Reuse Choice, Flood Risk and Resilience, and Characteristics of Counties with Brownfield Cleanups
Abstract
:1. Introduction
1.1. Environmental Protection Agency Brownfields Program
1.2. Land Reuse
1.3. Flood Risk and Resilience
1.4. Conceptual Model of Community Environmental Health Disparities
1.5. Proposed Study
2. Results
2.1. Counties Included/Excluded
2.2. Structural and Community Factors
2.3. County Factors by Flood-Plain
2.4. Unadjusted Relationship of Flood-Plain and Reuse
2.5. Adjusted Relative Risk Ratios
3. Discussion
3.1. Green Reuse
3.2. Update to Our Knowledge
3.3. Potential Limitations
4. Materials and Methodology
4.1. Study Observations: Brownfield Counties
4.2. Variables
4.2.1. Community Stress
Reuse Choice (Dependent Variable)
4.2.2. Residential Location
Flood Plain Designation (Independent Variable)
Region
Race and Ethnicity
4.2.3. Community Environmental Stressors
Superfund and Brownfield Sites
4.2.4. Neighborhood Resources
Age, Income, Poverty Level, Head of Household, Occupied Housing, Education, and Employment
4.2.5. Structural Factors
Population Density
Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alker, S.; Joy, V.; Roberts, P.; Smith, N. The Definition of Brownfield. J. Environ. Plan. Manag. 2000, 43, 49–69. [Google Scholar] [CrossRef]
- Alberini, A.; Longo, A.; Tonin, S.; Trombetta, F.; Turvani, M. The role of liability, regulation and economic incentives in brownfield remediation and redevelopment: Evidence from surveys of developers. Reg. Sci. Urban Econ. 2005, 35, 327–351. [Google Scholar] [CrossRef]
- Adams, D.; De Sousa, C.; Tiesdell, S. Brownfield Development: A Comparison of North American and British Approaches. Urban Stud. 2010, 47, 75–104. [Google Scholar] [CrossRef]
- Bartke, S.; Schwarze, R. No perfect tools: Trade-offs of sustainability principles and user requirements in designing support tools for land-use decisions between greenfields and brownfields. J. Environ. Manag. 2015, 153, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, J.D. “Mechanics” of the Deal: Assembling the Brownfields Team. Environ. Pract. 2003, 5, 53–57. [Google Scholar] [CrossRef]
- Goodstein, M.D.; Trinward, K.J.; Lynch, A. Research Article: Pushing the Envelope on Brownfield Remediation: Strategies and Case Studies That Maximize Limited Resources through Alternative Funding Sources. Environ. Pract. 2011, 13, 130–142. [Google Scholar] [CrossRef]
- Greenberg, M.R. Improving neighborhood quality: A hierarchy of needs. Hous. Policy Debate 1999, 10, 601–624. [Google Scholar] [CrossRef]
- De Sousa, C.A. The greening of brownfields in American cities. J. Environ. Plan. Manag. 2004, 47, 579–600. [Google Scholar] [CrossRef]
- Dennis, M.; James, P. Site-specific factors in the production of local urban ecosystem services: A case study of community-managed greenspace. Ecosyst. Serv. 2016, 17, 208–216. [Google Scholar] [CrossRef]
- Siikamäki, J.; Wernstedt, K. Turning brownfields into greenspaces: Examining incentives and barriers to revitalization. J. Health Polit. Policy Law 2008, 33, 559–593. [Google Scholar] [CrossRef] [PubMed]
- Brody, S.D.; Highfield, W.E. Open Space and Flood Mitigation: A National Study. Land Use Policy 2013, 32, 89–95. [Google Scholar] [CrossRef]
- Hartig, J.H.; Krueger, A.; Rice, K.; Niswander, S.F.; Jenkins, B.; Norwood, G. Transformation of an industrial brownfield into an ecological buffer for Michigan’s only Ramsar Wetland of International Importance. Sustainability 2012, 4, 1043–1058. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Maaskant, B.; Boyd, E.; Levitan, M.L. Loss of life caused by the flooding of New Orleans after Hurricane Katrina: Analysis of the relationship between flood characteristics and mortality. Risk Anal. 2009, 29, 676–698. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.N.; Odoni, N.; Landström, C.; Whatmore, S.J.; Ward, N.; Bradley, S. Doing flood risk science differently: An experiment in radical scientific method. Trans. Inst. Br. Geogr. 2011, 36, 15–36. [Google Scholar] [CrossRef]
- Levi, D.; Kocher, S. The use of coastal brownfields as nature preserves. Environ. Behav. 2006, 38, 802–819. [Google Scholar] [CrossRef]
- U.S. General Accountability Office (GAO). Superfund: Barriers to Brownfield Redevelopment. RCED-96-125; 1996. Available online: https://www.gao.gov/index/html (accessed on 10 November 2017).
- U.S. General Accountability Office (GAO). Community Development: Reuse of Urban Industrial Sites GAO/RCED-95-172. 1995. Available online: https://www.gao.gov/index/html (accessed on 10 November 2017).
- Howland, M. Employment Effects of Brownfield Redevelopment: What Do We Know from the Literature? J. Plan. Lit. 2007, 22, 91–107. [Google Scholar] [CrossRef]
- BenDor, T.K.; Metcalf, S.S.; Paich, M. The dynamics of brownfield redevelopment. Sustainability 2011, 3, 914–936. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Office of Brownfield and Land Revitalization Webpage. Available online: https://www.epa.gov/brownfields/overview-brownfields-program (accessed on 1 December 2017).
- Rall, E.L.; Haase, D. Creative intervention in a dynamic city: A sustainability assessment of an interim use strategy for brownfields in Leipzig, Germany. Landsc. Urban Plan. 2011, 100, 189–201. [Google Scholar] [CrossRef]
- De Sousa, C. Policy performance and brownfield redevelopment in Milwaukee, Wisconsin. Prof. Geogr. 2005, 57, 312–327. [Google Scholar] [CrossRef]
- Schilling, J.; Logan, J. Greening the Rust Belt: A Green Infrastructure Model for Right Sizing America’s Shrinking Cities. J. Am. Plan. Assoc. 2008, 74, 451–466. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Office of Brownfield and Land Revitalization, Laws & Regulation Webpage. The Small Business Liability Relief and Brownfield Revitalization Act of 2001, Signed into Law. Public Law 107-118, 15 Stat. 2356; 2002. Available online: https://www.epa.gov/brownfields/brownfields-laws-and-regulations (accessed on 1 December 2017).
