Human Versus Natural Influences on Climate and Biodiversity: The Carbon Dioxide Connection
Abstract
1. Introduction and Overview
2. The Role of Atmospheric Carbon Dioxide in Climate Change
2.1. Climate Forcing by Carbon Dioxide During the Industrial Age
2.2. Carbon Dioxide Forcing over Geologic Time
- Correlation between CO2 and temperature does not imply causality, as this study asserts without considering criteria for causality (Section 5).
- The temperature time series presented in this study bears little resemblance to empirical proxy data published by hundreds of investigators (cf. Figure 4a in [61] with Figure 3 in [52]), which is reproduced above as Figure 2. Their modeled temperature reconstruction shows no sign of the well-established gradual and steady cooling of the Earth over the Phanerozoic Eon, and no evidence of the spectral periodicity of Phanerozoic temperature time series (Figure 2) that has been reported by numerous investigators as ~120–135 My [52,62,63,64,65,66,67].
- This study’s estimate of climate sensitivity of 8 °C is implausibly extreme, the second-highest in the published climate literature (Table 1 in [68] (p. 2)), more than an order of magnitude larger than the smallest available estimates of ECS, 0.52–0.58 °C [69] to 0.9 °C [69,70,71], and up to five times higher than the IPCC estimate (1.5–4.5 °C) [19].
- Despite its conclusion that atmospheric CO2 concentration and global temperature were correlated over the Phanerozoic, this study reports the absence of statistically discernible correlation over the 186-My Mesozoic Era comprising 38% of their study period. This absence of correlation implies the absence of causality, contradicting the paper’s central conclusion, but is dismissed without explanation as the “Mesozoic conundrum” [61] (p. 5).
2.3. Carbon Dioxide Compared with Other Forcing Agents
3. Natural Climate Variability
3.1. Natural Climate Cycles
3.2. The Antarctic Oscillation as Global Climate Pacemaker
3.2.1. Geography
3.2.2. Geophysical Mechanisms
3.2.3. Teleconnection
4. A Unified Theory of Climate
4.1. Definition
4.2. Mechanisms
4.3. Climate Landmarks Explained by the Unified Theory
4.3.1. Antarctic Isotope Maxima and Dansgaard-Oeschger Oscillations
4.3.2. The Medieval Warm Period and Little Ice Age
4.3.3. The Bond Cycle and Heinrich Events
4.3.4. The Rise and Fall of Human Civilizations
5. Criteria for Causality in Science
5.1. Temporal Order of Cause and Effect
5.2. Necessity and Sufficiency
“Where c and e are two distinct possible events, e causally depends on c if and only if, if c were to occur e would occur; and if c were not to occur e would not occur.”
5.3. Applying Causality Criteria to Climate Change
5.4. Supplemental Criteria for Causality
6. The Instrumental Age of Climate Science
6.1. Recent Trends in Global Carbon Dioxide and Temperature
6.2. Rates of Change of Carbon Dioxide Versus Temperature
6.3. The Hiatus in Global Warming Rate
“When the oscillation phases changed to negative phases, the cooling effect of the 60- & 88-year oscillations became dominant … and caused global temperature to decrease, which happened from 1940 to 1975. Similarly, when the 60- & 88 [-year] oscillations turned from a negative to a positive phase, global warming accelerated, as it did after 1975 and finally increased the global temperature by about 0.25 °C (Figure 6) till [sic.] 2000.”[456] (p. 306)

7. The Coupled Oscillator Hypothesis of Global Climate
8. Empirical Projection of Global Climate
8.1. Methodology
8.2. Global Climate Forecasts Based on the Antarctic Oscillation
9. Mass Extinctions of Biodiversity
9.1. The Role of Atmospheric Carbon Dioxide
9.2. The Role of Climate Change
9.3. Auto-Extinction of the Human Species
9.4. Sensitivity of Contemporary Phytoplankton to Ocean Acidification
10. Policy Implications
11. Conclusions and Further Research
11.1. Clarifying Climate Sensitivity
11.2. Understanding Natural Climate Cycles
11.3. Improving Empirical Climate Forecasting
11.4. Improving Climate Models
11.5. Incorporating Climate Cycles into Policy
11.6. Monitoring Phytoplankton Populations
11.7. Deploying a Carbon-Neutral Global Economy
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms and Abbreviations
| AAIW | Antarctic Intermediate Water |
| AAO | Antarctic Oscillation |
| ACC | Antarctic Circumpolar Current |
| ACO | Antarctic Centennial Oscillation |
| ACV | Antarctic Circumpolar Vortex |
| ACWO | Antarctic Centennial Wind Oscillation |
| AGW | Anthropogenic Global Warming |
| AO | Arctic Oscillation |
| AI | Artificial Intelligence |
| AIMs | Antarctic Isotope Maxima |
| AMOC | Atlantic Meridional Overturning Circulation |
| ARGO | Array for Real-time Geostrophic Oceanography |
| CE | Current Era |
| CERES | Clouds and Earth’s Radiant Energy Systems |
| CO | Coupled Oscillator (hypothesis) |
| CO2 | carbon dioxide |
| ΔCO2 | (rate of) change in CO2 |
| ΔT | (rate of) change in temperature |
| D-O | Dansgaard-Oeschger |
| EAP | East Antarctic Plateau |
| ECS | Equilibrium Climate Sensitivity |
| EDC | EPICA Dome C |
| EEI | Earth’s Energy Imbalance |
| ENSO | El Niño Southern Oscillation |
| EPICA | European Project for Ice Coring in Antarctica |
| GE | Greenhouse Effect |
| iff | if and only if |
| IPCC | Intergovernmental Panel on Climate Change |
| Ky | thousand years |
| LGM | Last Glacial Maximum |
| LGT | Last Glacial Termination |
| LIA | Little Ice Age |
| MWP | Medieval Warm Period |
| My | Million Years |
| n | sample size |
| NGW | Natural Global Warming |
| NH | Northern Hemisphere |
| OA | Ocean Acidification |
| OHC | Ocean Heat Content |
| O2 | oxygen |
| p | probability |
| p. | page |
| PF | Polar Front |
| ppmv | parts per million by volume |
| ppO2 | partial pressure of free oxygen |
| PWP | Pacific Warm Pool |
| PWT | pressure-wind-temperature |
| r | Pearson Product Moment Correlation Coefficient |
| r2 | coefficient of determination |
| RCP | Recurrent Cold Period (repeating homolog of LIA) |
| RF | Radiative Forcing |
| RFCO2 | Radiative Forcing by Carbon Dioxide |
| ΔRFCO2 | Difference in Radiative Forcing by Carbon Dioxide |
| RWP | Recurrent Warm Period (repeating homolog of MWP) |
| SAAMW | Sub-Antarctic Mode Water |
| SAT | Surface Air Temperature |
| SH | Southern Hemisphere |
| SM | Supplementary Materials |
| SME | Sixth Mass Extinction |
| SO | Southern Ocean |
| TOA | Top of Atmosphere |
| U.S. | United States |
| USGFCAP | United States Government Fourth Climate Assessment Report |
| vs. | versus |
| W/m2 | Watts per square meter |
| WT | Wind Terminus |
References
- Crutzen, P.J. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef]
- Crutzen, P.J. The “Anthropocene”. In Earth System Science in the Anthropocene; Ehlers, E., Krafft, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 52–54. ISBN 3-540-26588-0. [Google Scholar]
- Crutzen, P.J.; Stoermer, E.F. The “Anthropocene”. Glob. Change Newsl. 2000, 41, 17–18. [Google Scholar]
- Edgeworth, M.; Bauer, A.M.; Ellis, E.C.; Finney, S.C.; Gill, J.L.; Gibbard, P.L.; Maslin, M.; Merritts, D.J.; Walker, M.J.C. The Anthropocene is more than a time interval. Earth’s Future 2024, 12, e2024EF004831. [Google Scholar] [CrossRef]
- Fu, B.; Meadows, M.E.; Zhao, W. Geography in the Anthropocene: Transforming our world for sustainable development. Geogr. Sustain. 2022, 3, 1–6. [Google Scholar] [CrossRef]
- Ruddiman, W.F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 2003, 61, 261–293. [Google Scholar] [CrossRef]
- Smith, B.D.; Zeder, M.A. The onset of the Anthropocene. Anthropocene 2013, 4, 8–13. [Google Scholar] [CrossRef]
- Steffen, W.; Grinevald, J.; Crutzen, P.; McNeill, J. The Anthropocene: Conceptual and historical perspectives. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 842–867. [Google Scholar] [CrossRef] [PubMed]
- Zalasiewicz, J.; Thomas, J.A.; Waters, C.N.; Turner, S.; Head, M.J. The meaning of the Anthropocene: Why it matters even without a formal geological definition. Nature 2024, 632, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Gibbard, P.L.; Walker, M.J.C. The term ‘Anthropocene’ in the context of formal geological classification. Stratigr. Basis Anthr. 2014, 395, 29–37. [Google Scholar] [CrossRef]
- Mathews, A.S. Anthropology and the Anthropocene: Criticisms, experiments, and collaborations. Annu. Rev. Anthr. 2020, 49, 67–82. [Google Scholar] [CrossRef]
- Soriano, C. The problems of the Anthropocene in the Geologic Time Scale, and beyond. Earth-Sci. Rev. 2024, 253, 104796. [Google Scholar] [CrossRef]
- Dalby, S. Framing the Anthropocene: The good, the bad and the ugly. Anthr. Rev. 2016, 3, 33–51. [Google Scholar] [CrossRef]
- IPCC. Climate Change 1990. The IPCC Scientific Assessment; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK, 1990; ISBN 0003-0996. [Google Scholar]
- IPCC. Climate Change. First Assessment Report; World Meteorological Organization: Geneva, Switzerland, 1990; ISBN 0-662-19821-2. [Google Scholar]
- IPCC. Climate Change 1992, Supplement; World Meteorological Organization: Geneva, Switzerland, 1992; ISBN 0 521 43829 2. [Google Scholar]
- IPCC. Climate Change 2001: The Scientific Basis; Houghton, J.T., Ed.; New York Cambridge University Press: New York, NY, USA, 2001; ISBN 0 521 80770 0. [Google Scholar]
- IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2007: The Physical Science Basis; Solomon, S., Ed.; Cambridge University Press: New York, NY, USA, 2007; ISBN 9780521705967. [Google Scholar]
- IPCC. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Ed.; Cambridge University Press: New York, NY, USA, 2013; ISBN 978-1-107-05799-9. [Google Scholar]
- IPCC. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M.K., Eds.; Cambridge University Press: Cambridge, UK, 2021; ISBN 978-92-9169-158-6. [Google Scholar]
- IPCC; Armour, K.; Forster, P.; Storelvmo, T.; Collins, W.; Dufresne, J.L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; et al. The Earths energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Chapter 7; ISBN 978-92-9169-158-6. [Google Scholar]
- IPCC. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar]
- Davis, W.J. Mass extinctions and their relationship with atmospheric carbon dioxide concentration: Implications for Earth’s future. Earth’s Future 2023, 11, e2022EF003336. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Raven, P.H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. USA 2020, 117, 13596–13602. [Google Scholar] [CrossRef] [PubMed]
- Cowie, R.H.; Bouchet, P.; Fontaine, B. The Sixth Mass Extinction: Fact, fiction, or speculation? Biol. Rev. 2022, 97, 640–663. [Google Scholar] [CrossRef] [PubMed]
- Leakey, R.E.; Lewin, R. The Sixth Extinction: Biodiversity and Its Survival; Phoenix Publishers: Carlsbad, CA, USA, 1995; 288p, ISBN 978-0297817338. [Google Scholar]
- Munstermann, M.J.; Heim, N.A.; McCauley, D.J.; Payne, J.L.; Upham, N.S.; Wang, S.C.; Knope, M.L. A global ecological signal of extinction risk in terrestrial vertebrates. Conserv. Biol. 2021, 36, e13852. [Google Scholar] [CrossRef]
- Palombo, M.R. Thinking about the biodiversity loss in this changing world. Geosciences 2021, 11, 370. [Google Scholar] [CrossRef]
- Payne, J.L.; Bush, A.M.; Heim, N.A.; Knope, M.L.; McCauley, D.J. Ecological selectivity of the emerging mass extinction in the oceans. Science 2016, 353, 1284–1286. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Fourier, J.B.J. Remarques générales sur les températures du globe terrestre et des espaces planétaires. Ann. Chem. Phys. 1824, 27, 136–167. [Google Scholar]
- Fourier, J.B.J. Mémoire sur les températures du globe terrestre et des espaces planétaires. Mém. Acad. R. Sci. Inst. Fr. 1827, 7, 570–604. [Google Scholar]
- Callendar, G.S. The artificial production of carbon dioxide and its influence on temperature. Q. J. R. Meteorol. Soc. 1938, 64, 223–240. [Google Scholar] [CrossRef]
- Liu, W.; McKibbin, W.J.; Morris, A.C.; Wilcoxen, P.J. Global economic and environmental outcomes of the Paris Agreement. J. Energy Econ. 2020, 90, 104838. [Google Scholar] [CrossRef]
- Raiser, K.; Kornek, U.; Flachsland, C.; Lamb, W.F. Is the Paris Agreement effective? A systematic map of the evidence. Environ. Res. Lett. 2020, 15, 083006. [Google Scholar] [CrossRef]
- USGFCAP. Climate Science Special Report: A Sustained Assessment Activity of the U. S. Global Change Research Program; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U. S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- Davis, W.J.; Davis, W.B. Antarctic winds: Pacemaker of global warming, global cooling, and the collapse of civilizations. Climate 2020, 8, 130. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Carleton, A.M.; Birkel, S.D.; Dixon, D.; Kurbatov, A.V.; Korotkikh, E.; McConnell, J.; Curran, M.; Cole-Dai, J.; Jiang, S.; et al. Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes. Quat. Sci. Rev. 2017, 155, 50–66. [Google Scholar] [CrossRef]
- Wachter, P.; Beck, C.; Philipp, A.; Höppner, K.; Jacobeit, J. Spatiotemporal variability of the Southern Annular Mode and its influence on Antarctic surface temperatures. J. Geophys. Res. Atmos. 2020, 125, e2020JD033818. [Google Scholar] [CrossRef]
- Harvey, B.P.; Kon, K.; Agostini, S.; Wada, S.; Hall-Spencer, J.M. Ocean acidification locks algal communities in a species-poor early successional stage. Glob. Change Biol. 2021, 27, 2174–2187. [Google Scholar] [CrossRef]
- Peña, V.; Harvey, B.P.; Agostini, S.; Porzio, L.; Milazzo, M.; Horta, P.; Le Gall, L.; Hall-Spencer, J.M. Major loss of coralline algal diversity in response to ocean acidification. Glob. Change Biol. 2021, 27, 4785–4798. [Google Scholar] [CrossRef]
- Veron, J.E.N. Mass extinctions and ocean acidification: Biological constraints on geological dilemmas. Coral Reefs 2008, 27, 459–472. [Google Scholar] [CrossRef]
- Wolfram, U.; Fernández, M.P.; McPhee, S.; Smith, E.; Beck, R.J.; Shephard, J.D.; Ozel1, A.; Erskine, C.S.; Büscher, J.; Titschack, J.; et al. Multiscale mechanical consequences of ocean acidification for cold-water corals. Sci. Rep. 2022, 12, 8052. [Google Scholar] [CrossRef] [PubMed]
- Zunino, S.; Libralato, S.; Canu, D.M.; Prato, G.; Solidoro, C. Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems. Ecosystems 2021, 24, 1561–1575. [Google Scholar] [CrossRef]
- Moss, B.R. Ecology of Fresh Waters: Man and Medium, Past to Future; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 1444313428. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 661. ISBN 9781107057991. [Google Scholar]
- Feldman, D.R.; Collins, W.D.; Gero, P.J.; Torn, M.S.; Mlawer, E.J.; Shippert, T.R. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 2015, 519, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Driggers, R.G.; Friedman, M.H.; Nicols, J.M. An Introduction to Infrared and Electro-Optical Systems, 2nd ed.; Artech House: London, UK, 2012; ISBN 978-1-60807-100-5. [Google Scholar]
- Taylor, P.J. Natural drivers of global warming: Ocean cycles, anthropogenic greenhouse gases and the question of percentages. J. Environ. Earth Sci. 2025, 7, 262–290. [Google Scholar] [CrossRef]
- Davis, W.J. The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years. Climate 2017, 5, 76. [Google Scholar] [CrossRef]
- Royer, D.L. Atmospheric CO2 and O2 during the Phanerozoic: Tools, patterns and impacts. In Treatise on Geochemistry, 2nd ed.; Holland, H., Turekian, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 251–267. ISBN 9780080983004. [Google Scholar]
- Prokoph, A.; Shields, G.A.; Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Sci. Rev. 2008, 87, 113–133. [Google Scholar] [CrossRef]
- Liang, X.S.; Yang, X.-Q. A note on causation versus correlation in an extreme situation. Entropy 2021, 23, 316. [Google Scholar] [CrossRef]
- Neufeld, E.; Kristtorn, S. Does non-correlation imply non-causation? Int. J. Approx. Reason. 2007, 46, 257–273. [Google Scholar] [CrossRef]
- Barrowman, N. Correlation, causation, and confusion. New Atlantis 2014, Summer/Fall, 23–44. Available online: https://www.jstor.org/stable/43551404 (accessed on 29 September 2025).
