. Transp. Policy 2017, 56, 63–74. [Google Scholar] [CrossRef]
- Borhan, M.; Ibrahim, A.N.H.; Syamsunur, D.; Rahmat, R.A. Why public bus is a less attractive mode of transport: A case study of Putrajaya, Malaysia. Period. Polytech. Transp. Eng. 2017, 47, 82–90. [Google Scholar] [CrossRef]
- Awasthi, A.; Chauhan, S.S.; Omrani, H.; Panahi, A. A hybrid approach based on SERVQUAL and fuzzy TOPSIS for evaluating transportation service quality. Comput. Ind. Eng. 2011, 61, 637–646. [Google Scholar] [CrossRef]
- Nandan, S. Determinants of customer satisfaction on service quality: A study of railway platforms in India. J. Public Transp. 2010, 13, 6. [Google Scholar]
- Hynes, M.; Bolbocean, O.; McNally, M.; Conroy, M.; Bednarczuk, D.; Hyland, F.; Coyne, E.; Marie, C. “Howya gettin’on?” Investigating public transport satisfaction levels in Galway, Ireland. Urban Sci. 2018, 2, 102. [Google Scholar] [CrossRef]
- Han, Y.; Li, W.; Wei, S.; Zhang, T. Research on passenger’s travel mode choice behavior waiting at bus station based on sem-logit integration model. Sustainability 2018, 10, 1996. [Google Scholar] [CrossRef]
- Zhen, F.; Cao, J.; Tang, J. Exploring correlates of passenger satisfaction and service improvement priorities of the Shanghai-Nanjing high speed rail. J. Transp. Land Use 2018, 11, 559–573. [Google Scholar] [CrossRef]
- Miranda, S.; Tavares, P.; Queiró, R. Perceived service quality and customer satisfaction: A fuzzy set QCA approach in the railway sector. J. Bus. Res. 2018, 89, 371–377. [Google Scholar] [CrossRef]
- Wagenaar, J.; Kroon, L.; Fragkos, I. Rolling stock rescheduling in passenger railway transportation using dead-heading trips and adjusted passenger demand. Transp. Res. Part B Methodol. 2017, 101, 140–161. [Google Scholar] [CrossRef]
- Rubensson, I.; Börjesson, M. Satisfaction with Crowding in Public Transport; (No. 2018: 6); CTS-Centre for Transport Studies Stockholm (KTH and VTI): Stockholm, Sweden, 2018. [Google Scholar]
- Eboli, L.; Mazzulla, G. Service quality attributes affecting customer satisfaction for bus transit. J. Public Transp. 2007, 10, 21–34. [Google Scholar] [CrossRef]
- Duleba, S.; Moslem, S. Sustainable urban transport development with stakeholder participation, an AHP-kendall model: A case study for mersin. Sustainability 2018, 10, 3647. [Google Scholar] [CrossRef]
- Garrido, C.; De Oña, R.; De Oña, J. Neural networks for analyzing service quality in public transportation. Expert Syst. Appl. 2014, 41, 6830–6838. [Google Scholar] [CrossRef]
- Politis, I.; Papaioannou, P.; Basbas, S.; Dimitriadis, N. Evaluation of a bus passenger information system from the users’ point of view in the city of Thessaloniki, Greece. Res. Transp. Econ. 2010, 29, 249–255. [Google Scholar] [CrossRef]
- Hassan, M.N.; Hawas, Y.E.; Ahmed, K. A multi-dimensional framework for evaluating the transit service performance. Transp. Res. Part A Policy Pract. 2013, 50, 47–61. [Google Scholar] [CrossRef]
- Diab, E.I.; El-Geneidy, A.M. Understanding the impacts of a combination of service improvement strategies on bus running time and passenger’s perception. Transp. Res. Part A Policy Pract. 2012, 46, 614–625. [Google Scholar] [CrossRef]
- Nosal, K.; Solecka, K. Application of AHP method for multi-criteria evaluation of variants of the integration of urban public transport. Transp. Res. Procedia 2014, 3, 269–278. [Google Scholar] [CrossRef]