- Mendez, M.O.; Maier, R.M. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environ. Health Perspect. 2007, 116, 278–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, M.R. Reversing urban decay: Brownfield redevelopment and environmental health. Environ. Health Perspect. 2003, 111, A74. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Daroub, S.H.; Ma, L.Q.; Harris, W.G.; Cao, X. Characterization of lead in soils of a rifle/pistol shooting range in central Florida, USA. Soil Sediment Contam. 2002, 11, 1–7. [Google Scholar] [CrossRef]
- Rimer, A.L. Environmental Liability and the Brownfields Phenomenon: An Analysis of Federal Options for Redevelopment. Tulane Environ. Law J. 1996, 10, 63–121. [Google Scholar]
- Bartsch, C.; Collaton, E.; Pepper, E. Coming Clean for Economic Development; Northeast-Midwest Institute: Washington, DC, USA, 1996. [Google Scholar]
- Meyer, P.B. Brownfields and red ink: The costs of contaminated (and idle) land. Environ. Pract. 2003, 5, 40–47. [Google Scholar] [CrossRef]
- Howland, M. The Impact of Contamination on the Canton/Southeast Baltimore Land Market. J. Am. Plan. Assoc. 2000, 66, h411–h420. [Google Scholar] [CrossRef]
- Longo, A.; Alberini, A. What are the effects of contamination risks on commercial and industrial properties? Evidence from Baltimore, Maryland. J. Environ. Plan. Manag. 2006, 49, 713–737. [Google Scholar] [CrossRef]
- Simons, R.; Levin, W.; Sementelli, A. The Effect of Underground Storage Tanks on Residential Property Values in Cuyahoga County, Ohio. J. Real Estate Res. 1997, 14, 29–42. [Google Scholar] [CrossRef]
- Heberle, L.; Wernstedt, K. Understanding brownfields regeneration in the US. Local Environ. 2006, 11, 479–497. [Google Scholar] [CrossRef]
- Lange, D.; McNeil, S. Clean it and they will come? Defining successful brownfield development. J. Urban Plan. Dev. 2004, 130, 101–108. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Swartjes, F.A. Risk-based assessment of soil and groundwater quality in the Netherlands: Standards and remediation urgency. Risk Anal. 1999, 19, 1235–1249. [Google Scholar] [CrossRef] [PubMed]
- Lange, D.A.; McNeil, S. Brownfield Development: Tools for Stewardship. J. Urban Plan. Dev. 2004, 130, 109–116. [Google Scholar] [CrossRef]
- Haninger, K.; Ma, L.; Timmins, C. The Value of Brownfield Remediation. J. Assoc. Environ. Resour. Econ. 2017, 4, 197–241. [Google Scholar] [CrossRef]
- De Sousa, C.A.; Wu, C.; Westphal, L.M. Assessing the Effect of Publicly Assisted Brownfield Redevelopment on Surrounding Property Values. Econ. Dev. Q. 2009, 23, 95–110. [Google Scholar] [CrossRef]
- Garvin, E.C.; Cannuscio, C.C.; Branas, C.C. Greening vacant lots to reduce violent crime: A randomised controlled trial. Inj. Prev. 2013, 19, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Garvin, E.; Branas, C.; Keddem, S.; Sellman, J.; Cannuscio, C. More Than Just an Eyesore: Local Insights And Solutions on Vacant Land And Urban Health. J. Urban Health 2013, 90, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Burby, R.J.; Deyle, R.E.; Godschalk, D.R.; Olshansky, R.B. Creating hazard resilient communities through land-use planning. Nat. Hazards Rev. 2000, 1, 99–106. [Google Scholar] [CrossRef]
- Burby, R.J.; Nelson, A.M.M.C.; Parker, D.; Handmer, J. Urban Containment Policy and Exposure to Natural Hazards: Is There a Connection? J. Environ. Plan. Manag. 2001, 44, 475–490. [Google Scholar] [CrossRef]
- McCarthy, L. The brownfield dual land-use policy challenge: Reducing barriers to private redevelopment while connecting reuse to broader community goals. Land Use Policy 2002, 19, 287–296. [Google Scholar] [CrossRef]
- Senier, L.; Hudson, B.; Fort, S.; Hoover, E.; Tillson, R.; Brown, P. Brown Superfund Basic Research Program: A Multistakeholder Partnership Addresses Real-World Problems in Contaminated Communities. Environ. Sci. Technol. 2008, 42, 4655–4662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, M. Should housing be built on former brownfield sites? Am. J. Public Health 2002, 92, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Rogge, M.E.; Davis, K.; Maddox, D.; Jackson, M. Leveraging Environmental, Social, and Economic Justice at Chattanooga Creek: A Case Study. J. Community Pract. 2005, 13, 33–53. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Bardos, R.P.; Jones, S.; Stephenson, I.; Menger, P.; Beumer, V.; Neonato, F.; Maring, L.; Ferber, U.; Track, T.; Wendler, K. Optimising value from the soft re-use of brownfield sites. Sci. Total Environ. 2016, 563–564, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Bulkeley, H. Cities and the governing of climate change. Annu. Rev. Environ. Resour. 2010, 35, 229–253. [Google Scholar] [CrossRef]