- Kennaway, R. When causation does not imply correlation: Robust violations of the faithfulness axiom. In The Interdisciplinary Handbook of Perceptual Control Theory; Mansell, W., Ed.; Academic Press: London, UK; San Diego, CA, USA, 2020; Chapter 4; pp. 49–72. ISBN 9780128189481. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.-H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting causality in complex ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Ye, H.; Beamish, R.J.; Glaser, S.M.; Grant, S.C.H.; Hsieh, C.; Richards, L.J.; Schnute, J.T.; Sugihara, G. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc. Natl. Acad. Sci. USA 2015, 112, E1570. [Google Scholar] [CrossRef]
- Judd, E.J.; Tierney, J.E.; Lunt, D.J.; Montañez, I.P.; Huber, B.T.; Wing, S.L.; Valdes, P.J. A 485-million-year history of Earth’s surface temperature. Science 2024, 385, eadk3705. [Google Scholar] [CrossRef]
- Edgar, K.M.; Pälike, H.; Wilson, P.A. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography 2013, 28, 468–480. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- Shaviv, N.J. Cosmic ray diffusion from the galactic spiral arms, iron meteorites and a possible climatic connection. Phys. Rev. Lett. 2002, 89, 051102. [Google Scholar] [CrossRef]
- Shaviv, N.J.; Veizer, J. Celestial driver of Phanerozoic climate? GSA Today 2003, 13, 4–10. [Google Scholar] [CrossRef]
- Shaviv, N.J.; Svensmark, H.; Veizer, J. The phanerozoic climate. Ann. N. Y. Acad. Sci. 2023, 1519, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Veizer, J.; Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 2015, 146, 92–104. [Google Scholar] [CrossRef]
- Rugenstein, M.; Bloch-Johnson, J.; Gregory, J.; Andrews, T.; Mauritsen, T.; Li, C.; Frölicher, T.L.; Paynter, D.; Danabasoglu, G.; Yang, S.; et al. Equilibrium climate sensitivity estimated by equilibrating climate models. Geophys. Res. Lett. 2020, 47, e2019GL083898. [Google Scholar] [CrossRef]
- Scafetta, N. CMIP6 GCM ensemble members versus global surface temperatures. Clim. Dyn. 2023, 60, 3091–3120. [Google Scholar] [CrossRef]
- Lewis, N.; Grünwald, P. Objectively combining AR5 instrumental period and paleoclimate climate sensitivity evidence. Clim. Dyn. 2018, 50, 2199–2216. [Google Scholar] [CrossRef]
- Skeie, R.B.; Berntsen, T.; Aldrin, M.; Holden, M.; Myhre, G. A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth Syst. Dyn. 2014, 5, 139–175. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile, I.; Bender§, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- Caillon, N.; Severinghaus, J.P.; Jouzel, J.; Barnola, J.-M.; Kang, J.; Lipenkov, V.Y. Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science 2003, 299, 1728–1731. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, S.; Jin, Z. Breakpoint lead-lag analysis of the last deglacial climate change and atmospheric CO2 concentration on global and hemispheric scales. Quat. Int. 2018, 490, 50–59. [Google Scholar] [CrossRef]
- Mudelsee, M. The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quat. Sci. Rev. 2001, 20, 583–589. [Google Scholar] [CrossRef]
- Pedro, J.B.; Rasmussen, S.O.; van Ommen, T.D. Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation. Clim. Past 2012, 8, 1213–1221. [Google Scholar] [CrossRef]
- Shakun, J.D.; Clark, P.U.; He, F.; Marcott, S.A.; Mix, A.C.; Liu, Z.; Otto-Bliesner, B.; Andreas Schmittner, A.; Bard, E. Global Warming Preceded by Increasing Carbon Dioxide Concentrations During the Last Deglaciation. Nature 2012, 484, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Koutsoyiannis, D. Net isotopic signature of atmospheric CO2 sources and sinks: No change since the Little Ice Age. Sci 2024, 6, 17. [Google Scholar] [CrossRef]
- Humlum, O.; Stordahl, K.; Solheim, J.-E. The phase relation between atmospheric carbon dioxide and global temperature. Glob. Planet. Change 2013, 100, 51–69. [Google Scholar] [CrossRef]
- Lucile, F.; Cézac, P.; Contamine, F.; Serin, J.-P.; Houssin, D.; Arpentinier, P. Solubility of carbon dioxide in water and aqueous solution containing sodium hydroxide at temperatures from 293.15 to 393.15 K and pressure up to 5 MPa: Experimental measurements. J. Chem. Eng. Data 2012, 57, 784–789. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Water vapour feedback and global warming. Annu. Rev. Energy Environ. 2000, 25, 441–475. [Google Scholar] [CrossRef]
- Menviel, L.; Spence, P.; Yu, J.; Chamberlain, M.A.; Matear, R.J.; Meissner, K.J.; England, M.H. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 2018, 9, 2503. [Google Scholar] [CrossRef]
- Perren, B.B.; Hodgson, D.A.; Roberts, S.J.; Sime, L.; Van Nieuwenhuyze, W.; Verleyen, E.; Vyverman, W. Southward migration of the Southern Hemisphere westerly winds corresponds with warming climate over centennial timescales. Commun. Earth Environ. 2020, 1, 58. [Google Scholar] [CrossRef]
- Hansen, J.; Nazarenko, L.; Ruedy, R.; Sato, M.; Willis, J.; Del Genio, A.; Koch, D.; Lacis, A.; Lo, K.; Menon, S.; et al. Earth’s energy imbalance: Confirmation and implications. Science 2005, 308, 1431–1435. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Balmaseda, M. Earth’s energy imbalance. J. Clim. 2014, 27, 3129–3144. [Google Scholar] [CrossRef]
- Loeb, N.G.; Johnson, G.C.; Thorsen, T.J.; Lyman, J.M.; Rose, F.G.; Kato, S. Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett. 2021, 48, e2021GL093047. [Google Scholar] [CrossRef]
- Nikolov, N.; Zeller, K.F. Roles of Earth’s albedo variations and top-of-the-atmosphere energy imbalance in recent warming: New insights from satellite and surface observations. Geomatics 2024, 4, 311–341. [Google Scholar] [CrossRef]
- Jenkins, S.; Povey, A.; Gettelman, A.; Grainger, R.; Stier, P.; Allen, M. Is anthropogenic global warming accelerating? J. Clim. 2022, 35, 4273–4290. [Google Scholar] [CrossRef]
- Loeb, N.G.; Ham, S.-H.; Allan, R.P.; Thorsen, T.J.; Meyssignac, B.; Kato, S.; Johnson, G.C.; Lyman, J.M. Observational assessment of changes in Earth’s energy imbalance since 2000. Surv. Geophys. 2024, 45, 1757–1783. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P. Chill, a Reassessment of Global Warming Theory; Clairview Books: East Sussex, UK, 2009; ISBN 978 1 905570 19 5. [Google Scholar]
- Scafetta, N. Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 2010, 72, 951–970. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hall, B.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.P.; et al. Indicators of global climate change 2023: Annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2024, 16, 2625–2658. [Google Scholar] [CrossRef]
- NOAA. 2023. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202313 (accessed on 16 February 2025).
- Kok, J.F.; Storelvmo, T.; Karydis, V.A.; Adebiyi, A.A.; Mahowald, N.M.; Evan, A.T.; He, C.; Leung, D.M. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 2023, 4, 71–86. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Kundzewicz, Z.W. Atmospheric temperature and CO2: Hen-or-egg causality? Sci 2020, 2, 83. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Onof, C.; Christofides, A.; Kundzewicz, Z.W. Revisiting causality using stochastics: Theory. Proc. R. Soc. A 2022, 478, 20210836. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Onof, C.; Kundzewicz, Z.W.; Christofides, A. On hens, eggs, temperatures and CO2: Causal Links in Earth’s atmosphere. Sci 2023, 5, 35. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Stochastic assessment of temperature–CO2 causal relationship in climate from the Phanerozoic through modern times. Math. Biosci. Eng. 2024, 21, 6560–6602. [Google Scholar] [CrossRef]
- Skrable, K.; Chabot, G.; French, C. World atmospheric CO2, its 14C specific activity, non-fossil component, anthropogenic fossil component, and emissions (1750–2018). Health Phys. 2022, 122, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.E.; Keeling, R.F.; Meijer, H.A.J.; Turnbull, J.C. Comment on “World Atmospheric CO2, Its 14C Specific Activity, Non-fossil Component, Anthropogenic Fossil Component, and Emissions (1750–2018),” by Kenneth Skrable, George Chabot, and Clayton French. Health Phys. 2022, 122, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Harde, H. How Much CO2 and the Sun contribute to global warming: Comparison of simulated temperature trends with last century observations. Sci. Clim. Change 2022, 2, 105–133. [Google Scholar] [CrossRef]
- Lu, Q.-B. Critical review on radiative forcing and climate models for global climate change since 1970. Atmosphere 2023, 14, 1232. [Google Scholar] [CrossRef]
- Scafetta, N. Impacts and risks of “realistic” global warming projections for the 21st century. Geosci. Front. 2024, 15, 101774. [Google Scholar] [CrossRef]
- Scafetta, N.; Mirandola, A.; Bianchini, A. Natural climate variability, part 1: Observations versus the modeled predictions. Int. J. Heat Technol. 2017, 35 (Suppl. S1), S9–S17. [Google Scholar] [CrossRef]
- Scafetta, N.; Mirandola, A.; Bianchini, A. Natural climate variability, part 2: Interpretation of the post 2000 temperature standstill. Int. J. Heat Technol. 2017, 35, S18–S26. [Google Scholar] [CrossRef]
- Kopp, G.; Lean, J.L. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 2011, 38, L01706. [Google Scholar] [CrossRef]
- Michael, P.R.; Johnston, D.E.; Moreno, W. A conversion guide: Solar irradiance and lux illuminance. J. Meas. Eng. 2020, 8, 153–166. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Trenberth, K.E. Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 1997, 78, 197–208. [Google Scholar] [CrossRef]
- Nuccitelli, D. Earth is heating at a rate equivalent to five atomic bombs per second. or two hurricane Sandys. Bull. At. Sci. 2020, 6, 140–144. [Google Scholar] [CrossRef]
- Curry, J. Climate Models for the Layman; GWPF Briefing 24, 2017; Global Warming Policy Foundation: London, UK, 2017; 20p., Available online: https://thegwpf.org/content/uploads/2017/02/Curry-2017.pdf (accessed on 29 September 2025).