- De Ona, J.; de Oña, R.; Eboli, L.; Mazzulla, G. Heterogeneity in perceptions of service quality among groups of railway passengers. Int. J. Sustain. Transp. 2015, 9, 612–626. [Google Scholar] [CrossRef]
- Chica-Olmo, J.; Gachs-Sánchez, H.; Lizarraga, C. Route effect on the perception of public transport services quality. Transp. Policy 2018, 67, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Transport planning with multiple criteria: The analytic hierarchy process applications and progress review. J. Adv. Transp. 1995, 29, 81–126. [Google Scholar] [CrossRef]
- Duleba, S.; Moslem, S. Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development. Expert Syst. Appl. 2019, 116, 21–30. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Moslem, S.; Blaschke, T.; Duleba, S. Sustainable urban transport planning considering different stakeholder groups by an interval-ahp decision support model. Sustainability 2019, 11, 9. [Google Scholar] [CrossRef]
- Moslem, S.; Duleba, S. Application of AHP for evaluating passenger demand for public transport improvements in Mersin, Turkey. Pollack Periodica 2018, 13, 67–76. [Google Scholar] [CrossRef]
- Chowdhury, S.; Hadas, Y.; Gonzalez, V.A.; Schot, B. Public transport users’ and policy makers’ perceptions of integrated public transport systems. Transp. Policy 2018, 61, 75–83. [Google Scholar] [CrossRef]
- Seiti, H.; Tagipour, R.; Hafezalkotob, A.; Asgari, F. Maintenance strategy selection with risky evaluations using RAHP. J. Multi Criteria Decis. Anal. 2017, 24, 257–274. [Google Scholar] [CrossRef]
- Erdogan, S.A.; Šaparauskas, J.; Turskis, Z. Decision making in construction management: AHP and expert choice approach. Procedia Eng. 2017, 172, 270–276. [Google Scholar] [CrossRef]
- Gupta, V. Comparative performance of contradictory and non-contradictory judgement matrices in AHP under qualitative and quantitative metrics. Int. J. Decis. Support Syst. Technol. 2018, 10, 21–38. [Google Scholar] [CrossRef]
- Murat, Y.S.; Arslan, T.; Cakici, Z.; Akçam, C. Analytical hierarchy process (AHP) based decision support system for urban intersections in transportation planning. In Using Decision Support Systems for Transportation Planning Efficiency; IGI Global: Harrisburg, PA, USA, 2016; pp. 203–222. [Google Scholar]
- Triantaphyllou, E.; Mann, S.H. Using the analytic hierarchy process for decision making in engineering applications: Some challenges. Int. J. Ind. Eng. Appl. Pract. 1995, 2, 35–44. [Google Scholar]
- Toth, W.; Vacik, H. A comprehensive uncertainty analysis of the analytic hierarchy process methodology applied in the context of environmental decision making. J. Multi Criteria Decis. Anal. 2018, 25, 142–161. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Yao, J.; Li, Y.; Yang, S. Socially responsible supplier selection and sustainable supply chain development: A combined approach of total interpretive structural modeling and fuzzy analytic network process. Bus. Strateg. Environ. 2018, 27, 1708–1719. [Google Scholar] [CrossRef]
- Grošelj, P.; Zadnik Stirn, L. Evaluation of several approaches for deriving weights in fuzzy group analytic hierarchy process. J. Decis. Syst. 2018, 27, 217–226. [Google Scholar] [CrossRef]
- Park, K.S.; Seo, Y.J.; Kim, A.; Ha, M.H. Ship acquisition of shipping companies by sale & purchase activities for sustainable growth: Exploratory fuzzy-AHP application. Sustainability 2018, 10, 1763. [Google Scholar]