- Lee, C. Environmental justice: Building a unified vision of health and the environment. Environ. Health Perspect. 2002, 110, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; Morello-Frosch, R. Integrating Public Health And Community Development To Tackle Neighborhood Distress And Promote Well-Being. Health Aff. 2014, 33, 1890–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, R.M.; Speers, M.A.; Mcleroy, K.; Fawcett, S.; Kegler, M.; Parker, E.; Smith, S.R.; Sterling, T.D.; Wallerstein, N. Identifying and Defining the Dimensions of Community Capacity to Provide a Basis for Measurement. Health Educ. Behav. 1998, 25, 258–278. [Google Scholar] [CrossRef] [PubMed]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- Labat, D.; Goddéris, Y.; Probst, J.L.; Guyot, J.L. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 2004, 27, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, M.; Lee, C.; Powers, C. Public health and brownfields: Reviving the past to protect the future. Am. J. Public Health 1998, 88, 1759–1760. [Google Scholar] [CrossRef] [PubMed]
- Bullard, R.D.; Johnson, G.S. Environmentalism and Public Policy: Environmental Justice: Grassroots Activism and Its Impact on Public Policy Decision Making. J. Soc. Issues 2000, 56, 555–578. [Google Scholar] [CrossRef]
- Leigh, N.G. Promoting More Equitable Brownfield Redevelopment: Promising Approaches for Land Banks and Other Community land Development Entities; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2000. [Google Scholar]
- Greenberg, M.; Lowrie, K.; Mayer, H.; Miller, K.T.; Solitare, L. Brownfield redevelopment as a smart growth option in the United States. Environmentalist 2001, 21, 129–143. [Google Scholar] [CrossRef]
- Nagengast, A.; Hendrickson, C.; Lange, D. Commuting from U.S. Brownfield and Greenfield Residential Development Neighborhoods. J. Urban Plan. Dev. 2011, 137, 298–304. [Google Scholar] [CrossRef]
- Northridge, M.E. Sorting Out the Connections between the Built Environment and Health: A Conceptual Framework for Navigating Pathways and Planning Healthy Cities. J. Urban Health Bull. N. Y. Acad. Med. 2003, 80, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Pediaditi, K.; Doick, K.J.; Moffat, A.J. Monitoring and evaluation practice for brownfield, regeneration to greenspace initiatives. Landsc. Urban Plan. 2010, 97, 22–36. [Google Scholar] [CrossRef]
- Gee, G.C.; Payne-Sturges, D.C. Environmental Health Disparities: A Framework Integrating Psychosocial and Environmental Concepts. Environ. Health Perspect. 2004, 112, 1645–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morello-Frosch, R.; Pastor, M.; Sadd, J. Environmental Justice and Southern California’s “Riskscape”: The Distribution of Air Toxics Exposures and Health Risks among Diverse Communities. Urban Aff. Rev. 2001, 36, 551–578. [Google Scholar] [CrossRef]
- Comfort, L.K. Cities at Risk: Hurricane Katrina and the Drowning of New Orleans. Urban Aff. Rev. 2006, 41, 501–516. [Google Scholar] [CrossRef]
- Liévanos, R.S. Retooling CalEnviroScreen: Cumulative Pollution Burden and Race-Based Environmental Health Vulnerabilities in California. Int. J. Environ. Res. Public Health 2018, 15, 762. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, S.G. Superfund: Evaluating the Impact of Executive Order 12898. Environ. Health Perspect. 2007, 115, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, M.; Sadd, J.; Hipp, J. Which Came First? Toxic Facilities, Minority Move-In, and Environmental Justice. J. Urban Aff. 2001, 23, 1–21. [Google Scholar] [CrossRef]
- Lopez, R. Segregation and black/white differences in exposure to air toxics in 1990. Environ. Health Perspect. 2002, 110 (Suppl. 2), 289–295. [Google Scholar] [CrossRef] [PubMed]
- Litt, J.S.; Burke, T.A. Uncovering the historic environmental hazards of urban brownfields. J. Urban Health 2002, 79, 464–481. [Google Scholar] [CrossRef] [PubMed]
- Mohai, P.; Lantz, P.M.; Morenoff, J.; House, J.S.; Mero, R.P. Racial and Socioeconomic Disparities in Residential Proximity to Polluting Industrial Facilities: Evidence from the Americans’ Changing Lives Study. Am. J. Public Health 2009, 99, S649. [Google Scholar] [CrossRef] [PubMed]
- Abel, T.D. Skewed Riskscapes and Environmental Injustice: A Case Study of Metropolitan St. Louis. Environ. Manag. 2008, 42, 232–248. [Google Scholar] [CrossRef] [PubMed]