- Parker, A. Why global warming went missing since the year 2000. Nonlinear Eng. 2013, 2, 129–135. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Stolpe, M.B.; Sippel, S.; Fischer, E.M.; Smith, C.J.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6, eaaz9549. [Google Scholar] [CrossRef]
- Brunner, L.; Pendergrass, A.G.; Lehner, F.; Merrifield, A.L.; Lorenz, R.; Knutti, R. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. 2020, 11, 995–1012. [Google Scholar] [CrossRef]
- Kravtsov, S.; Grimm, C.; Gu, S. Global-scale variability missing in state-of-the-art climate models. Clim. Atmos. Sci. 2018, 1, 34. [Google Scholar] [CrossRef]
- Davis, W.J.; Taylor, P.J.; Davis, W.B. The origin and propagation of the Antarctic Centennial Oscillation. Climate 2019, 7, 112. [Google Scholar] [CrossRef]
- Scotese, C.R.; Song, H.; Mills, B.J.; van der Meer, D.G. Phanerozoic paleotemperatures: The Earth’s changing climate during the last 540 million years. Earth-Sci. Rev. 2021, 215, 103503. [Google Scholar] [CrossRef]
- Cassou, C. Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature 2008, 455, 523–527. [Google Scholar] [CrossRef]
- Jiang, X.; Adames, Á.F.; Kim, D.; Maloney, E.D.; Lin, H.; Kim, H.; Zhang, C.; DeMott, C.A.; Klingaman, N.P. Fifty years of research on the Madden-Julian Oscillation: Recent progress, challenges, and perspectivesves. J. Geophys. Res. Atmos. 2020, 125, e2019JD030911. [Google Scholar] [CrossRef]
- Kim, D.; Kug, J.-S.; Sobel, A.H. Propagating versus nonpropagating Madden–Julian Oscillation events. J. Clim. 2014, 27, 111–125. [Google Scholar] [CrossRef]
- Lintner, B.R.; Giannakis, D.; Pike, M.; Slawinska, J. Identification of the Madden–Julian Oscillation with data-driven Koopman spectral analysis. Geophys. Res. Lett. 2023, 50, e2023GL102743. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 1971, 28, 702–708. [Google Scholar] [CrossRef]
- Zhou, F.; Jian, S.; Liu, M.; Wang, R. Madden-Julian Oscillation contributes to the skewed intraseasonal PNA in El Niño and La Niña winters. Geophys. Res. Lett. 2024, 51, e2024GL111119. [Google Scholar] [CrossRef]
- Ganopolski, A. Toward generalized Milankovitch theory (GMT). Clim. Past 2024, 20, 151–185. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 2005, 20, 1003–1020. [Google Scholar] [CrossRef]
- Maslin, M. Tying celestial mechanics to Earth’s ice ages. Phys. Today 2020, 73, 48–53. [Google Scholar] [CrossRef]
- Milankovitch, M. Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen. In Handbuch der Klimatologie; Koppen, W., Geiger, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1930; Volume 1. [Google Scholar]
- Guo, R.; Huang, J.; Yu, H.; Zhao, H.; Hu, Z. Decadal modulation of temperature pattern over East Asia by Pacific Decadal Oscillation. Atmos. Res. 2024, 300, 107248. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific decadal oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobb, K.M.; Deser, C.; Di Lorenzo, E.; Mantua, N.J.; Miller, A.J.; Minobe, S.; Nakamura, H.; et al. The Pacific Decadal Oscillation, revisited. J. Clim. 2016, 29, 4399–4427. [Google Scholar] [CrossRef]
- Ren, X.; Liu, W.; Capotondi, A.; Amaya, D.J.; Holbrook, N.J. The Pacific Decadal Oscillation modulated marine heatwaves in the Northeast Pacific during past decades. Commun. Earth Environ. 2023, 4, 218. [Google Scholar] [CrossRef]
- Yang, Y.-M.; An, S.-I.; Wang, B.; Park, J.H. A global-scale variability driven by Atlantic oscillation. Natl. Sci. Rev. 2020, 7, 1190–1197. [Google Scholar] [CrossRef]
- Drinkwater, K.F.; Miles, M.; Medhaug, I.; Otterå, O.H.; Kristiansen, T.; Sundby, S.; Gao, Y. The Atlantic Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60 N. J. Mar. Syst. 2014, 133, 117–130. [Google Scholar] [CrossRef]
- Kerr, R.A. A North Atlantic climate pacemaker for the centuries. Science 2000, 288, 1984–1985. [Google Scholar] [CrossRef]
- Knudsen, M.F.; Seidenkrantz, M.-S.; Jacobsen, B.H.; Kuijpers, A. Tracking the Atlantic Oscillation through the last 8000 years. Nat. Commun. 2011, 2, 178. [Google Scholar] [CrossRef]
- Luo, B.; Luo, D.; Dai, A.; Simmonds, I.; Wu, L. Decadal variability of winter warm Arctic-cold Eurasia dipole patterns modulated by Pacific decadal oscillation and Atlantic oscillation. Earth’s Future 2022, 10, e2021EF002351. [Google Scholar] [CrossRef]
- Mazzarella, A.; Scafetta, N. Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theor. Appl. Clim. 2012, 107, 599–609. [Google Scholar] [CrossRef]
- Nye, J.A.; Baker, M.R.; Bell, R.; Kenny, A.; Kilbourne, K.H.; Friedland, K.D.; Martino, E.; Stachura, M.M.; Van Houtan, K.S.; Wood, R. Ecosystem effects of the Atlantic Oscillation. J. Mar. Syst. 2014, 133, 103–116. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 1994, 367, 723–726. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Sui, C.; Sun, B. Surface air temperature anomalies over Antarctica and the Southern ocean induced by interactions between the interdecadal Pacific oscillation and Atlantic oscillation. Geosci. Lett. 2024, 11, 39. [Google Scholar] [CrossRef]
- Deser, C. On the teleconnectivity of the “Arctic Oscillation”. Geophys. Res. Lett. 2000, 27, 779–782. [Google Scholar] [CrossRef]
- He, S.; Gao, Y.; Li, F.; Wang, H.; He, Y. Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev. 2017, 164, 48–62. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Johnson, M.A. Arctic decadal and interdecadal variability. Geophys. Res. Lett. 2000, 27, 4097–4100. [Google Scholar] [CrossRef]
- Abram, N.; Mulvaney, R.; Vimeux, F.; Phipps, S.J.; Turner, J.; England, M.H. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 2014, 4, 564–569. [Google Scholar] [CrossRef]
- Crosta, X.; Etourneau, J.; Orme, L.C.; Dalaiden, Q.; Campagne, P.; Swingedouw, D.; Goosse, H.; Massé, G.; Miettinen, A.; McKay, R.M.; et al. Multidecadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2000 years. Nat. Geosci. 2021, 14, 156–160. [Google Scholar] [CrossRef]
- Davis, W.J.; Taylor, P.J.; Davis, W.B. The Antarctic Centennial Oscillation: A natural paleoclimate cycle in the Southern Hemisphere that influences global temperature. Climate 2018, 6, 3. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Antarctic oscillation: Concept and applications. Chin. Sci. Bull. 1998, 43, 734–738. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Definition of Antarctic oscillation index. Geophys. Res. Lett. 1999, 26, 459–462. [Google Scholar] [CrossRef]
- Zitto, M.E.; Barrucand, M.G.; Piotrkowski, R.; Canziani, P.O. 110 years of temperature observations at Orcadas Antarctic Station: Variability. Int. J. Clim. 2015, 36, 809–823. [Google Scholar] [CrossRef]
- Ford, H.L.; Ravelo, A.C.; Polissar, P.J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 2015, 347, 255–258. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.-P.; Cook, E.R. El Niño phases embedded in Asian and North American drought reconstructions. Quat. Sci. Rev. 2014, 85, 20–34. [Google Scholar] [CrossRef]
- Walker, G.T. Correlations in seasonal variations of weather. VIII, A further study of world weather. Mem. Indian Meteorol. Dep. 1923, 24, 75–131. [Google Scholar]
- Wang, C. A review of ENSO theories. Natl. Sci. Rev. 2018, 5, 813–825. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; et al. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, W.; Chen, S.; Ma, T.; Garfinkel, C.I. Influence of the Quasi-Biennial Oscillation on the spatial structure of the wintertime Arctic Oscillation. J. Geophys. Res. Atmos. 2022, 127, e2021JD035564. [Google Scholar] [CrossRef]
- Chen, W.; Wei, K. Interannual variability of the winter stratospheric polar vortex in the northern hemisphere and their relations to QBO and ENSO. Adv. Atmos. Sci. 2009, 26, 855–863. [Google Scholar] [CrossRef]
- Gray, L.J.; Anstey, J.A.; Kawatani, Y.; Lu, H.; Osprey, S.; Schenzinger, V. Surface impacts of the quasi biennial oscillation. Atmos. Chem. Phys. 2018, 18, 8227–8247. [Google Scholar] [CrossRef]
- Wei, K.; Chen, W.; Huang, R. Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett. 2007, 34, 6. [Google Scholar] [CrossRef]
- Kim, Y.H. Explaining the period fluctuation of the quasi-biennial oscillation. Atmos. Chem. Physics 2025, 25, 5647–5664. [Google Scholar] [CrossRef]
- Soto-Rogel, P.; Aravena, J.C.; Villalba, R.; Meier, W.J.-H.; Grießinger, J. Tree-ring δ18O cellulose variations in two Nothofagus species record large-scale climatic signals in the South American sector of the Southern Ocean. Palaeogeogr. Palaeoclim. Palaeoecol. 2023, 617, 111474. [Google Scholar] [CrossRef]
- Alves, M.P.A.; Silveira, R.B.; Minuzzi, R.B.; Franke, A.E. The influence of the Antarctic Oscillation (AAO) on cold waves and occurrence of frosts in the state of Santa Catarina, Brazil. Climate 2017, 5, 17. [Google Scholar] [CrossRef]
- Combes, V.; Matano, R.P.; Meredith, M.P.; Young, E.F. Variability of the shelf circulation around South Georgia, Southern Ocean. J. Geophys. Res. Oceans 2023, 128, e2022JC019257. [Google Scholar] [CrossRef]
- Fan, K.; Wang, H. Interannual variability of Antarctic Oscillation and its influence on East Asian climate during boreal winter and spring. Sci. China Ser. D Earth Sci. 2006, 49, 554–560. [Google Scholar] [CrossRef]
- Farjami, H.; Kazemi, A.F. Spatiotemporal patterns of polar low activity over the Southern Ocean. J. Geophys. Res. Atmos. 2024, 129, e2023JD039832. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Li, Y. Is there a relationship between the SAM and Southwest Western Australian winter rainfall? J. Clim. 2010, 23, 6082–6089. [Google Scholar] [CrossRef]
- Fogt, R.L.; Marshall, G.J. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev. Clim. Change 2020, 11, e652. [Google Scholar] [CrossRef]
- Fogt, R.L.; Jones, J.M.; Renwick, J. Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Clim. 2012, 25, 6253–6270. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.X.L. A modified zonal index and its physical sense. Geophys. Res. Lett. 2003, 10, 1632. [Google Scholar] [CrossRef]
- Mao, R.; Gong, D.Y.; Yang, J.; Zhang, Z.Y.; Kim, S.J.; He, H.Z. Is there a linkage between the tropical cyclone activity in the southern Indian Ocean and the Antarctic Oscillation? J. Geophys. Res. Atmos. 2013, 118, 8519–8535. [Google Scholar] [CrossRef]
- Nan, S.; Li, J. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett. 2003, 30, 2266. [Google Scholar] [CrossRef]
- Rosso, F.V.; Boiaski, N.T.; Ferraz, S.E.T.; Robles, T.C. Influence of the Antarctic Oscillation on the South Atlantic convergence zone. Atmosphere 2018, 9, 431. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Yuan, Z.; Qin, J.; Li, S.; Huang, S.; Mbululo, Y.; Rehman, A. Impact of boreal autumn Antarctic oscillation on winter wet-cold weather in the middle-lower reaches of Yangtze River Basin. Clim. Dyn. 2022, 58, 329–349. [Google Scholar] [CrossRef]
- Tang, Y.; Duan, A.; Hu, J. Surface heating over the Tibetan Plateau associated with the Antarctic Oscillation. J. Geophys. Res. Atmos. 2022, 127, e2022JD036851. [Google Scholar] [CrossRef]
- Yuan, Z.; Qin, J.; Li, S.; Huang, S.; Mbululo, Y. Impact of Spring AAO on Summertime precipitation in the north China part: Observational analysis. Asia-Pac. J. Atmos. Sci. 2021, 57, 1–16. [Google Scholar] [CrossRef]
- Tang, Y.; Duan, A.; Hu, D. Influence of the Antarctic Oscillation on summer precipitation over East Asia. Atmos. Res. 2023, 292, 106847. [Google Scholar] [CrossRef]
- Cardil, A.; Rodrigues, M.; Tapia, M.; Barbero, R.; Ramírez, J.; Stoof, C.R.; Silva, C.A.; Mohan, M.; de-Miguel, S. Climate teleconnections modulate global burned area. Nat. Commun. 2023, 14, 427. [Google Scholar] [CrossRef]
- Liu, J.; Meucci, A.; Young, I.R. A comparison of multiple approaches to study the modulation of ocean waves due to climate variability. J. Geophys. Res. Oceans 2023, 128, e2023JC019843. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Li, S.; Meucci, A.; Young, I.R. Increasing wave power due to global climate change and intensification of Antarctic Oscillation. Appl. Energy 2024, 358, 122572. [Google Scholar] [CrossRef]
- Ho, C.; Kim, J.; Kim, H.; Sui, C.; Gong, D. Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. J. Geophys. Res. Atmos. 2005, 110, D19104. [Google Scholar] [CrossRef]
- Wang, H.; Fan, K. Relationship between the Antarctic Oscillation in the western North Pacific typhoon frequency. Chin. Sci. Bull. 2007, 52, 561–565. [Google Scholar] [CrossRef]
- Ke, F. Linkage between the Atlantic tropical hurricane frequency and the Antarctic Oscillation in the Western Hemisphere. Atmos. Ocean. Sci. Lett. 2009, 2, 159–164. [Google Scholar] [CrossRef]
- Song, J.; Klotzbach, P.J.; Dai, Y.; Duan, Y. Does the Antarctic Oscillation modulate tropical cyclone rapid intensification over the western North Pacific? Environ. Res. Lett. 2022, 17, 064040. [Google Scholar] [CrossRef]
- Mbululo, Y.; Jun, Q.; Nyihirani, F.; Yuan, Z.; Huang, S.; Wang, Y. Relationship between air pollutant distribution and large-scale circulation. Environ. Sci. Adv. 2023, 2, 1119–1129. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Wei, W.; Fang, G.; Duan, W. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, H. Global map of a comprehensive drought/flood index and analysis of controlling environmental factors. Nat. Hazards 2023, 116, 267–293. [Google Scholar] [CrossRef]
- Pietrafesa, L.J.; Bao, S.; Gayes, P.T. On the determinations of weather, seasonal, sub-seasonal and climate scale variability and overall trends in the atmosphere and ocean. J. Earth Environ. Sci. Res. 2020, 2, 1–17. [Google Scholar] [CrossRef]
- Gregory, R.P. Climatic oscillations and sovereign debt crises. Int. Rev. Econ. Financ. 2024, 95, 103471. [Google Scholar] [CrossRef]
- Choi, K.-S.; Oh, S.-B.; Kim, D.-W.; Byun, H.-R. Possible influence of AAO on north Korean rainfall in August. Int. J. Clim. 2014, 34, 1785–1797. [Google Scholar] [CrossRef]
- Ciasto, L.M.; Simpkins, G.R.; England, M.H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 2015, 28, 56–65. [Google Scholar] [CrossRef]
- Dou, J.; Wu, Z.; Zhou, Y. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall. Clim. Dyn. 2017, 49, 1257–1269. [Google Scholar] [CrossRef]
- Dou, J.; Wu, Z. Southern Hemisphere origins for interannual variations of snow cover over the western Tibetan Plateau in boreal summer. J. Clim. 2018, 31, 7701–7718. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.; Zheng, F. Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Clim. 2015, 28, 8825–8839. [Google Scholar] [CrossRef]
- Silvestri, G.E.; Vera, C.S. Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 2003, 30, 2115. [Google Scholar] [CrossRef]
- Song, F.; Zhou, T. Interannual variability of east Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMS: Skill dependence on Indian ocean–western pacific anticyclone teleconnection. J. Clim. 2014, 27, 1679–1697. [Google Scholar] [CrossRef]
- Tang, Y.; Duan, A. Linkage between the boreal spring Antarctic oscillation and the temperature dipole mode over the Tibetan Plateau in summer. Atmos. Res. 2024, 297, 107128. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Wang, B.; Liu, X. Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res. Atmos. 2009, 114, D11107. [Google Scholar] [CrossRef]
- Wu, Z.; Dou, J.; Lin, H. Potential influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: A new mechanism. Clim. Dyn. 2015, 44, 1215–1226. [Google Scholar] [CrossRef]
- Zheng, F.; Li, J.; Wang, L.; Xie, F.; Li, X. Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Clim. 2015, 28, 6859–6881. [Google Scholar] [CrossRef]
- Zheng, F.; Li, J.; Ding, R.; Feng, J. Cross-seasonal influence of the SAM on Southern Hemisphere extratropical SST and its relationship with meridional circulation in CMIP5 models. Int. J. Clim. 2018, 38, 1499–1519. [Google Scholar] [CrossRef]
- Gervais, F. Anthropogenic CO2 warming challenged by 60-year cycle. Earth-Sci. Rev. 2016, 155, 129–135. [Google Scholar] [CrossRef]
- Jerri, A.J. The Shannon Sampling Theorem—Its various extensions and applications: A tutorial review. Proc. IEEE 1977, 65, 1565–1596. [Google Scholar] [CrossRef]
- Landau, H.J. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 1967, 117, 37–52. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Clem, K.R.; Fogt, R.L.; Turner, J.; Lintner, B.R.; Marshall, G.J.; Miller, J.R.; Renwick, J.A. Record warming at the South Pole during the past three decades. Nat. Clim. Change 2020, 10, 762–770. [Google Scholar] [CrossRef]
- Zhang, Z.; Gong, D.; Kim, S.; Mao, R.; Yang, J. Is the Antarctic oscillation trend during the recent decades unusual? Antarct. Sci. 2014, 26, 445–451. [Google Scholar] [CrossRef]
- Juzbašić, A.; Kryjov, V.N.; Ahn, J.-B. On the anomalous development of the extremely intense positive Arctic Oscillation of the 2019–2020 winter. Environ. Res. Lett. 2021, 16, 055008. [Google Scholar] [CrossRef]
- Tachibana, Y.; Inoue, Y.; Komatsu, K.K.; Nakamura, T.; Honda, M.; Ogata, K.; Yamazaki, K. Interhemispheric synchronization between the AO and the AAO. Geophys. Res. Lett. 2018, 45, 13477–13513. [Google Scholar] [CrossRef]
- England, M.R.; Polvani, L.M.; Screen, J.; Chan, A.C. Minimal Arctic sea ice loss in the last 20 years, consistent with internal climate variability. Geophys. Res. Lett. 2025, 52, e2025GL116175. [Google Scholar] [CrossRef]
- Zhai, X.; Johnson, H.L.; Marshall, D.P.; Wunsch, C. On the wind power input to the ocean general circulation. J. Phys. Oceanogr. 2012, 42, 1357–1365. [Google Scholar] [CrossRef]
- Nullschool. 2023. Available online: https://earth.nullschool.net (accessed on 29 September 2025).