- Moslem, S.; Ghorbanzadeh, O.; Blaschke, T.; Duleba, S. Analysing stakeholder consensus for a sustainable transport development decision by fuzzy AHP and interval AHP. Sustainability 2019. under review. [Google Scholar]
- Fan, G.; Zhong, D.; Yan, F.; Yue, P. A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. Expert Syst. Appl. 2016, 44, 289–303. [Google Scholar] [CrossRef]
- Abdullah, L.K.; Zulkifli, N. Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Syst. Appl. 2015, 42, 4397–4409. [Google Scholar] [CrossRef]
- Sun, C.C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst. Appl. 2010, 37, 7745–7754. [Google Scholar] [CrossRef]
- Hsieh, T.Y.; Lu, S.T.; Tzeng, G.H. Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int. J. Proj. Manag. 2004, 22, 573–584. [Google Scholar] [CrossRef]
- Gumus, A.T. Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Expert Sys. Appl. 2009, 36, 4067–4074. [Google Scholar] [CrossRef]
- Solomon, M. Groupthink versus “The wisdom of the crowds”: The social epistemology deliberation and dissent. South. J. Philos. 2006, 44, 28–42. [Google Scholar] [CrossRef]
- Hermosilla, T.; Palomar-Vázquez, J.; Balaguer-Beser, Á.; Balsa-Barreiro, J.; Ruiz, L.A. Using street based metrics to characterize urban typologies. Comp. Environ. Urban Syst. 2014, 44, 68–79. [Google Scholar] [CrossRef] [Green Version]
FNs | Linguistic | FN Scale |
---|---|---|
9 | Perfect | (8, 9, 10) |
8 | Absolute | (7, 8, 9) |
7 | Very good | (6, 7, 8) |
6 | Fairly good | (5, 6, 7) |
5 | Good | (4, 5, 6) |
4 | Preferable | (3, 4, 5) |
3 | Not bad | (2, 3, 4) |
2 | Weak advantage | (1, 2, 3) |
1 | Equal | (1, 1, 1) |
Ranking | Criteria | Final Scores |
---|---|---|
1 | Tractability | 0.622683813 |
2 | Transport Quality | 0.310841555 |
3 | Service Quality | 0.154592458 |
Ranking | Criteria | Final Scores |
---|---|---|
1 | Perspicuity | 0.285183 |
2 | Information during travel | 0.21532 |
3 | Information before travel | 0.199031 |
4 | Mental comfort | 0.156948 |
5 | Physical comfort | 0.135213 |
6 | Speed | 0.046945 |
7 | Directness | 0.046383 |
8 | Time availability | 0.037016 |
9 | Safety of travel | 0.028811 |
10 | Approachability | 0.023975 |
11 | Reliability | 0.011282 |
Ranking | Criteria | Final Scores |
---|---|---|
1 | Limited time of use | 0.02869473 |
2 | Need of transfer | 0.02696697 |
3 | Fit connection | 0.01941585 |
4 | Time to reach stops | 0.01831923 |
5 | Journey time | 0.01723504 |
6 | Awaiting time | 0.01454593 |
7 | Comfort in stops | 0.01060837 |
8 | Directness to stops | 0.00951496 |
9 | Frequency of lines | 0.00835819 |
10 | Safety of stops | 0.00669446 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moslem, S.; Duleba, S. Sustainable Urban Transport Development by Applying a Fuzzy-AHP Model: A Case Study from Mersin, Turkey. Urban Sci. 2019, 3, 55. https://doi.org/10.3390/urbansci3020055
Moslem S, Duleba S. Sustainable Urban Transport Development by Applying a Fuzzy-AHP Model: A Case Study from Mersin, Turkey. Urban Science. 2019; 3(2):55. https://doi.org/10.3390/urbansci3020055
Chicago/Turabian StyleMoslem, Sarbast, and Szabolcs Duleba. 2019. "Sustainable Urban Transport Development by Applying a Fuzzy-AHP Model: A Case Study from Mersin, Turkey" Urban Science 3, no. 2: 55. https://doi.org/10.3390/urbansci3020055
APA StyleMoslem, S., & Duleba, S. (2019). Sustainable Urban Transport Development by Applying a Fuzzy-AHP Model: A Case Study from Mersin, Turkey. Urban Science, 3(2), 55. https://doi.org/10.3390/urbansci3020055