- Yasenchak, L. Research Article: What We Know About the Ubiquitous Brownfield: A Case Study of Two New Jersey Cities and Their Gas Stations. Environ. Pract. 2009, 11, 144–152. [Google Scholar] [CrossRef]
- Vickery, J.; Hunter, L.M. Native Americans: Where in Environmental Justice Research? Soc. Nat. Resour. 2016, 29, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Payne-Sturges, D.; Gee, G.C. National environmental health measures for minority and low-income populations: Tracking social disparities in environmental health. Environ. Res. 2006, 102, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- McGuire, A.P.; Gauthier, J.M.; Anderson, L.M.; Hollingsworth, D.W.; Tracy, M.; Galea, S.; Coffey, S.F. Social Support Moderates Effects of Natural Disaster Exposure on Depression and Posttraumatic Stress Disorder Symptoms: Effects for Displaced and Nondisplaced Residents. J. Trauma. Stress 2018, 31, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Geronimus, A.T. To mitigate, resist, or undo: Addressing structural influences on the health of urban populations. Am. J. Public Health 2000, 90, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Morello-Frosch, R.; Lopez, R. The riskscape and the color line: Examining the role of segregation in environmental health disparities. Environ. Res. 2006, 102, 181–196. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, L. Off the Mark? Efficiency in Targeting the Most Marketable Sites Rather Than Equity in Public Assistance for Brownfield Redevelopment. Econ. Dev. Q. 2009, 23, 211–228. [Google Scholar] [CrossRef]
- Pizzol, L.; Zabeo, A.; Klusáček, P.; Giubilato, E.; Critto, A.; Frantál, B.; Martinát, S.; Kunc, J.; Osman, R.; Bartke, S. Timbre Brownfield Prioritization Tool to support effective brownfield regeneration. J. Environ. Manag. 2016, 166, 178–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrysochoou, M.; Brown, K.; Dahal, G.; Granda-Carvajal, C.; Segerson, K.; Garrick, N.; Bagtzoglou, A. A GIS and indexing scheme to screen brownfields for area-wide redevelopment planning. Landsc. Urban Plan. 2012, 105, 187–198. [Google Scholar] [CrossRef]
- Noonan, F.; Vidich, C.A. Decision analysis for utilizing hazardous waste site assessments in real estate acquisition. Risk Anal. 1992, 12, 245–251. [Google Scholar] [CrossRef]
- Kubal, C.; Haase, D.; Meyer, V.; Scheuer, S. Integrated urban flood risk assessment—Adapting a multicriteria approach to a city. Nat. Hazards Earth Syst. Sci. 2009, 9, 1881–1895. [Google Scholar] [CrossRef]
- Pinter, N. One step forward, two steps back on US floodplains. Science 2005, 308, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Michel-Kerjan, E.; Kunreuther, H. Redesigning flood insurance. Science 2011, 333, 408–409. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, C.A.; Spiess, T.B. The management of brownfields in Ontario: A comprehensive review of remediation and reuse characteristics, trends, and outcomes, 2004–2015. Environ. Pract. 2018, 20, 4–15. [Google Scholar] [CrossRef]
- Dorsey, J.W. Brownfields and Greenfields: The Intersection of Sustainable Development and Environmental Stewardship. Environ. Pract. 2003, 5, 69–76. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban Hazard Mitigation: Creating Resilient Cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Lee, A.M.M.C.K.; Maheswaran, R. The health benefits of urban green spaces: A review of the evidence. J. Public Health 2001, 33, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Smit, J.; Nasr, J. Urban agriculture for sustainable cities: Using wastes and idle land and water bodies as resources. Environ. Urban. 1992, 4, 141–152. [Google Scholar] [CrossRef]
- Beyer, K.; Kaltenbach, A.; Szabo, A.; Bogar, S.; Nieto, F.; Malecki, K. Exposure to Neighborhood Green Space and Mental Health: Evidence from the Survey of the Health of Wisconsin. Int. J. Environ. Res. Public Health 2014, 11, 3453–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, A.E.; Maas, J.; Verheij, R.A.; Groenewegen, P.P. Green space as a buffer between stressful life events and health. Soc. Sci. Med. 2010, 70, 1203–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppel, G.; Wüstemann, H. The impact of urban green space on health in Berlin, Germany: Empirical findings and implications for urban planning. Landsc. Urban Plan. 2017, 167, 410–418. [Google Scholar] [CrossRef]