- Marshall, J.; Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 2012, 5, 171–179. [Google Scholar] [CrossRef]
- Cai, W.; Gao, L.; Luo, Y.; Li, X.; Zheng, X.; Zhang, X.; Cheng, X.; Jia, F.; Purich, A.; Santoso, A.; et al. Southern Ocean warming and its climatic impacts. Sci. Bull. 2023, 68, 946–960. [Google Scholar] [CrossRef]
- Glasby, G.P. (Ed.) Antarctic Sector of the Pacific; Elsevier: New York, NY, USA, 1990; ISBN 0-444-88510-2. [Google Scholar]
- Langlais, C.E.; Rintoul, S.R.; Zika, J.D. Sensitivity of Antarctic Circumpolar Current transport and eddy activity to wind patterns in the Southern Ocean. J. Phys. Oceanogr. 2015, 45, 1051–1067. [Google Scholar] [CrossRef]
- Li, A.; Groeskamp, S.; Cerovečki, I.; England, M.H. The origin and fate of Antarctic Intermediate Water in the Southern Ocean. J. Phys. Oceanogr. 2022, 52, 2873–2890. [Google Scholar] [CrossRef]
- Spence, P.; Griffies, S.M.; England, M.; Hogg, A.M.; Saenko, O.A.; Jourdain, N. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 2014, 41, 4601–4610. [Google Scholar] [CrossRef]
- Anderson, R.F.; Ali, S.; Bradtmiller, L.I.; Nielsen, S.H.H.; Fleisher, M.Q.; Anderson, B.E.; Burckle, L.H. Wind-driven upwelling in the Southern Ocean and the deglacial rise in Atmospheric CO2. Science 2009, 323, 1443–1448. [Google Scholar] [CrossRef]
- Burke, A.; Robinson, L.F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 2012, 335, 557–561. [Google Scholar] [CrossRef]
- Denton, G.H.; Anderson, R.F.; Toggweiler, J.R.; Edwards, R.L.; Schaefer, J.M.; Putnam, A.E. The Last Glacial Termination. Science 2010, 328, 1652–1656. [Google Scholar] [CrossRef]
- Hall, A.; Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 2002, 15, 3043–3057. [Google Scholar] [CrossRef]
- Menviel, L.; Timmermann, A.; Mouchet, A.; Timm, O. Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography 2008, 23, PA1203. [Google Scholar] [CrossRef]
- Moreno, P.; Francois, J.; Moy, C.; Villa-Martínez, R. Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 2010, 38, 727–730. [Google Scholar] [CrossRef]
- Prasanna, K.; Ghosh, P.; Kumar, N.A. Stable isotopic signature of Southern Ocean deep water CO2 ventilation. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 118, 177–185. [Google Scholar] [CrossRef]
- Skinner, L.C.; Fallon, S.; Waelbroeck, C.; Michel, E.; Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 2010, 328, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Skinner, L.; Scrivner, A.; Vance, D.; Barker, S.; Fallon, S.; Waelbroeck, C. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 2013, 41, 667–670. [Google Scholar] [CrossRef]
- Skinner, L.C.; Waelbroeck, C.; Scrivner, A.E.; Fallon, S.J. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl. Acad. Sci. USA 2014, 111, 5480–5484. [Google Scholar] [CrossRef]
- Stott, L.; Timmermann, A.; Thunell, R. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 2007, 318, 435–438. [Google Scholar] [CrossRef]
- Wendt, K.A.; Nehrbass-Ahles, C.; Niezgoda, K.; Noone, D.; Kalk, M.; Menviel, L.; Gottschalk, J.; Rae, J.W.B.; Schmitt, J.; Fischer, H.; et al. Southern Ocean drives atmospheric CO2 rise during Heinrich Stadials. Proc. Natl. Acad. Sci. USA 2024, 121, e2319652121. [Google Scholar] [CrossRef]
- Yu, J.; Broecker, W.S.; Elderfield, H.; Jin, Z.; McManus, J.; Zhang, F. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 2010, 330, 1084–1087. [Google Scholar] [CrossRef]
- Ramonet, M.; Chatterjee, A.; Ciais, P.; Levin, I.; Sha, M.K.; Steinbacher, M.; Sweeney, C. CO2 in the atmosphere: Growth and trends since 1850. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2023. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.; Li, Y.; Zhao, S.; Zheng, F.; Zheng, J.; Yao, Z. Influence of the May Southern Annular Mode on the South China Sea summer monsoon. Clim. Dyn. 2018, 51, 4095–4107. [Google Scholar] [CrossRef]
- Zika, J.D.; Laliberté, F.; Mudryk, L.R.; Sijp, W.P.; Nurser, A.J.G. Changes in ocean vertical heat transport with global warming. Geophys. Res. Lett. 2015, 42, 4940–4948. [Google Scholar] [CrossRef]
- Olbers, D.; Borowski, D.; Völker, C.; Wolff, J.-O. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci. 2004, 16, 439–470. [Google Scholar] [CrossRef]
- Turner, J.; Bindschadler, R.; Convey, P.; di Prisco, G.; Fahrbach, E.; Gutt, J.; Hodgson, D.; Mayewski, P.; Summerhayes, C. (Eds.) Antarctic Climate Change and the Environment; Scientific Committee on Antarctic Research/Scott Polar Research Institute: Cambridge, UK, 2009; ISBN 978-0-948277-22-1. [Google Scholar]
- Guo, G.; Shi, J.; Gao, L.; Tamura, T.; Williams, G.D. Reduced sea ice production due to upwelled oceanic heat flux in Prydz Bay, East Antarctica. Geophys. Res. Lett. 2019, 46, 4782–4789. [Google Scholar] [CrossRef]
- Buizert, C.; Sigl, M.; Severi, M.; Markle, B.R.; Wettstein, J.J.; McConnell, J.R.; Pedro, J.B.; Sodemann, H.; Goto-Asuma, K.; Kawamura, K.; et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 2018, 563, 681–685. [Google Scholar] [CrossRef]
- Depoorter, M.A.; Bamber, J.L.; Griggs, J.A.; Lenaerts, J.T.M.; Ligtenberg, S.R.M.; van den Broeke, M.R.; Moholdt, G. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 2013, 502, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Gille, S.T. How ice shelves melt. Science 2014, 346, 1180–1181. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.A.; Blankenship, D.D.; Gwyther, D.E.; Silvano, A.; van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 2017, 3, e1701681. [Google Scholar] [CrossRef] [PubMed]
- Paolo, F.S.; Fricker, H.A.; Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 2015, 348, 327–331. [Google Scholar] [CrossRef]
- Park, T.; Nakayama, Y.; Nam, S.H. Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting. Nat. Commun. 2024, 15, 2946. [Google Scholar] [CrossRef]
- Pelle, T.; Morlighem, M.; Nakayama, Y.; Seroussi, H. Widespread grounding line retreat of Totten Glacier, East Antarctica, over the 21st century. Geophys. Res. Lett. 2021, 48, e2021GL093213. [Google Scholar] [CrossRef]
- Reese, R.; Garbe, J.; Hill, E.A.; Urruty, B.; Naughten, K.A.; Gagliardini, O.; Durand, G.; Gillet-Chaulet, F.; Gudmundsson, G.H.; Chandler, D.; et al. The stability of present-day Antarctic grounding lines—Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded. Cryosphere 2023, 17, 3761–3783. [Google Scholar] [CrossRef]
- Rignot, E.; Jacobs, S.S. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 2002, 296, 2020–2023. [Google Scholar] [CrossRef]
- Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B. Ice shelf melting around Antarctica. Science 2013, 341, 266–270. [Google Scholar] [CrossRef]
- Schmidtko, S.; Heywood, K.J.; Thompson, A.F.; Aoki, S. Multidecadal warming of Antarctic waters. Science 2014, 346, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, A.; Wingham, D.; Rignot, E. Warm ocean is eroding West Antarctic ice sheet. Geophys. Res. Lett. 2004, 31, L23402. [Google Scholar] [CrossRef]
- Stokes, C.R.; Abram, N.J.; Bentley, M.J.; Edwards, T.L.; England, M.H.; Foppert, A.; Jamieson, S.S.R.; Jones, R.S.; King, M.A.; Lenaerts, J.T.M.; et al. Response of the East Antarctic Ice Sheet to past and future climate change. Nature 2022, 608, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; England, M.H.; Groeskamp, S.; Cerovečki, I.; Luo, Y. The origin and fate of subantarctic mode water in the southern ocean. J. Phys. Oceanogr. 2021, 51, 2951–2972. [Google Scholar] [CrossRef]
- Darelius, E.; Daae, K.; Dundas, V.; Fer, I.; Hellmer, H.H.; Janout, M.; Nicholls, K.W.; Sallée, J.-B.; Østerhus, S. Observational evidence for on-shelf heat transport driven by dense water export in the Weddell Sea. Nat. Commun. 2023, 14, 1022. [Google Scholar] [CrossRef]
- Morrison, A.K.; Hogg, A.M.; England, M.H.; Spence, P. Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Sci. Adv. 2020, 6, eaav2516. [Google Scholar] [CrossRef]
- Ribeiro, N.; Herraiz-Borreguero, L.; Rintoul, S.; McMahon, C.; Hindell, M.; Harcourt, R.; Williams, G. Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit Dense Shelf Water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 2021, 126, e2020JC016998. [Google Scholar] [CrossRef]
- Mandal, G.; Lee, S.-Y.; Yu, J.-Y. Antarctic sea ice distribution is associated with the Subantarctic Mode and Antarctic Intermediate Waters during the last deglaciation. Proceedings 2023, 87, 38. [Google Scholar] [CrossRef]
- Couldrey, M.P.; Jullion, L.; Garabato, A.C.N.; Rye, C.; Herráiz-Borreguero, L.; Brown, P.J.; Meredith, M.P.; Speer, K.L. Remotely induced warming of Antarctic Bottom Water in the eastern Weddell gyre. Geophys. Res. Lett. 2013, 40, 2755–2760. [Google Scholar] [CrossRef]
- Gille, S.T. Meridional displacement of the Antarctic Circumpolar Current. Philos. Trans. R. Soc. A 2014, 372, 20130273. [Google Scholar] [CrossRef]
- Yamazaki, K.; Aoki, S.; Katsumata, K.; Hirano, D.; Nakayama, Y. Poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica. Sci. Adv. 2021, 7, eabf8755. [Google Scholar] [CrossRef]
- Chung, E.-S.; Kim, S.-J.; Timmermann, A.; Ha, K.-J.; Lee, S.-K.; Stuecker, M.F.; Rodgers, K.B.; Lee, S.-S.; Huang, L. Antarctic sea-ice expansion and Southern Ocean cooling linked to tropical variability. Nat. Clim. Change 2022, 12, 461–468. [Google Scholar] [CrossRef]
- Clem, K.R.; Renwick, J.A.; McGregor, J. Autumn cooling of western East Antarctica linked to the tropical Pacific. J. Geophys. Res. Atmos. 2018, 123, 89–107. [Google Scholar] [CrossRef]
- Dong, L.; Zhou, T. The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. J. Geophys. Res. Atmos. 2014, 119, 11272–11287. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Bitz, C.M.; Chung, C.T.; Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 2016, 9, 590–595. [Google Scholar] [CrossRef]
- Gillett, N.P.; Kell, T.D.; Jones, P.D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 2006, 33, L23704. [Google Scholar] [CrossRef]
- Hauck, J.; Völker, C.; Wang, T.; Hoppema, M.; Losch, M.; Wolf-Gladrow, D.A. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode. Glob. Biogeochem. Cycles 2013, 27, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Lovenduski, N.S.; Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 2005, 32, L11603. [Google Scholar] [CrossRef]
- Bryden, H.L.; Cunningham, S.A. How wind-forcing and air-sea heat exchange determine the meridional temperature gradient and stratification for the Antarctic Circumpolar Current. J. Geophys. Res. Oceans 2003, 108, 3275. [Google Scholar] [CrossRef]
- Hayakawa, H.; Shibuya, K.; Aoyama, Y.; Nogi, Y.; Doi, K. Ocean bottom pressure variability in the Antarctic divergence zone off Lützow-Holm Bay, East Antarctica. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2012, 60, 22–31. [Google Scholar] [CrossRef]
- Karsten, R.; Jones, H.; Marshall, J. The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr. 2002, 32, 39–54. [Google Scholar] [CrossRef]
- Knauss, J.A. Introduction to Physical Oceanography, 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2016; pp. 152–156. [Google Scholar]
- Pohl, B.; Favier, V.; Wille, J.; Udy, D.G.; Vance, T.R.; Pergaud, J.; Dutrievoz, N.; Blanchet, J.; Kittel, C.; Amory, C.; et al. Relationship between weather regimes and atmospheric rivers in East Antarctica. J. Geophys. Res. Atmos. 2021, 126, e2021JD035294. [Google Scholar] [CrossRef]
- Spungin, S.; Si, Y.; Stewart, A.L.; Prend, C.J. Observed seasonality of mixed-layer eddies and vertical heat transport over the Antarctic continental shelf. J. Geophys. Res. Ocean. 2025, 130, e2024JC021564. [Google Scholar] [CrossRef]
- Qu, B.; Gabric, A.J.; Jiang, L.; Li, C. Comparison between early and late 21st C phytoplankton biomass and dimethylsulfide flux in the subantarctic Southern Ocean. J. Ocean Univ. China 2020, 19, 151–160. [Google Scholar] [CrossRef]
- Stewart, A.L.; Thompson, A.F. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 2015, 42, 432–440. [Google Scholar] [CrossRef]
- Thompson, A.F.; Heywood, K.J.; Schmidtko, S.; Stewart, A.L. Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci. 2014, 7, 879–884. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, M.; Cheng, X. Seasonal and interannual variability between upper ocean processes and the slope current in the region around the Cosmonauts Sea off East Antarctica. J. Geophys. Res. Oceans 2024, 129, e2023JC019636. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Cheng, C.; Wu, Y.; Xia, R.; Li, B.; Li, X. On the modified Circumpolar Deep Water upwelling over the Four Ladies Bank in Prydz Bay, East Antarctica. J. Geophys. Res. Oceans 2018, 123, 7819–7838. [Google Scholar] [CrossRef]
- Alley, K.E.; Alley, R.B.; Crawford, A.D.; Ochwat, N.; Wild, C.T.; Marson, J.; Snow, T.; Muto, A.; Pettit, E.C.; Child, S.F.; et al. Evolution of sub-ice-shelf channels reveals changes in ocean-driven melt in West Antarctica. J. Glaciol. 2024, 70, e50. [Google Scholar] [CrossRef]
- Drijfhout, S.S.; Bull, C.Y.S.; Hewitt, H.; Holland, P.R.; Jenkins, A.; Mathiot, P.; Garabato, A.N. An Amundsen Sea source of decadal temperature changes on the Antarctic continental shelf. Ocean Dyn. 2024, 74, 37–52. [Google Scholar] [CrossRef]
- Fox, M.; Clinger, A.; Smith, A.G.G.; Cuffey, K.; Shuster, D.; Herman, F. Antarctic Peninsula glaciation patterns set by landscape evolution and dynamic topography. Nat. Geosci. 2024, 17, 73–78. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Ligtenberg, S.R.M.; Fricker, H.A.; Vaughan, D.G.; Broeke, M.R.V.D.; Padman, L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 2012, 484, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.E.; Washam, P.; Davis, P.E.D.; Nicholls, K.W.; Holland, D.M.; Lawrence, J.D.; Riverman, K.L.; Smith, J.A.; Spears, A.; Dichek, D.J.G.; et al. Heterogeneous melting near the Thwaites Glacier grounding line. Nature 2023, 614, 471–478. [Google Scholar] [CrossRef]
- Tamura, T.; Williams, G.; Fraser, A.; Ohshima, K. Potential regime shift in decreased sea ice production after the Mertz Glacier calving. Nat. Commun. 2012, 3, 826. [Google Scholar] [CrossRef]
- Wild, C.T.; Alley, K.E.; Muto, A.; Truffer, M.; Scambos, T.A.; Pettit, E.C. Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica. Cryosphere 2022, 16, 397–417. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Smith, R.C.; Vernet, M. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl. Acad. Sci. USA 2002, 99, 1790–1795. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S.; Hartfield, G. (Eds.) State of the Climate in 2017. Bull. Am. Meteorol. Soc. 2018, 99, S1–S310. Available online: https://www.jstor.org/stable/26639466 (accessed on 29 September 2025).
- Carnot, S. Annales scientifiques de l’École Normale Supérieure. In Réflexions sur la Puissance Motrice du feu et sur les Machines Propres à Développer Cette Puissance; Chez Bachelier: Paris, France, 1872; Volume 1, pp. 393–457. [Google Scholar] [CrossRef]
- Kleidon, A.; Lorenz, R. Entropy production by Earth system processes. In Non-Equilibrium Thermodynamics and the Production of Entropy. Understanding Complex Systems; Kleidon, A., Lorenz, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–20. ISBN 978-3-540-22495-2. [Google Scholar]
- Laliberté, F.; Zika, J.; Mudryk, L.; Kushner, P.J.; Kjellsson, J.; Döös, K. Constrained work output of the moist atmospheric heat engine in a warming climate. Science 2015, 347, 540–543. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic non-periodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Van der Pol, B. LXXXVIII. On “relaxation-oscillations”. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1926, 2, 978–992. [Google Scholar] [CrossRef]
- Crucifix, M. Oscillators and relaxation phenomena in Pleistocene climate theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1140–1165. [Google Scholar] [CrossRef]
- Ghil, M.; Le Treut, H. A climate model with cryodynamics and geodynamics. J. Geophys. Res. Oceans 1981, 86, 5262–5270. [Google Scholar] [CrossRef]
- Källén, E.; Crafoord, C.; Ghil, M. Free oscillations in a climate model with ice-sheet dynamics. J. Atmos. Sci. 1979, 36, 2292–2303. [Google Scholar] [CrossRef]
- Paillard, D. Glacial cycles: Toward a new paradigm. Rev. Geophys. 2001, 39, 325–346. [Google Scholar] [CrossRef]
- Płociniczak, Ł. Asymptotic analysis of internal relaxation oscillations in a conceptual climate model. IMA J. Appl. Math. 2020, 85, 464–494. [Google Scholar] [CrossRef]
- Roberts, A.; Saha, R. Relaxation oscillations in an idealized ocean circulation model. Clim. Dyn. 2017, 48, 2123–2134. [Google Scholar] [CrossRef]
- Schulz, M.; Paul, A.; Timmermann, A. Relaxation oscillators in concert: A framework for climate change at millennial timescales during the late Pleistocene. Geophys. Res. Lett. 2002, 29, 2193. [Google Scholar] [CrossRef]
- Vettoretti, G.; Peltier, W.R. Fast physics and slow physics in the nonlinear Dansgaard–Oeschger relaxation oscillation. J. Clim. 2018, 31, 3423–3449. [Google Scholar] [CrossRef]
- Poggemann, D.-W.; Nürnberg, D.; Hathorne, E.C.; Frank, M.; Rath, W.; Reißig, S.; Bahr, A. Deglacial heat uptake by the Southern Ocean and rapid northward redistribution via Antarctic Intermediate Water. Paleoceanogr. Paleoclimatol. 2018, 33, 1292–1305. [Google Scholar] [CrossRef]
- Hughes, S.; Grimsey, S.; Strutton, P.H. Primary motor cortex transcranial direct current stimulation modulates temporal summation of the nociceptive withdrawal reflex in healthy subjects. Pain Med. 2018, 20, 1156–1165. [Google Scholar] [CrossRef]
- Middlebrook, N.; Heneghan, N.R.; Evans, D.W.; Rushton, A.; Falla, D. Reliability of temporal summation, thermal and pressure pain thresholds in a healthy cohort and musculoskeletal trauma population. PLoS ONE 2020, 15, e0233521. [Google Scholar] [CrossRef]
- Zhou, J.; Benson, N.C.; Kay, K.N.; Winawer, J. Compressive temporal summation in human visual cortex. J. Neurosci. 2017, 38, 691–709. [Google Scholar] [CrossRef]
- Haegens, S.; Golumbic, E.Z. Rhythmic facilitation of sensory processing: A critical review. Neurosci. Biobehav. Rev. 2017, 86, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Seay, M.J.; Natan, R.G.; Geffen, M.N.; Buonomano, D.V. Differential short-term plasticity of PV and SST neurons accounts for adaptation and facilitation of cortical neurons to auditory tones. J. Neurosci. 2020, 40, 9224–9235. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 2000, 23, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.; Pedro, J.; Bostock, H.; Chase, Z.; Noble, T. Compiled Southern Ocean sea surface temperatures correlate with Antarctic isotope maxima. Quat. Sci. Rev. 2021, 255, 106821. [Google Scholar] [CrossRef]
- Blunier, T.; Brook, E.J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 2001, 291, 109–112. [Google Scholar] [CrossRef]
- Buiron, D.; Stenni, B.; Chappellaz, J.; Landais, A.; Baumgartner, M.; Bonazza, M.; Capron, E.; Frezzotti, M.; Kageyama, M.; Lemieux-Dudon, B.; et al. Regional imprints of millennial variability during the MIS 3 period around Antarctica. Quat. Sci. Rev. 2012, 48, 99–112. [Google Scholar] [CrossRef]
- EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 2006, 444, 195–198. [Google Scholar] [CrossRef]
- Rocio, P.; Caballero-Gill, R.P.; Clemens, S.; Prell, W. Antarctic Isotope Maxima events 24 and 25 identified in benthic marine d18O. Paleoceanogr. Paleoclimatol. 2012, 27, PA1101. [Google Scholar] [CrossRef]
- Stenni, B.; Masson-Delmotte, V.; Selmo, E.; Oerter, H.; Meyer, H.; Röthlisberger, R.; Jouzel, J.; Cattani, O.; Falourd, S.; Fischer, H.; et al. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quat. Sci. Rev. 2010, 29, 146–159. [Google Scholar] [CrossRef]
- Blunier, T.; Chappellaz, J.; Schwander, J.; Dällenbach, A.; Stauffer, B.; Stocker, T.F.; Raynaud, D.; Jouzel, J.; Clausen§, H.B.; Hammer§, C.U.; et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 1998, 394, 739–743. [Google Scholar] [CrossRef]
- Van Westen, R.M.; Kliphuis, M.; Dijkstra, H.A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 2024, 10, eadk1189. [Google Scholar] [CrossRef]
- Lenssen, N.; Schmidt, G.A.; Hendrickson, M.; Jacobs, P.; Menne, M.J.; Ruedy, R. A NASA GISTEMPv4 observational uncertainty ensemble. J. Geophys. Res. Atmos. 2024, 129, e2023JD040179. [Google Scholar] [CrossRef]
- Davis, P.T.; Menounos, B.; Osborn, G. Holocene and latest Pleistocene alpine glacier fluctuations: A global perspective. Quat. Sci. Rev. 2009, 28, 2021–2033. [Google Scholar] [CrossRef]
- Wanner, H.; Solomina, O.; Grosjean, M.; Ritz, S.P.; Jetel, M. Structure and origin of Holocene cold events. Quat. Sci. Rev. 2011, 30, 3109–3123. [Google Scholar] [CrossRef]
- Perry, C.A.; Hsu, K.A. Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proc. Natl. Acad. Sci. USA 2000, 97, 12433–12438. [Google Scholar] [CrossRef]
- Bartov, Y.; Goldstein, S.L.; Stein, M.; Enzel, Y. Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 2003, 31, 439–442. [Google Scholar] [CrossRef]
- Bond, G.C.; Lotti, R. Iceberg Discharges into the North Atlantic on millennial time scales during the last glaciation. Science 1995, 267, 1005–1010. [Google Scholar] [CrossRef]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; DeMenocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffman, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef]
- Benson, A.; Hoffmann, D.L.; Daura, J.; Sanz, M.; Rodrigues, F.; Souto, P.; Zilhão, J. A speleothem record from Portugal reveals phases of increased winter precipitation in western Iberia during the Holocene. Holocene 2021, 31, 1339–1350. [Google Scholar] [CrossRef]
- Gupta, A.K.; Anderson, D.M.; Overpeck, J.T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 2003, 421, 354–357. [Google Scholar] [CrossRef]
- Li, Y.-X.; Yu, Z.; Kodama, K.P. Sensitive moisture response to Holocene millennial-scale climate variations in the Mid-Atlantic region, USA. Holocene 2007, 17, 3–8. [Google Scholar] [CrossRef]
- Ni, H.-T.; Wang, Y.; Tian, F.; Yao, P.-Y.; Yuan, L.-P.; Ye, M.-N. Holocene climate evolution: Information from the Lacustrine–Fluvial sediment in North China. J. Paleolimnol. 2022, 68, 71–89. [Google Scholar] [CrossRef]
- Parker, A.G.; Goudie, A.S.; Stokes, S.; White, K.; Hodson, M.J.; Manning, M.; Kennet, D. A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quat. Res. 2006, 66, 465–476. [Google Scholar] [CrossRef]
- Premaratne, K.M.; Chandrajith, R.; Ratnayake, N.P.; Li, S.-L.; Gayantha, K.; Routh, J. North Atlantic forcing of Indian Winter Monsoon intensification: Evidence from Holocene sediments from the tropical Indian Ocean Island of Sri Lanka. Holocene 2024, 34, 274–282. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Wu, J.; Kelly, M.J.; Dykoski, C.A.; Li, X. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yin, Q.; Nai, W.; Wang, Z.; Lu, H.; Huang, C.; Gu, Y.; Li, L.; Wang, Y.; Liu, L. Orbital and millennial-scale climate variability over the past 76 ka in the Western Tarim Basin, Northwest China. J. Earth Sci. 2023, 34, 173–180. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Martín-Chivelet, J. A revisión de la estratigrafía del d18O en sondeos de hielo de glaciares en los Andes Centrales: Implicaciones para la variabilidad climática del Holoceno. Geotemas. J. Geol. Soc. Spain 2016, 16, 565–568. [Google Scholar]
- Obrochta, S.P.; Miyahara, H.; Yokoyama, Y.; Crowley, T. A re-examination of evidence for the North Atlantic “1500-year cycle” at Site 609. Quat. Sci. Rev. 2012, 55, 23–33. [Google Scholar] [CrossRef]
- Obrochta, S.P.; Yokoyama, Y.; Morén, J.; Crowley, T.J. Conversion of GISP2-based sediment core age models to the GICC05 extended chronology. Quat. Geochronol. 2014, 20, 1–7. [Google Scholar] [CrossRef]
- Rousseau, D.-D.; Bagniewski, W.; Ghil, M. Abrupt climate changes and the astronomical theory: Are they related? Clim. Past 2022, 18, 249–271. [Google Scholar] [CrossRef]
- Ogurtsov, M.G. On the millennial-scale variability in climate of the Northern Hemisphere. Earth Planet. Sci. 2023, 2, 44–48. [Google Scholar] [CrossRef]
- Held, F.; Cheng, H.; Edwards, R.L.; Tüysüz, O.; Koç, K.; Fleitmann, D. Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye. Nat. Commun. 2024, 15, 1183. [Google Scholar] [CrossRef]
- Boulila, S.; Galbrun, B.; Gardin, S.; Pellenard, P. A Jurassic record encodes an analogous Dansgaard–Oeschger climate periodicity. Sci. Rep. 2022, 12, 1968. [Google Scholar] [CrossRef]
- Broecker, W.S. Massive iceberg discharges as triggers for global climate change. Nature 1994, 372, 421–424. [Google Scholar] [CrossRef]
- Heinrich, H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 Years. Quat. Res. 1988, 29, 142–152. [Google Scholar] [CrossRef]
- Hemming, S.R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 2004, 42, RG1005. [Google Scholar] [CrossRef]
- Max, L.; Nürnberg, D.; Chiessi, C.M.; Lenz, M.M.; Mulitza, S. Subsurface ocean warming preceded Heinrich Events. Nat. Commun. 2022, 13, 4217. [Google Scholar] [CrossRef]
- Sachs, J.P.; Anderson, R.F. Increased productivity in the subantarctic ocean during Heinrich events. Nature 2005, 434, 1118–1121. [Google Scholar] [CrossRef]
- Mann, L.E.; Robel, A.A.; Meyer, C.R. Synchronization of Heinrich and Dansgaard-Oeschger events through ice-ocean interactions. Paleoceanogr. Paleoclimatol. 2021, 36, e2021PA004334. [Google Scholar] [CrossRef]
- Alvarez-Solas, J.; Charbit, S.; Ritz, C.; Paillard, D.; Ramstein, G.; Dumas, C. Links between ocean temperature and iceberg discharge during Heinrich events. Nat. Geosci. 2010, 3, 122–126. [Google Scholar] [CrossRef]
- Kemp, L. Are We on the Road to Civilisation Collapse? BBC Future. 19 February 2019. Available online: https://www.bbc.com/future/article/20190218-are-we-on-the-road-to-civilisation-collapse (accessed on 29 September 2025).