- Fan, Y.; Das, K.V.; Chen, Q. Neighborhood green, social support, physical activity, and stress: Assessing the cumulative impact. Health Place 2011, 17, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Homsy, G.C.; Warner, M.E. Cities and Sustainability: Polycentric Action and Multilevel Governance. Urban Aff. Rev. 2015, 51, 46–73. [Google Scholar] [CrossRef]
- De Sousa, C.A. Unearthing the benefits of brownfield to green space projects: An examination of project use and quality of life impacts. Local Environ. 2006, 11, 577–600. [Google Scholar] [CrossRef]
- Wang, X. Exploring trends, sources, and causes of environmental funding: A study of Florida counties. J. Environ. Manag. 2011, 92, 2930–2938. [Google Scholar] [CrossRef] [PubMed]
- Burby, R.J. Flood insurance and floodplain management: The US experience. Glob. Environ. Chang. Part B Environ. Hazards 2001, 3, 111–122. [Google Scholar] [CrossRef]
- Stiles, W.A., Jr. Sea level rise-from my front porch. Bull. At. Sci. 2018, 74, 81–90. [Google Scholar] [CrossRef]
- Ludy, J.; Kondolf, G.M. Flood risk perception in lands “protected” by 100-year levees. Nat. Hazards 2012, 61, 829–842. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social vulnerability to floods: Review of case studies and implications for measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef]
- Ash, K.D.; Cutter, S.L.; Emrich, C.T. Acceptable losses? The relative impacts of natural hazards in the United States, 1980–2009. Int. J. Disaster Risk Reduct. 2013, 5, 61–72. [Google Scholar] [CrossRef]
- Wachinger, G.; Renn, O.; Begg, C.; Kuhlicke, C. The risk perception paradox—Implication for governance and communication of natural hazards. Risk Anal. 2013, 33, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Corburn, J. Bringing local knowledge into environmental decision making: Improving urban planning for communities at risk. J. Plan. Educ. Res. 2003, 22, 420–433. [Google Scholar] [CrossRef]
Counties Included (min, max or %) (N = 181) | Counties Excluded (min, max or %) (N = 88) | Test of Significance | |
---|---|---|---|
Race/Ethnicity | |||
Race (%) Median | |||
American Indian/Native Alaskan | 0.26 | 0.32 | F(268) = 5.57, p = 0.019 |
(0.007, 17.12) | (0.032, 61.57) | ||
Asian | 1.55 | 1.25 | F(268) = 0.12, p = 1.680 |
(0.01, 27.73) | (0.039, 31.24) | ||
Black | 4.6 | 3.87 | F(268) = 4.26, p = 0.0401 |
(0.018, 63.09) | (0.018, 56.03) | ||
White | 81.25 | 82.99 | F(268) = 0.05, p = 0.8239 |
(4.6, 98.66) | (12.75, 98.29) | ||
Hispanic Ethnicity (%) Median | 3.78 | 4.82 | F(268) = 0.09, p = 0.7651 |
(0.49, 94.45) | (0.61, 94.45) | ||
Residential Location | |||
Aggregate EPA Regions 1 [Number (%)] | |||
Atlantic/Gulf Coast | 77 (42.5) | 42 (47.7) | Chi Square(2) = 5.008, p < 0.082 |
Mid-West | 58 (32.0) | 17 (19.3) | |
Mountain/Pacific Coast | 46 (25.4) | 29 (33.0) | |
Flood Plain Designation | |||
Yes | 74 (40.9) | 22 (25.0) | Chi Square(1) = 6.509, p < 0.011 |
No | 107 (59.1) | 66 (75.0) | |
Neighborhood Resources | |||
Age (%) Median | |||
<5 | 6.3 | 6.44 | F(268) = 1.92, p = 0.1672 |
(0.700, 12.99) | (4.69, 10.70) | ||
5 ≤ 25 | 26.8 | 27.2 | F(268) = 0.27, p = 0.6055 |
(12.99, 40.30) | (16.70, 39.00) | ||
25 ≤ 45 | 26.3 | 25.4 | F(268) = 0.05, p = 0.8317 |
(3.30, 40.50) | (16.70, 39.20) | ||
45 ≤ 65 | 26.5 | 26.3 | F(268) = 0.84, p = 0.3593 |
(17.29, 42.29) | (16.99, 34.60) | ||
65 ≤ 85 | 12.79 | 13.09 | F(268) = 0.86, p = 0.3557 |
(4.89, 23.19) | (6.49, 27.69) | ||
≥85 | 2 | 1.9 | F(268) = 0.75, p = 0.3872 |
(0.40, 7.80) | (0.40, 5.30) | ||
Household Income Poverty (%) Ratio Median 2 | |||
<100% | 12.67 | 13.2 | F(268) = 1.37, p = 0.2434 |
(3.71, 29.84) | (4.46, 38.32) | ||
100 ≤ 125% | 3.93 | 4.39 | F(268) = 6.83, p = 0.0095 |
(1.46, 10.22) | (1.77, 10.33) | ||
125 ≤ 200% | 13.03 | 14.56 | F(268) = 7.10, p = 0.0082 |
(6.33, 23.63) | (6.24, 23.56) | ||
≥200% | 67.79 | 66.97 | F(268) = 6.39, p = 0.0121 |
(40.97, 87.68) | (31.91, 85.78) | ||
Median Household Income ($) Median | 47,766 | 45,601 | F(268) = 5.08, p = 0.0250 |
(28,410, 81,113) | (29,482, 92,213) | ||
Occupied Housing Units (%) Median | 87.39 | 84.59 | F(268) = 0.08, p = 0.7834 |
(12.70, 96.09) | (33.09, 96.60) | ||
Female Head of Household (%) Median | 10.01 | 9.99 | F(268) = 0.44, p = 0.5078 |
(1.79, 30.82) | (3.96, 22.93) | ||
Educational Attainment (%) Median 3 | |||
<9th Grade | 4.1 | 4.24 | F(268) = 0.50, p = 0.4801 |
(0.00, 23.69) | (1.59, 16.60) | ||
Some High School | 39.89 | 41.39 | F(268) = 1.91, p = 0.1684 |
(16.99, 57.20) | (19.00, 62.79) | ||
Some College | 54.89 | 52.74 | F(268) = 2.42, p = 0.1213 |
(35.80, 79.49) | (31.59, 76.30) | ||
Employment (%) Median 4 | 61.49 | 59.14 | F(268) = 3.11, p = 0.0709 |
(40.79, 89.70) | (44.30, 73.09) | ||
Community Environmental Stress | |||
Brownfields Sites (Number) | |||
1 | 79 (43.6) | 66 (75.0) | Chi-Square(3) = 24.23, p < 0.000 |
2 | 37 (20.4) | 10 (11.4) | |
3 | 24 (13.3) | 3 (3.4) | |
≥4 | 41 (22.7) | 9 (10.2) | |
Superfund Sites Number | |||
0 | 82 (45.3) | 48 (54.5) | Chi-Square(2) = 2.90, p < 0.234 |
1 | 43 (23.8) | 21 (23.9) | |
≥2 | 56 (30.9) | 19 (21.6) | |
Structural Factors | |||
Population Density Median 5 | 286.09 | 141.89 | F(268) = 4.70, p = 0.0310 |
(0.83, 71,151) | (0.87, 32,818) | ||
Population Total Size Median | 188,411 | 110,274 | F(268) = 1.90, p = 0.1692 |
(686, 9,785,282) | (1481, 3,855,534) |
Population Density | |||
---|---|---|---|
High (Min, Max or %) (N = 99) | Low (Min, Max or %) (N = 82) | Test of Significance | |
Race/Ethnicity | |||
Race (%) Median | |||
American Indian/Native Alaskan | 0.22 | 0.39 | F(180) = 14.87, p = 0.0002 |
(0.05, 4.21) | (0.007, 17.12) | ||
Asian | 2.45 | 0.71 | F(180) = 76.25, p = 0.0000 |
(0.32, 24.44) | (0.01, 27.73) | ||
Black | 8.35 | 1.31 | F(180) = 66.40, p = 0.0000 |
(0.66, 63.09) | (0.01, 39.62) | ||
White | 73.47 | 89.66 | F(180) = 7.54, p = 0.0066 |
(18.05, 94.41) | (4.60, 98.66) | ||
Hispanic Ethnicity (%) Median | 5.5 | 2.55 | F(180) = 14.75, p = 0.0002 |
(0.89, 61.35) | (0.049, 94.45) | ||
Residential Location | |||
Aggregate EPA Regions 1 (Number (%)) | |||
Atlantic/Gulf Coast | 51 (51.5) | 25 (30.5) | Chi2(2) = 10.6752 |
Mid-West | 31 (31.3) | 28 (34.1) | Pr = 0.005 |
Mountain/Pacific Coast | 17 (17.2) | 29 (35.4) | |
Flood Plain Designation | |||
Yes | 59 (59.6) | 39 (47.6) | Chi2(1) = 2.6165 |
No | 40 (40.4) | 43 (52.4) | Pr = 0.106 |
Neighborhood Resources | |||
Age % Median | |||
<5 | 6.49 | 6.15 | F(180) = 7.44, p = 0.0070 |
(4.10, 9.09) | (0.70, 12.99) | ||
5 ≤ 25 | 26.89 | 26.24 | F(180) = 1.48, p = 0.2252 |
(19.29, 40.30) | (12.99, 39.89) | ||
25 ≤ 45 | 27.39 | 24.59 | F(180) = 12.48, p = 0.0005 |
(3.30, 38.20) | (12.79, 40.50) | ||
45 ≤ 65 | 25.7 | 27.64 | F(180) = 15.20, p = 0.0001 |
(20.80, 30.20) | (17.29, 42.29) | ||
65 ≤ 85 | 12.39 | 13.6 | F(180) = 2.51, p = 0.1148 |
(5.40, 23.19) | (4.89, 22.19) | ||
≥85 | 2 | 2.2 | F(179) = 3.60, p = 0.0593 |
(0.40, 15.15) | (0.60, 15.15) | ||
Household Income Poverty (%) Ratio Median 2 | |||
<100% | 12.25 | 13.98 | F(180) = 0.48, p = 0.4889 |
(4.07, 24.41) | (0.58, 30.63) | ||
100 ≤ 125% | 3.71 | 4.27 | F(180) = 18.27, p = 0.0000 |
(1.46, 6.58) | (1.49, 10.22) | ||
125 ≤ 200% | 11.89 | 14.85 | F(180) = 47.96, p = 0.0000 |
(6.33, 16.51) | (7.49, 23.63) | ||
≥200% | 71.19 | 65.6 | F(180) = 19.92, p = 0.0000 |
(52.90, 87.68) | (40.97, 85.09) | ||
Median Household Income ($) Median | 53,538 | 43.305 | F(180) = 38.97, p = 0.0000 |
(33,062, 81,113) | (28,410, 72,988) | ||
Occupied Housing Units (%) Median | 88.7 | 84.39 | F(180) = 0.95, p = 0.3321 |
(12.70, 96.09) | (47.39, 95.30) | ||
Female Head of Household (%) Median | 10.01 | 9.87 | F(180) = 0.06, p = 0.8029 |
(1.79, 30.82) | (2.55, 21.29) | ||
Educational Attainment (%) Median 3 | |||
<9th grade | 3.99 | 4.4 | F(180) = 1.16, p = 0.2827 |
(1.59, 13.99) | (1.70, 23.69) | ||
Some High School | 36.8 | 43.49 | F(180) = 29.43, p = 0.0000 |
(16.99, 51.50) | (21.50, 57.20) | ||
Some College | 57.89 | 50.74 | F(180) = 37.06, p = 0.0000 |
(42.19, 79.49) | (35.80, 76.80) | ||
Employment (%) Median 4 | 61.79 | 59.74 | F(180) = 10.51, p = 0.0014 |
(50.90, 70.59) | (40.79.0, 81.19) | ||
Structural Factors | |||
Population Density Median 5 | 837.24 | 64.18 | F(180) = 261.38, p = 0.0000 |
(285.83, 71,151.02) | (0.84, 282.04) | ||
Population Total Size Median | 491,757 | 57,114 | F(180) = 193.35, p = 0.0000 |
(73,031, 9,785,282) | (686, 990,217) | ||
Community Environmental Stressors | |||
Brownfields Sites (Number) | |||
1 | 39 (39.4) | 62 (75.6) | Chi Square(3) = 32.02, p < 0.000 |
2 | 25 (25.3) | 9 (11) | |
3 | 9 (9.0) | 9 (11) | |
≥4 | 26 (26.3) | 2 (2.4) | |
Superfund Sites (Number) | |||
0 | 25 (25.3) | 57 (69.5) | Chi Square(11) = 46.45, p < 0.000 |
1 | 24 (24.2) | 19 (23.2) | |
≥2 | 50 (50.5) | 6 (7.3) |
Flood-Plain | |||
---|---|---|---|
Designation N = 98 | No Designation N = 83 | Test of Significance | |
Race/Ethnicity | |||
Race (%) Median | |||
American Indian/Native Alaskan | 0.24 | 0.27 | F(180) = 2.77, p = 0.0981 |
(0.03,13.10) | (0.007, 17.12) | ||
Asian | 1.9 | 1.13 | F(180) = 9.03, p = 0.0030 |
(0.08, 24.44) | (0.01, 27.73) | ||
Black | 5.15 | 3.34 | F(180) = 1.77, p = 0.1846 |
(0.01, 63.09) | (0.03, 40.59) | ||