- D’ANdrea, W.J.; Huang, Y.; Fritz, S.C.; Anderson, N.J. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl. Acad. Sci. USA 2011, 108, 9765–9769. [Google Scholar] [CrossRef] [PubMed]
- De Menocal, P.B. Cultural responses to climate change during the late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef]
- Finné, M.; Holmgren, K.; Shen, C.-C.; Hu, H.-M.; Boyd, M.; Stocker, S. Late Bronze Age climate change and the destruction of the Mycenaean Palace of Nestor at Pylos. PLoS ONE 2017, 12, e0189447. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. Climate and the decline and fall of the western Roman Empire: A bibliometric view on an interdisciplinary approach to answer a most classic historical question. Climate 2018, 6, 90. [Google Scholar] [CrossRef]
- Roemer, H.R. The Safavid Period. In The Cambridge History of Iran; Jackson, P., Lockhart, L., Eds.; Cambridge University Press: Cambridge, UK, 1986; pp. 189–350. ISBN 0 521020094 6. [Google Scholar]
- Sampson, G.C. The Defeat of Rome: Crassus, Carrhae and the Invasion of the East; Pen & Sword Books: South Yorkshire, UK, 2008; ISBN 978-1-84415-676-4. [Google Scholar]
- Taagepera, R. Size and duration of empires growth-decline curves, 3000 to 600 B.C. Soc. Sci. Res. 1978, 7, 180–196. [Google Scholar] [CrossRef]
- Stips, A.; Macias, D.; Coughlan, C.; Garcia-Gorriz, E.; Liang, X.S. On the causal structure between CO2 and global temperature. Sci. Rep. 2016, 6, 21691. [Google Scholar] [CrossRef]
- Menzies, P.; Beebee, H. Counterfactual Theories of Causation. The Stanford Encyclopedia of Philosophy, Summer 2024 ed.; Zalta, E.N., Nodelman, U., Eds.; 2024; Available online: https://plato.stanford.edu/entries/causation-counterfactual/ (accessed on 29 September 2025).
- Lewis, D. Counterfactuals; Blackwell: Oxford, UK, 1973. [Google Scholar]
- Lewis, D. Causation. J. Philos. 1973, 70, 556–567. [Google Scholar] [CrossRef]
- Lewis, D. Causation as influence. In Causation and Counterfactuals; Hall, C.J., Paul, N., Eds.; MIT Press: Cambridge, MA, USA, 2004; pp. 75–106. [Google Scholar]
- Rohrer, J.M. Thinking clearly about correlations and causation: Graphical causal models for observational data. Adv. Methods Pract. Psychol. Sci. 2018, 1, 27–42. [Google Scholar] [CrossRef]
- Silver, N. The Signal and the Noise: The Art and Science of Prediction; Penguin Press: New York, NY, USA, 2012; ISBN 1846148162. [Google Scholar]
- Keeling, C.D.; Piper, S.C.; Bacastow, R.B.; Wahlen, M.; Whorf, T.P.; Heimann, M.; Meijer, H.A. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. In A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems; Ehleringer, J.R., Cerling, T.E., Dearing, M.D., Eds.; Springer: New York, NY, USA, 2005; pp. 83–113. [Google Scholar]
- Humlum, O. The State of the Climate 2022; Report 56; Global Warming Policy Foundation: London, UK, 2023. [Google Scholar]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.H.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos. 2021, 126, e2019JD032361. [Google Scholar] [CrossRef]
- Ricke, K.L.; Caldeira, K. Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett. 2014, 9, 124002. [Google Scholar] [CrossRef]
- Beaulieu, C.; Gallagher, C.; Killick, R.; Lund, R.; Shi, X. A recent surge in global warming is not detectable yet. Commun. Earth Environ. 2024, 5, 576. [Google Scholar] [CrossRef]
- Wei, M.; Song, Z.; Shu, Q.; Yang, X.; Song, Y.; Qiao, F. Revisiting the existence of the global warming slowdown during the early twenty-first century. J. Clim. 2022, 35, 1853–1871. [Google Scholar] [CrossRef]
- Yan, X.-H.; Boyer, T.; Trenberth, K.; Karl, T.R.; Xie, S.; Nieves, V.; Tung, K.-K.; Roemmich, D. The global warming hiatus: Slowdown or redistribution? Earth’s Future 2016, 4, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Fedorov, A.V. The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett. 2017, 44, 3816–3824. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Wang, H. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Sci. Rep. 2017, 7, 43735. [Google Scholar] [CrossRef]
- Lian, T. Uncertainty in detecting trend: A new criterion and its applications to global SST. Clim. Dyn. 2017, 49, 2881–2893. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.; Wang, M. Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep. 2016, 6, 19219. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Qi, W.; Wang, Z.; Liu, Y.; Ding, M. No significant shift of warming trend over the last two decades on the mid-south of the Tibetan plateau. Atmosphere 2019, 10, 416. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, M.; Wang, S.; Che, C.; Ma, R.; Ma, Z. Changes in air temperature over China in response to the recent global warming hiatus. J. Geogr. Sci. 2019, 29, 496–516. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, J.; Liu, Y. From accelerated warming to warming hiatus in China. Int. J. Clim. 2017, 37, 1758–1773. [Google Scholar] [CrossRef]
- Medhaug, I.; Stolpe, M.B.; Fischer, E.M.; Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 2017, 545, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.R.; Arguez, A.; Huang, B.; Lawrimore, J.H.; McMahon, J.R.; Menne, M.J.; Peterson, T.C.; Vose, R.S.; Zhang, H.-M. Possible artifacts of data biases in the recent global surface warming hiatus. Science 2015, 348, 1469–1472. [Google Scholar] [CrossRef]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.-K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Neely, R.R., III; Vernier, J.-P.; Dutton, E.G.; Thomason, L.W. The persistently variable “background” stratospheric aerosol layer and global climate change. Science 2011, 333, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Haywood, J.M.; Jones, A.; Jones, G.S. The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett. 2014, 15, 92–96. [Google Scholar] [CrossRef]
- Santer, B.D.; Bonfils, C.; Painter, J.F.; Zelinka, M.D.; Mears, C.; Solomon, S.; Schmidt, G.A.; Fyfe, J.C.; Cole, J.N.S.; Nazarenko, L.; et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 2014, 7, 185–189. [Google Scholar] [CrossRef]
- Arora, A.; Rao, S.A.; Chattopadhyay, R.; Goswami, T.; George, G.; Sabeerali, C. Role of Indian Ocean SST variability on the recent global warming hiatus. Glob. Planet. Change 2016, 143, 21–30. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 2014, 345, 897–903. [Google Scholar] [CrossRef]
- Guemas, V.; Doblas-Reyes, F.J.; Andreu-Burillo, I.; Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change 2013, 3, 649–653. [Google Scholar] [CrossRef]
- Liu, W.; Xie, S.-P.; Lu, J. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 2016, 7, 10926. [Google Scholar] [CrossRef] [PubMed]
- Nieves, V.; Willis, J.K.; Patzert, W.C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 2015, 349, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, B.; Romano, J.; Tsiang, M.; Diffenbaugh, N.S. Debunking the climate hiatus. Clim. Change 2015, 133, 129–140. [Google Scholar] [CrossRef]
- Smith, D. Oceanography: Has global warming stalled? Nat. Clim. Change 2013, 3, 618–619. [Google Scholar] [CrossRef]
- Steinman, B.A.; Mann, M.E.; Miller, S.K. Atlantic and Pacific oscillations and Northern Hemisphere temperatures. Science 2015, 347, 988–991. [Google Scholar] [CrossRef]
- Watanabe, M.; Kamae, Y.; Yoshimori, M.; Oka, A.; Sato, M.; Ishii, M.; Mochizuki, T.; Kimoto, M. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 2013, 40, 3175–3179. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef]
- Meehl, G.A.; Hu, A.; Arblaster, J.M.; Fasullo, J.; Trenberth, K.E. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 2013, 26, 7298–7310. [Google Scholar] [CrossRef]
- Meehl, G.A.; Teng, H.; Arblaster, J.M. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Change 2014, 4, 892–902. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Branstator, G.; Phillips, A.S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Change 2014, 4, 911–916. [Google Scholar] [CrossRef]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like interdecadal variability: 1900–1903. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Johnson, Z.F.; Chikamoto, Y.; Wang, S.-Y.S.; McPhaden, M.J.; Mochizuki, T. Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Clim. Dyn. 2020, 55, 789–811. [Google Scholar] [CrossRef]
- Pasini, A.; Triacca, U.; Attanasio, A. Evidence for the role of the Atlantic oscillation and the ocean heat uptake in hiatus prediction. Theor. Appl. Clim. 2017, 129, 873–880. [Google Scholar] [CrossRef]
- Berger, A.; Yin, Q.; Nifenecker, H.; Poitou, J. Slowdown of global surface air temperature increase and acceleration of ice melting. Earth’s Future 2017, 5, 811–822. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Z. Stable isotope evidence for recent global warming hiatus. J. Earth Sci. 2019, 31, 419–424. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y. The surface warming attributable to stratospheric water vapor in CO2-caused global warming. J. Geophys. Res. Atmos. 2020, 125, e2020JD032752. [Google Scholar] [CrossRef]
- Jucker, M.; Lucas, C.; Dutta, D. Long-term climate impacts of large stratospheric water vapor perturbations. J. Clim. 2024, 37, 4507–4521. [Google Scholar] [CrossRef]
- Robock, A.; Mao, J. The volcanic signal in surface temperature observations. J. Clim. 1995, 8, 1086–1103. [Google Scholar] [CrossRef]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Sévellec, F.; Sinha, B.; Skliris, N. The rogue nature of hiatuses in a global warming climate. Geophys. Res. Lett. 2016, 43, 8169–8177. [Google Scholar] [CrossRef]
- Seip, K.L.; Grøn, Ø. Cycles in oceanic teleconnections and global temperature change. Theor. Appl. Clim. 2019, 136, 985–1000. [Google Scholar] [CrossRef]
- Yao, S.-L.; Huang, G.; Wu, R.-G.; Qu, X. The global warming hiatus—A natural product of interactions of a secular warming trend and a multidecadal oscillation. Theor. Appl. Clim. 2016, 123, 349–360. [Google Scholar] [CrossRef]
- Xie, S.-P.; Kosaka, Y. What caused the global surface warming hiatus of 1998–2013? Curr. Clim. Change Rep. 2017, 3, 128–140. [Google Scholar] [CrossRef]
- Johnson, G.C.; Lyman, J.M. Warming trends increasingly dominate global ocean. Nat. Clim. Change 2020, 10, 757–761. [Google Scholar] [CrossRef]
- Lindsey, R.; Dahlman, L. Climate Change: Ocean Heat Content. Climate.gov, 17 August 2020. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-ocean-heat-content (accessed on 29 September 2025).