White | 81.1 | 85.29 | F(180) = 1.94, p = 0.1653 |
(4.60, 97.00) | (28.89, 98.66) | ||
Hispanic Ethnicity (%) Median | 4.21 | 3.4 | F(180) = 0.83, p = 0.3636 |
(0.83, 94.45) | (0.49, 48.00) | ||
Residential Location | |||
Aggregate EPA Regions 1 [Number (%)] | |||
Atlantic/Gulf Coast | 43 | 33 | F(180) = 0.4405, p = 0.802 |
Mid-West | 30 | 29 | |
Mountain/Pacific Coast | 25 | 21 | |
Neighborhood Resources | |||
Age (%) Median | |||
<5 | 6.3 | 6.3 | F(180) = 0.76, p = 0.3830 |
(1.30, 12.99) | (0.70, 9.70) | ||
5 ≤ 25 | 26.64 | 26.89 | F(180) = 0.14, p = 0.7040 |
(17.30, 37.89) | (12.99, 40.30) | ||
25 ≤ 45 | 26.64 | 25.49 | F(180) = 6.10, p = 0.0145 |
(19.80, 40.20) | (3.30, 40.50) | ||
45 ≤ 65 | 26.39 | 26.5 | F(180) = 1.08, p = 0.3002 |
17.29, 42.29 | (20.80, 41.09) | ||
65 ≤ 85 | 12.64 | 13.09 | F(180) = 0.01, p = 0.9082 |
(5.40, 22.19) | (4.89, 23.19) | ||
≥85 | 2.09 | 2.09 | F(180) = 1.05, p = 0.3070 |
(0.40, 15.15) | (0.60, 15.15) | ||
Household Income Poverty (%) Ratio Median 2 | |||
<100% | 12.25 | 13.84 | F(180) = 0.22, p = 0.6386 |
(4.59, 30.63) | (0.58, 23.13) | ||
100 ≤ 125% | 3.84 | 4.13 | F(180) = 2.71, p = 0.1014 |
(1.46, 8.04) | (1.79, 10.22) | ||
125 ≤ 200% | 12.39 | 13.94 | F(180) = 9.23, p = 0.0027 |
(7.06, 20.90) | (6.33, 23.63) | ||
≥200% | 70.6 | 67.2 | F(180) = 3.00, p = 0.0848 |
(40.97, 86.24) | (48.59, 87.68) | ||
Median Household Income ($) Median | 49,272 | 45,848 | F(180) = 6.25, p = 0.0133 |
(28,410, 81,113) | (30,166, 78,422) | ||
Occupied Housing Units (%) Median | 88.15% | 86.99% | F(180) = 1.01, p = 0.3158 |
(32.90, 96.09) | (12.70, 96.09) | ||
Female Head of Household (%) Median | 10.23 | 9.23 | F(180) = 1.27, p = 0.2606 |
(1.79, 21.84) | (1.88, 30.82) | ||
Educational Attainment (%) Median 3 | |||
<9th grade | 3.9 | 4.69 | F(178) = 0.62, p = 0.4305 |
(1.80, 23.69) | (1.59, 15.49) | ||
High school | 38.89 | 41.79 | F(180) = 1.28, p = 0.2597 |
(16.99, 57.20) | (21.50, 56.90) | ||
College | 56.84 | 53.79 | F(180) = 1.52, p = 0.2187 |
(38.30, 79.49) | (35.80, 76.80) | ||
Employment (%) Median 4 | 61.84 | 60.8 | F(180) = 3.70, p = 0.0561 |
(43.69, 81.19) | (40.79, 72.50) | ||
Structural Factors | |||
Population Density Median 5 | 384.99 | 231.7 | F(180) = 6.64, p = 0.0108 |
(0.90, 69,468.59) | (0.91, 12,415.59) | ||
Population Total Size Median | 264,530 | 98,142 | F(180) = 10.69, p = 0.0013 |
(686, 2,976,831) | (1077, 9,785,282) | ||
Community Environmental Stressors | |||
Brownfields Sites (Number) | |||
1 | 44 (44.9) | 57 (68.7) | Chi Square(3) = 12.1278, p < 0.007 |
2 | 20 (20.4) | 14 (16.9) | |
3 | 13 (13.3) | 5 (6.0) | |
≥4 | 21 (21.4) | 7 (8.4) | |
Superfund Sites (Number) | |||
0 | 35 (35.7) | 47 (56.6) | Chi Square(2) = 9.8046, p < 0.007 |
1 | 24 (24.5) | 19 (22.9) | |
≥2 | 39 (39.8) | 17 (20.5) |
Green Reuse a | Green and Other Reuse b | Other Reuse c | Test of Significance | |
(N = 64) | (N = 38) | (N = 79) | ||
Flood-Plain Designation | ||||
Yes | 40 | 24 | 34 | Chi Square(2) = 6.9680 * |
No | 24 | 14 | 45 | |
Flood-Plain Designation RRR (CI) | 2.20 (1.12, 4.32) | 2.26 (1.02, 5.02) | (Reference) | |
Any Green Reuse | Other Reuse | Test of Significance | ||
(N = 102) | (N = 79) | |||
Flood-Plain Designation | ||||
Yes | 64 | 34 | Chi Square(1) = 6.9638 ** | |
No | 38 | 45 | ||
Flood-Plain Designation RRR (CI) | 2.22 (1.22, 4.05) | (Reference) |
Full Model | Final Model | |||
---|---|---|---|---|
Green Reuse Only | Green and Other Reuse | Green Reuse Only | Green and Other Reuse | |
RRR (CI) | RRR (CI) | RRR (CI) | RRR (CI) | |
Residential Location | ||||
Flood-Plain Designation | ||||
Flood | 3.11 | 2.76 | 2.96 | 2.88 |
(1.14, 8.50) | (0.82, 9.32) | (1.31, 6.66) | (1.07, 7.75) | |
No Flood | (Reference) | (Reference) | (Reference) | (Reference) |
Aggregate EPA Regions 1 (Number) | ||||
Atlantic/Gulf Coast | 0 | 2.27 × 1017 (0.00, 8.00 × 1046) | 0.29 | 1.52 |
(0.00, 2.94 × 1010) | (Reference) | (0.11, 0.73) | (0.47, 4.88) | |
Mid-West | (Reference) | 0 | (Reference) | (Reference) |
Mountain/Pacific Coast | 0.07 | (0.00, 1.75 × 1033) | 0.25 | 2.18 |
(0.00, 3.70 × 1017) | (0.07, 0.89) | (0.47, 10.16) | ||
Race and Ethnicity | ||||
Race (%) Median | ||||
American Indian/Native Alaskan | 0.61 | 0.67 | 0.88 | 0.91 |
(0.30, 1.25) | (0.14, 3.24) | (0.61, 1.28) | (0.58, 1.44) | |
Asian | 0.62 | 0.92 | 0.66 | 0.68 |
(0.27,1.46) | (0.24, 3.64) | (0.37, 1.19) | (0.35, 1.34) | |
Black | 0.74 | 1.77 | 0.89 | 0.94 |
(0.25, 2.24) | (0.32, 9.89) | (0.64, 1.23) | (0.64, 1.39) | |
White | 0.17 | 12,743.55 | ||
(0.00, 433.25) | (0.01, 2.09 × 10 10) | (Reference) | (Reference) | |