- Talley, L.D.; A Feely, R.; Sloyan, B.M.; Wanninkhof, R.; Baringer, M.O.; Bullister, J.L.; Carlson, C.A.; Doney, S.C.; Fine, R.A.; Firing, E.; et al. Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 2016, 8, 185–215. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Lu, W.; Zhang, W.; Yan, X.-H. Inconsistent subsurface and deeper ocean warming signals during recent global warming and hiatus. J. Geophys. Res. Ocean. 2017, 122, 8182–8195. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, L.; Abraham, J.; Li, C. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Clim. Dyn. 2018, 50, 2471–2487. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Wang, H.; Liu, H. Three-dimensional structure of oceanic mesoscale eddies. Ocean-Land-Atmos. Res. 2024, 3, 0051. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, L. Mesoscale meridional heat transport inferred from sea surface observations. Geophys. Res. Lett. 2024, 51, e2023GL106376. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, C.; Dong, J.; Zhang, H.; Yang, J. Submesoscale processes-induced vertical heat transport modulated by oceanic mesoscale eddies. Deep Sea Res. Part II Top. Stud. Oceanogr. 2022, 202, 105138. [Google Scholar] [CrossRef]
- Wolfe, C.L.; Cessi, P.; McClean, J.L.; Maltrud, M.E. Vertical heat transport in eddying ocean models. Geophys. Res. Lett. 2008, 35, L23605. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S.; He, Y.; Huang, G.; Zhan, W. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. Oceans 2018, 123, 4906–4929. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 99, 46–64. [Google Scholar] [CrossRef]
- Pan, H.; Qiu, C.; Liang, H.; Zou, L.; Zhang, Z.; He, B. Different vertical heat transport induced by submesoscale motions in the shelf and open sea of the northwestern South China Sea. Front. Mar. Sci. 2023, 10, 1236864. [Google Scholar] [CrossRef]
- Fischer, A.S.; Weller, R.A.; Rudnick, D.L.; Eriksen, C.C.; Lee, C.M.; Brink, K.H.; Fox, C.A.; Leben, R.R. Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 2231–2264. [Google Scholar] [CrossRef]
- Gille, S.T.; Sheen, K.L.; Swart, S.; Thompson, A.F. Mixing in the southern ocean. In Ocean Mixing: Drivers, Mechanisms and Impacts; Meredith, M., Garabato, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 301–327. ISBN 978-0-12-821512-8. [Google Scholar]
- He, Q.; Zhan, W.; Cai, S.; Du, Y.; Chen, Z.; Tang, S.; Zhan, H. Enhancing impacts of mesoscale eddies on Southern Ocean temperature variability and extremes. Proc. Natl. Acad. Sci. USA 2023, 120, e2302292120. [Google Scholar] [CrossRef]
- Siegelman, L.; Klein, P.; Rivière, P.; Thompson, A.F.; Torres, H.S.; Flexas, M.; Menemenlis, D. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 2020, 13, 50–55. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Qiu, B.; Luo, Y.; Cai, W.; Yuan, Q.; Liu, Y.; Zhang, H.; Liu, H.; Miao, M.; et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport. Nat. Commun. 2023, 14, 1335. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, S.; Wu, L.; Chang, P.; Zhang, Q.; Sun, B.; Ma, X.; Qiu, B.; Small, J.; Jin, F.-F.; et al. Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Sci. Adv. 2020, 6, eaba7880. [Google Scholar] [CrossRef]
- Bryden, H.L.; Longworth, H.R.; Cunningham, S.A. Slowing of the Atlantic meridional overturning circulation at 25° N. Nature 2005, 438, 655–657. [Google Scholar] [CrossRef]
- Liu, W.; Xie, S.-P.; Liu, Z.; Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 2017, 3, e1601666. [Google Scholar] [CrossRef]
- Smeed, D.A.; McCarthy, G.D.; Cunningham, S.A.; Frajka-Williams, E.; Rayner, D.; Johns, W.E.; Meinen, C.S.; Baringer, M.O.; Moat, B.I.; Duchez, A.; et al. Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci. 2014, 10, 29–38. [Google Scholar] [CrossRef]
- Kitoh, A. Correlation between the surface air temperature over Japan and the global sea surface temperature. J. Meteorol. Soc. Jpn. Ser. II 1988, 66, 967–986. [Google Scholar] [CrossRef]
- Roxy, M.; Tanimoto, Y. Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteorol. Soc. Jpn. Ser. II 2007, 85, 349–358. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Oliver, E.C.J.; Chen, K. Drivers of marine heatwaves in the northwest atlantic: The role of air–sea interaction during onset and decline. Front. Mar. Sci. 2021, 8, 627970. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Jin, F.-F.; Stuecker, M.F.; Sun, C.; Levine, A.F.; Xu, H.; Liu, C. A robust relationship between global warming rate variations and the Atlantic Variability. Clim. Dyn. 2020, 55, 1945–1959. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Xu, T.; Zhao, Y.; Newman, M.; Capotondi, A.; Stevenson, S.; Amaya, D.J.; Anderson, B.T.; Ding, R.; Furtado, J.C.; et al. Modes and mechanisms of Pacific decadal-scale variability. Annu. Rev. Mar. Sci. 2023, 15, 249–275. [Google Scholar] [CrossRef]
- MacDonald, G.M.; Case, R.A. Variations in the Pacific Decadal Oscillation over the past millennium. Geophys. Res. Lett. 2005, 32, L08703. [Google Scholar] [CrossRef]
- Alexander, M.A.; Kilbourne, K.H.; Nye, J.A. Climate variability during warm and cold phases of the Atlantic Oscillation (AMO) 1871–2008. J. Mar. Syst. 2014, 133, 14–26. [Google Scholar] [CrossRef]
- Dong, L.; McPhaden, M.J. The effects of external forcing and internal variability on the formation of interhemispheric sea surface temperature gradient trends in the Indian Ocean. J. Clim. 2017, 30, 9077–9095. [Google Scholar] [CrossRef]
- Knutson, T.R.; Zhang, R.; Horowitz, L.W. Prospects for a prolonged slowdown in global warming in the early 21st century. Nat. Commun. 2016, 7, 13676. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zha, Y. Satellite-based regional warming hiatus in China and its implication. Sci. Total. Environ. 2019, 648, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Shiogama, H.; Tatebe, H.; Hayashi, M.; Ishii, M.; Kimoto, M. Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Clim. Change 2014, 4, 893–897. [Google Scholar] [CrossRef]
- Li, Z.B.; Xu, Y.; Yuan, H.S.; Chang, Y.; Shen, C. AMO footprint of the recent near-surface wind speed change over China. Environ. Res. Lett. 2024, 19, 114031. [Google Scholar] [CrossRef]
- Zhang, L. The roles of external forcing and natural variability in global warming hiatuses. Clim. Dyn. 2016, 47, 3157–3169. [Google Scholar] [CrossRef]
- Feng, M.; Hendon, H.H.; Xie, S.P.; Marshall, A.G.; Schiller, A.; Kosaka, Y.; Caputi, N.; Alan, A. Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett. 2015, 42, 104–112. [Google Scholar] [CrossRef]
- Gan, Z.; Guan, X.; Kong, X.; Guo, R.; Huang, H.; Huang, W.; Xu, Y. The key role of Atlantic Oscillation in minimum temperature over North America during global warming slowdown. Earth Space Sci. 2019, 6, 387–397. [Google Scholar] [CrossRef]
- Goddard, L. Heat hide and seek. Nat. Clim. Change 2014, 4, 158–161. [Google Scholar] [CrossRef]
- Gou, R.; Liu, Y.; Wang, C. The controlling mechanisms of the recent global warming Hiatus: A focus on the internal variabilities. Tellus A Dyn. Meteorol. Oceanogr. 2022, 74, 172–186. [Google Scholar] [CrossRef]
- Johnson, N.C.; Amaya, D.J.; Ding, Q.; Kosaka, Y.; Tokinaga, H.; Xie, S.-P. Modulations of key metrics of global climate change. Glob. Planet. Change 2020, 188, 103–149. [Google Scholar] [CrossRef]
- Johnson, N.C.; Xie, S.-P.; Kosaka, Y.; Li, X. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 2018, 9, 1724. [Google Scholar] [CrossRef]
- Li, S.; Wu, L.; Yang, Y.; Geng, T.; Cai, W.; Gan, B.; Chen, Z.; Zhao, J.; Wang, G.; Ma, X. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Change 2020, 10, 30–34. [Google Scholar] [CrossRef]
- Liao, E.; Lu, W.; Yan, X.-H.; Jiang, Y.; Kidwell, A. The coastal ocean response to the global warming acceleration and hiatus. Sci. Rep. 2015, 5, 16630. [Google Scholar] [CrossRef]
- Lin, J.; Qian, T. The Atlantic multidecadal oscillation. Atmos.-Ocean 2022, 60, 307–337. [Google Scholar] [CrossRef]
- Liu, W.; Xie, S.P. An ocean view of the global surface warming hiatus. Oceanography 2018, 31, 72–79. Available online: https://www.jstor.org/stable/26542653 (accessed on 29 September 2025). [CrossRef]
- Maruyama, F. Influence of the Atlantic Oscillation and the Pacific Decadal Oscillation on global temperature by wavelet-based multifractal analysis. J. Geosci. Environ. Prot. 2019, 7, 105–117. [Google Scholar] [CrossRef]
- Stips, A.K.; Macias, D.; Garcia-Gorriz, E.; Coughlan, C. Global climate change: Anthropogenic warming versus natural oscillations: The consequences of the hiatus. In Proceedings of the OCEANS 2014—TAIPEI, Taipei, Taiwan, 7–10 April 2014; pp. 1–4. [Google Scholar]
- Wei, M.; Qiao, F.; Guo, Y.; Deng, J.; Song, Z.; Shu, Q.; Yang, X. Quantifying the importance of interannual, interdecadal and climate natural variabilities in the modulation of global warming rates. Clim. Dyn. 2019, 53, 6715–6727. [Google Scholar] [CrossRef]
- Yao, S.-L.; Luo, J.-J.; Huang, G.; Wang, P. Distinct global warming rates tied to multiple ocean surface temperature changes. Nat. Clim. Change 2017, 7, 486–492. [Google Scholar] [CrossRef]
- Yeo, S.-R.; Yeh, S.-W.; Kim, K.-Y.; Kim, W. The role of low-frequency variation in the manifestation of warming trend and ENSO amplitude. Clim. Dyn. 2017, 49, 1197–1213. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W.; Sienz, F. Unraveling causes for the changing behavior of the tropical Indian Ocean in the past few decades. J. Clim. 2018, 31, 2377–2388. [Google Scholar] [CrossRef]
- Ollila, A. Natural climate drivers dominate in the current warming. Sci. Clim. Change 2023, 3, 290–326. [Google Scholar] [CrossRef]
- Gastineau, G.; Friedman, A.R.; Khodri, M.; Vialard, J. Global ocean heat content redistribution during the 1998–2012 Interdecadal Pacific Oscillation negative phase. Clim. Dyn. 2019, 53, 1187–1208. [Google Scholar] [CrossRef]
- Folland, C.K.; Boucher, O.; Colman, A.; Parker, D.E. Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci. Adv. 2018, 4, eaao5297. [Google Scholar] [CrossRef]
- Rypdal, K. The life and death of the recent global surface warming hiatus parsimoniously explained. Climate 2018, 6, 64. [Google Scholar] [CrossRef]
- Watanabe, M.; Kang, S.M.; Collins, M.; Hwang, Y.-T.; McGregor, S.; Stuecker, M.F. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 2024, 630, 315–324. [Google Scholar] [CrossRef]
- Clem, K.R.; Fogt, R.L. Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring. J. Geophys. Res. Atmos. 2013, 118, 11,481–11,492. [Google Scholar] [CrossRef]
- Dätwyler, C.; Grosjean, M.; Steiger, N.J.; Neukom, R. Teleconnections and relationship between the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) in reconstructions and models over the past millennium. Clim. Past 2020, 16, 743–756. [Google Scholar] [CrossRef]
- Ding, Q.; Steig, E.J.; Battisti, D.S.; Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 2011, 4, 398–403. [Google Scholar] [CrossRef]
- Ding, Q.; Steig, E.J.; Battisti, D.S.; Wallace, J.M. Influence of the Tropics on the Southern Annular Mode. J. Clim. 2012, 25, 6330–6348. [Google Scholar] [CrossRef]
- Fogt, R.L.; Bromwich, D.H.; Hines, K.M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 2010, 36, 1555–1576. [Google Scholar] [CrossRef]
- Fogt, R.L.; Bromwich, D.H. Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the southern annular mode. J. Clim. 2006, 19, 979–997. [Google Scholar] [CrossRef]
- Gregory, S.; Noone, D. Variability in the teleconnection between the El Niño–Southern Oscillation and West Antarctic climate deduced from West Antarctic ice core isotope records. J. Geophys. Res. Atmos. 2008, 113, D17110. [Google Scholar] [CrossRef]
- L’heureux, M.L.; Thompson, D.W.J. Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 2006, 19, 276–287. [Google Scholar] [CrossRef]
- Wilson, A.B.; Bromwich, D.H.; Hines, K.M. Simulating the mutual forcing of anomalous high southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J. Clim. 2016, 29, 2291–2309. [Google Scholar] [CrossRef]
- Sui, C.; Yu, L.; Karpechko, A.Y.; Feng, L.; Liu, S. Influence of the Atlantic Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015. Acta Oceanol. Sin. 2024, 43, 48–58. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.; Liu, H.; Liu, Z.; Liu, Y.; Li, X.; Chen, Z. A stable snow–atmosphere coupled mode. Clim. Dyn. 2016, 47, 2085–2104. [Google Scholar] [CrossRef]
- Horel, J.D.; Wallace, J.M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weather Rev. 1981, 109, 813–829. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Ermentrout, B.; Park, Y.; Wilson, D. Recent advances in coupled oscillator theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20190092. [Google Scholar] [CrossRef]
- Gottwald, G.A. Model reduction for networks of coupled oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 053111. [Google Scholar] [CrossRef] [PubMed]
- Kuramoto, Y. Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D Nonlinear Phenom. 1991, 50, 15–30. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Nakao, H. On the concept of dynamical reduction: The case of coupled oscillators. Philos. Trans. R. Soc. A 2019, 377, 20190041. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Smirnov, D.A. Study of the mutual influence of the El Niño-Southern Oscillation processes and the North Atlantic and Arctic Oscillations. Izv. Atmos. Ocean. Phys. 2006, 42, 598–614. [Google Scholar] [CrossRef]
- Ramirez, J.P.; Nijmeijer, H. The Poincaré method: A powerful tool for analyzing synchronization of coupled oscillators. Indag. Math. 2016, 27, 1127–1146. [Google Scholar] [CrossRef]
- Skardal, P.S.; Arenas, A. Control of coupled oscillator networks with application to microgrid technologies. Sci. Adv. 2015, 1, e1500339. [Google Scholar] [CrossRef]
- Skardal, P.S.; Arenas, A. Dual control of coupled oscillator networks. IEEE Open J. Control Syst. 2023, 2, 146–154. [Google Scholar] [CrossRef]
- Acebrón, J.A.; Bonilla, L.L.; Pérez Vincente, C.J.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137–185. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, D.; Wang, J.; Ren, J.; Yu, Z.; Yang, C.; Xu, M.; Wang, H.; Tan, X. Predicting and understanding the Pacific Decadal Oscillation using machine learning. Remote Sens. 2024, 16, 2261. [Google Scholar] [CrossRef]
- Smith, D.M.; Scaife, A.A.; Boer, G.J.; Caian, M.; Doblas-Reyes, F.J.; Guemas, V.; Hawkins, E.; Hazeleger, W.; Hermanson, L.; Ho, C.K.; et al. Real-time multi-model decadal climate predictions. Clim. Dyn. 2012, 41, 2875–2888. [Google Scholar] [CrossRef]