Hispanic Ethnicity (%) Median | 0.44 | 7.82 | 0.9 | 1.29 |
(0.13, 1.49) | (0.81, 75.08) | (0.53, 1.51) | (0.66, 2.53) | |
Residential Location and Race or Ethnicity | ||||
American Indian/Native Alaskan X | ||||
Atlantic/Gulf Coast 1 | 1.78 (0.67, 4.73) | 2.11 (0.38, 11.70) | ||
Mid-West | (Reference) | (Reference) | ||
Mountain/Pacific Coast | 0.61 (0.17, 2.19) | 1.02 (0.14, 7.54) | ||
Asian X | ||||
Atlantic/Gulf Coast 1 | 0.93 (0.30, 2.89) | 0.99 (0.16, 6.01) | ||
Mid-West | (Reference) | (Reference) | ||
Mountain/Pacific Coast | 0.81 (0.18, 3.65) | 0.48 (0.06, 3.85) | ||
Black X | ||||
Atlantic/Gulf Coast 1 | 1.14 (0.38, 3.39) | 0.46 (0.07, 3.15) | ||
Mid-West | (Reference) | (Reference) | ||
Mountain/Pacific Coast | 1.48 (0.37, 5.87) | 0.87 (0.12, 6.38) | ||
White X | ||||
Atlantic/Gulf Coast 1 | 9.06 (0.00, 20,698.39) | 0.00 (0.00, 1017.80) | ||
Mid-West | (Reference) | (Reference) | ||
Mountain/Pacific Coast | 1.32 (0.00, 14,730.52) | 13,093.05 (0.00, 8.91 × 1014) | ||
Hispanic Latino X | ||||
Atlantic/Gulf Coast 1 | 2.43 (0.56, 10.53) | 0.10 (0.01, 1.38) | ||
Mid-West | (Reference) | (Reference) | ||
Mountain/Pacific Coast | 0.80 (0.11, 5.95) | 1.35 (0.04, 42.64) | ||
Neighborhood Resources | ||||
Age % Median | ||||
<5 | 0.58 | 0.52 | 1.85 | 0.65 |
(0.01, 25.14) | (0.00, 349.95) | (0.24, 14.30) | (0.07, 5.99) | |
5 ≤ 25 | 0.03 | 295.55 | 0.02 | 1.74 |
(0.00, 50.08) | (0.00, 1.74 × 108) | (0.00, 0.97) | (0.03, 100.45) | |
25 ≤ 45 | 221.75 (0.41, 118,812.70) | 304.02 | (Reference) | (Reference) |
0.04 | (0.01, 6.39 × 106) | |||
45 ≤ 65 | (0.00, 885.25) | 77.06 | ||
1.36 | (0.00, 3.17 × 1010) | |||
65 ≤ 85 | (0.11,16.47) | 31.68 | ||
0.95 | (0.86, 1167.32) | |||
≥85 | (0.27, 3.35) | 0.15 | ||
(0.02, 1.26) | ||||
Household Income | 201.33 | 0 | 0.96 | 0.25 |
Median ($) | (0.00, 1.22 × 107) | (0.00, 54,043.95) | (0.07, 13.27) | (0.01, 6.86) |
Educational Attainment (%) Median | ||||
<9th grade | ||||
0.16 | 0.05 | 1.2 | 0.1 | |
Some High school | (0.02, 1.36) | (0.00, 0.99) | (0.33, 4.42) | (0.02, 0.58) |
0 | 0.05 | (Reference) | (Reference) | |
Some College | (0.00, 30.14) | (0.00, 90,715.50) | 200.33 | |
0.01 | 0 | (2.88, 13,912.01) | 0.36 | |
(0.00, 24,177.46) | (0.00, 1.02 × 106) | (0.00, 63.88) | ||
Occupied Housing Units (%) Median | 1.46 | 2.07 | ||
1.69 (0.12, 23.30) | 21.47 (0.80, 579.84) | (0.24, 8.85) | (0.26, 16.66) | |
Single Female Head of Household (%) Median | 1 | 0.44 | ||
1.28 (0.36, 4.57) | 0.40 (0.10, 1.64) | (0.35, 2.89) | (0.14, 1.35) | |
Household Poverty (%) Median | ||||
<100% | 2.74 | 0.99 | ||
(0.10, 74.79) | (0.00, 266.47) | |||
100 ≤ 125% | 6.15 | 1.82 | ||
(0.24, 160.97) | (0.01, 227.12) | |||
125 ≤ 200% | 1.29 (0.01, 232.18) | 0.16 | ||
(0.00, 701.03) | ||||
≥200% | 0.83 | 3.29 | ||
(0.00, 1.01 × 109) | (0.00, 5.67 × 1013) | |||
Employment (%) Median 2 | 0.01 | 32.97 | ||
(0.00, 101.43) | (0.00, 3.31 × 106) | |||
Structural Factors | ||||
Population Density Median | 0.55 | 1.82 | ||
(0.27, 1.10) | (0.69, 4.82) | |||
Population Density | ||||
Low | ||||
High | (Reference) | (Reference) | ||
1.92 (0.35, 10.53) | 0.32 (0.04, 2.48) | |||
Population Total Size Median | 1.04 (0.46, 2.32) | 1.14 (0.35, 3.67) | ||
Community Environmental Stressors | ||||
County Brownfield Sites | ||||
One | (Reference) | (Reference) | (Reference) | (Reference) |
More than One | 1.33 (0.49, 3.63) | 5.10 (1.38, 18.83) | 1.31 (0.57, 3.01) | 4.19 (1.54, 11.39) |
County Superfund Sites | ||||
None | (Reference) | (Reference) | ||
One or More | (Reference) | (Reference) | 0.83 (0.35, 1.96) | 0.48 (0.17, 1.30) |
0.95 (0.33, 2.72) | 0.35 (0.10, 1.26) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, A.M.M.; Kanarek, N.F. Reuse Choice, Flood Risk and Resilience, and Characteristics of Counties with Brownfield Cleanups. Urban Sci. 2018, 2, 85. https://doi.org/10.3390/urbansci2030085
Carroll AMM, Kanarek NF. Reuse Choice, Flood Risk and Resilience, and Characteristics of Counties with Brownfield Cleanups. Urban Science. 2018; 2(3):85. https://doi.org/10.3390/urbansci2030085
Chicago/Turabian StyleCarroll, Ann M. M., and Norma F. Kanarek. 2018. "Reuse Choice, Flood Risk and Resilience, and Characteristics of Counties with Brownfield Cleanups" Urban Science 2, no. 3: 85. https://doi.org/10.3390/urbansci2030085
APA StyleCarroll, A. M. M., & Kanarek, N. F. (2018). Reuse Choice, Flood Risk and Resilience, and Characteristics of Counties with Brownfield Cleanups. Urban Science, 2(3), 85. https://doi.org/10.3390/urbansci2030085