- Shukla, J.; Hagedorn, R.; Hoskins, B.; Kinter, J.; Marotzke, J.; Miller, M.; Palmer, T.N.; Slingo, J. Revolution in climate prediction is both necessary and possible. Bull. Am. Meteorol. Soc. 2009, 90, 175–178. [Google Scholar] [CrossRef]
- Li, X.; Ding, R. The backward nonlinear local Lyapunov exponent and its application to quantifying the local predictability of extreme high-temperature events. Clim. Dyn. 2023, 60, 2767–2781. [Google Scholar] [CrossRef]
- Born, L.; Prager, S.; Ramirez-Villegas, J.; Imbach, P. A global meta-analysis of climate services and decision-making in agriculture. Clim. Serv. 2021, 22, 100231. [Google Scholar] [CrossRef]
- Ceglar, A.; Toreti, A.; Prodhomme, C.; Zampieri, M.; Turco, M.; Doblas-Reyes, F.J. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast. Sci. Rep. 2018, 8, 1322. [Google Scholar] [CrossRef]
- Iizumi, T.; Takaya, Y.; Kim, W.; Nakaegawa, T.; Maeda, S. Global within-season yield anomaly prediction for major crops derived using seasonal forecasts of large-scale climate indices and regional temperature and precipitation. Weather Forecast. 2021, 36, 285–299. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Basist, A.; Dinar, A.; Kurukulasuriya, P.; Williams, C. What explains agricultural performance: Climate normals or climate variance? Clim. Change 2007, 81, 85–99. [Google Scholar] [CrossRef]
- Lemos, M.C.; Rood, R.B. Climate projections and their impact on policy and practice. Wiley Interdiscip. Rev. Clim. Change 2010, 1, 670–682. [Google Scholar] [CrossRef]
- de Freitas, C.R. Tourism climatology: Evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int. J. Biometeorol. 2003, 48, 45–54. [Google Scholar] [CrossRef]
- Khasnis, A.A.; Nettleman, M.D. Global warming and infectious disease. Arch. Med. Res. 2005, 36, 689–696. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Meehl, G.A.; Goddard, L.; Murphy, J.; Stouffer, R.J.; Boer, G.; Danabasoglu, G.; Dixon, K.; Giorgetta, M.A.; Greene, A.M.; Hawkins, E.; et al. Decadal Prediction. Bull. Am. Meteorol. Soc. 2009, 90, 1467–1485. [Google Scholar] [CrossRef]
- Yuan, N.; Huang, Y.; Duan, J.; Zhu, C.; Xoplaki, E.; Luterbacher, J. On climate prediction: How much can we expect from climate memory? Clim. Dyn. 2019, 52, 855–864. [Google Scholar] [CrossRef]
- Smith, D.M.; Eade, R.; Scaife, A.A.; Caron, L.-P.; Danabasoglu, G.; DelSole, T.M.; Delworth, T.; Doblas-Reyes, F.J.; Dunstone, N.J.; Hermanson, L.; et al. Robust skill of decadal climate predictions. npj Clim. Atmos. Sci. 2019, 2, 13. [Google Scholar] [CrossRef]
- Slater, L.J.; Arnal, L.; Boucher, M.-A.; Chang, A.Y.-Y.; Moulds, S.; Murphy, C.; Nearing, G.; Guy Shalev, G.; Shen, C.; Speight, L.; et al. Hybrid forecasting: Blending climate predictions with AI models. Hydrol. Earth Syst. Sci. 2023, 27, 1865–1889. [Google Scholar] [CrossRef]
- He, S.; Wang, H.; Li, H.; Zhao, J. Principle of machine learning and its potential application in climate prediction. J. Auton. Intell. 2021, 4, 13–28. [Google Scholar] [CrossRef]
- Yang, R.; Hu, J.; Li, Z.; Mu, J.; Yu, T.; Xia, J.; Li, X.; Dasgupta, A.; Xiong, H. Interpretable machine learning for weather and climate prediction: A review. Atmos. Environ. 2024, 338, 120797. [Google Scholar] [CrossRef]
- Brown, P.T.; Caldeira, K. Empirical prediction of short-term annual global temperature variability. Earth Space Sci. 2020, 7, e2020EA001116. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Q.; Song, H.; An, Z.S.; Hans, W.L. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chin. Sci. Bull. 2011, 56, 2986–2994. [Google Scholar] [CrossRef]
- Mengaldo, G.; Wyszogrodzki, A.; Diamantakis, M.; Lock, S.-J.; Giraldo, F.X.; Wedi, N.P. Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch. Comput. Methods Eng. 2019, 26, 663–684. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef]
- Algeo, T.J.; Chen, Z.Q.; Fraiser, M.L.; Twitchett, R.J. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 1–11. [Google Scholar] [CrossRef]
- Beauchamp, B.; Grasby, S.E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 350, 73–90. [Google Scholar] [CrossRef]
- Bond, D.P.G.; Wignall, P.B. Pyrite framboid study of marine Permian–Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bull. 2010, 122, 1265–1279. [Google Scholar] [CrossRef]
- Bond, D.P.G.; Wignall, P.B. Large igneous provinces and mass extinctions: An update. In Volcanism, Impacts, and Mass Extinctions: Causes and Effects; Keller, G., Kerr, A.C., Eds.; Geological Society of America Special Paper 505; Geological Society of America: Boulder, CO, USA, 2014; pp. 29–55. [Google Scholar] [CrossRef]
- Benton, M.J.; Newell, A.J. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res. 2014, 25, 1308–1337. [Google Scholar] [CrossRef]
- Bond, D.P.; Grasby, S.E. On the causes of mass extinctions. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 478, 3–29. [Google Scholar] [CrossRef]
- Bond, D.P.; Grasby, S.E. Mass extinction causality. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 478, 1–2. [Google Scholar] [CrossRef]
- Brenchley, P.J.; Marshall, J.D.; Underwood, C.J. Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geol. J. 2001, 36, 329–340. [Google Scholar] [CrossRef]
- Corso, J.D.; Song, H.; Callegaro, S.; Chu, D.; Sun, Y.; Hilton, J.; Grasby, S.E.; Joachimski, M.M.; Wignall, P.B. Environmental crises at the Permian–Triassic mass extinction. Nat. Rev. Earth Environ. 2022, 3, 197–214. [Google Scholar] [CrossRef]
- Corso, J.D.; Newton, R.J.; Zerkle, A.L.; Chu, D.; Song, H.; Song, H.; Tian, L.; Tong, J.; Di Rocco, T.; Claire, M.W.; et al. Repeated pulses of volcanism drove the end-Permian terrestrial crisis in northwest China. Nat. Commun. 2024, 15, 7628. [Google Scholar] [CrossRef]
- Fox, C.P.; Whiteside, J.H.; Olsen, P.E.; Cui, X.; Summons, R.E.; Idiz, E.; Grice, K. Two-pronged kill mechanism at the end-Triassic mass extinction. Geology 2022, 50, 448–453. [Google Scholar] [CrossRef]
- Henehan, M.J.; Ridgwell, A.; Thomas, E.; Zhang, S.; Alegret, L.; Schmidt, D.N.; Raeh, J.W.B.; Witts, J.D.; Landman, N.H.; Greene, S.E.; et al. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl. Acad. Sci. USA 2019, 116, 22500–22504. [Google Scholar] [CrossRef]
- Kaiho, K.; Aftabuzzaman, M.; Jones, D.S.; Tian, L. Pulsed volcanic combustion events coincident with the end-Permian terrestrial disturbance and the following global crisis. Geology 2021, 49, 289–293. [Google Scholar] [CrossRef]
- Kiessling, W.; Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 2011, 17, 56–67. [Google Scholar] [CrossRef]
- Kroeck, D.M.; Mullins, G.; Zacai, A.; Monnet, C.; Servais, T. A review of Paleozoic phytoplankton biodiversity: Driver for major evolutionary events? Earth-Sci. Rev. 2022, 232, 104113. [Google Scholar] [CrossRef]
- Prokoph, A.; Rampino, M.R.; El Bilali, H. Periodic components in the diversity of calcareous plankton and geological events over the past 230 Myr. Palaeogeogr. Palaeoclim. Palaeoecol. 2004, 207, 105–125. [Google Scholar] [CrossRef]
- Tappan, H. Primary production, isotopes, extinctions and the atmosphere. Palaeogeogr. Palaeoclim. Palaeoecol. 1968, 4, 187–210. [Google Scholar] [CrossRef]
- Wignall, P.B.; Bond, D.P.G. The great catastrophe: Causes of the Permo-Triassic marine mass extinction. Natl. Sci. Rev. 2024, 11, nwad273. [Google Scholar] [CrossRef]
- Sepkoski, J.J. A compendium of fossil marine animal genera. Bull. Am. Paleontol. 2002, 363, 1–560. [Google Scholar]
- Rom, W.N. Environmental and Occupational Medicine, 2nd ed; Little Brown & Company: Boston, MA, USA, 1992; ISBN 978-3540204978. [Google Scholar]
- OSHA. 2007. Available online: https://www.osha.gov/laws-regs/standardinterpretations/2007-04-02-0#:~:text=Paragraph%20(d)(2)(,dangerous%20to%20life%20or%20health (accessed on 16 February 2025).
- Iglesias-Rodriguez, M.D.; Halloran, P.R.; Rickaby, R.E.M.; Hall, I.R.; Colmenero-Hidalgo, E.; Gittins, J.R.; Darryl, R.H.; Green, T.T.; Gibbs, S.J.; von Dassow, P.; et al. Phytoplankton calcification in a high-CO2 world. Science 2008, 320, 336–340. [Google Scholar] [CrossRef]
- Langer, G.; Bode, M. CO2 mediation of adverse effects of seawater acidification in Calcidiscus leptoporus. Geochem. Geophys. Geosyst. 2011, 12, Q05001. [Google Scholar] [CrossRef]
- Rost, B.; Zondervan, I.; Wolf-Gladrow, D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions. Mar. Ecol. Prog. Ser. 2008, 373, 227–237. [Google Scholar] [CrossRef]
- Mackey, K.R.; Morris, J.J.; Morel, F.M.; Kranz, S.A. Response of photosynthesis to ocean acidification. Oceanography 2015, 28, 74–91. [Google Scholar] [CrossRef]
- Traving, S.J.; Clokie, M.R.; Middelboe, M. Increased acidification has a profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses. FEMS Microbiol. Ecol. 2014, 87, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, C.J.M.; Schuback, N.; Semeniuk, D.; Giesbrecht, K.; Mol, J.; Thomas, H.; Maldonado, M.T.; Rost, B.; Varela, D.E.; Tortell, P.D. Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance. Polar Biol. 2018, 41, 399–413. [Google Scholar] [CrossRef]
- Newbold, L.K.; Oliver, A.E.; Booth, T.; Tiwari, B.; DeSantis, T.; Maguire, M.; Andersen, G.; van der Gast, C.J.; Andrew, S.; Whiteley, A.S. The response of marine picoplankton to ocean acidification. Environ. Microbiol. 2012, 14, 2293–2307. [Google Scholar] [CrossRef]
- Brussaard, C.P.D.; Noordeloos, A.A.M.; Witte, H.; Collenteur, M.C.J.; Schulz, K.; Ludwig, A.; Riebesell, U. Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences 2013, 10, 719–731. [Google Scholar] [CrossRef]
- Thoisen, C.; Riisgaard, K.; Lundholm, N.; Nielsen, T.G.; Hansen, P.J. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Mar. Ecol. Prog. Ser. 2015, 520, 21–34. [Google Scholar] [CrossRef]
- Trimborn, S.; Brenneis, T.; Sweet, E.; Rost, B. Sensitivity of Antarctic phytoplankton species to ocean acidification: Growth, carbon acquisition, and species interaction. Limnol. Oceanogr. 2013, 58, 997–1007. [Google Scholar] [CrossRef]
- Jin, P.; Gao, K. Effects of ocean acidification on marine primary producers and related ecological processes under multiple stressors. In Anthropogenic Pollution of Aquatic Ecosystems; Springer International Publishing: Cham, Switzerland, 2021; pp. 401–426. [Google Scholar] [CrossRef]
- Li, F.; Jiang, L.; Zhang, T.; Qiu, J.; Lv, D.; Su, T.; Li, W.; Xu, J.; Wang, H. Combined effects of seawater acidification and benzo(a)pyrene on the physiological performance of the marine bloom-forming diatom Skeletonema costatum. Mar. Environ. Res. 2021, 169, 105396. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Macken, A.; Tollefsen, K.E. Interactive effects of elevated atmospheric CO2 and UV-B radiation: A multi-level study on marine diatom Skeletonema pseudocostatum. Ecotoxicol. Environ. Saf. 2025, 291, 117879. [Google Scholar] [CrossRef]
- Espinel-Velasco, N.; Gawinski, C.; Kohlbach, D.; Pitusi, V.; Graeve, M.; Hop, H. Interactive effects of ocean acidification and temperature on oxygen uptake rates in Calanus hyperboreus nauplii. Front. Mar. Sci. 2023, 10, 1240673. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Y.; Häder, D.-P. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 2018, 30, 743–759. [Google Scholar] [CrossRef]
- Sommer, U.; Paul, C.; Moustaka-Gouni, M. Warming and ocean acidification effects on phytoplankton—From species shifts to size shifts within species in a mesocosm experiment. PLoS ONE 2015, 10, e0125239. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Tong, S.; Wang, B.; Zhang, X.; Wang, W.; Zhang, X.; Fan, X.; Wang, Y.; Sun, K.; Ye, N. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature. Mar. Pollut. Bull. 2022, 177, 113510. [Google Scholar] [CrossRef] [PubMed]
- Fassbender, A.J.; Carter, B.R.; Sharp, J.D.; Huang, Y.; Arroyo, M.C.; Frenzel, H. Amplified subsurface signals of ocean acidification. Glob. Biogeochem. Cycles 2023, 37, e2023GB007843. [Google Scholar] [CrossRef]
- Cai, T.; Feng, Y.; Wang, Y.; Li, T.; Wang, J.; Li, W.; Zhou, W. The differential responses of coastal diatoms to ocean acidification and warming: A comparison between Thalassiosira sp. and Nitzschia closterium f. minutissima. Front. Microbiol. 2022, 13, 851149. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Guo, J.; Duan, H.; Li, T.; Wang, Y.; Wang, Y.; Wang, S.; Feng, Y. Ocean Acidification Affects the Response of the Coastal Coccolithophore Pleurochrysis carterae to Irradiance. Biology 2023, 12, 1249. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Ruan, Z.; Villafane, V.E.; Gattuso, J.-P.; Helbling, E.W. Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 2009, 54, 1855–1862. [Google Scholar] [CrossRef]
- Li, W.; Wang, T.; Campbell, D.A.; Gao, K. Light history modulates growth and photosynthetic responses of a diatom to ocean acidification and UV radiation. Mar. Life Sci. Technol. 2023, 5, 116–125. [Google Scholar] [CrossRef]
- Hoppe, C.J.; Hassler, C.S.; Payne, C.D.; Tortell, P.D.; Rost, B.; Trimborn, S. Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities. PLoS ONE 2013, 8, e79890. [Google Scholar] [CrossRef]
- Eggers, S.L.; Lewandowska, A.M.; e Ramos, J.B.; Blanco-Ameijeiras, S.; Gallo, F.; Matthiessen, B. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Glob. Change Biol. 2014, 20, 713–723. [Google Scholar] [CrossRef]
- Flynn, K.J.; Blackford, J.C.; Baird, M.E.; Raven, J.A.; Clark, D.R.; Beardall, J.; Brownlee, C.; Fabian, H.; Wheeler, G.L. Changes in pH at the exterior surface of plankton with ocean acidification. Nat. Clim. Change 2012, 2, 510–513. [Google Scholar] [CrossRef]
- Zhang, Y.; Beardall, J.; Gao, K. Combined effects of ocean acidification and warming on phytoplankton productivity and community structure in the coastal water of southern east. Mar. Environ. Res. 2025, 210, 107352. [Google Scholar] [CrossRef]
- Bénard, R.; Levasseur, M.; Scarratt, M.; Blais, M.-A.; Mucci, A.; Ferreyra, G.; Starr, M.; Gosselin, M.; Tremblay, J.-E.; Lizotte, M. Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming. Biogeosciences 2018, 15, 4883–4904. [Google Scholar] [CrossRef]
- de Castro, M.M.; Schartau, M.; Wirtz, K. Potential sources of variability in mesocosm experiments on the response of phytoplankton to ocean acidification. Biogeosciences 2017, 14, 1883–1901. [Google Scholar] [CrossRef]
- Kunze, C.; Gerhard, M.; Jacob, M.; Franke, N.A.; Schröder, M.; Striebel, M. Phytoplankton community performance depends on the frequency of temperature fluctuations. Front. Mar. Sci. 2022, 8, 812902. [Google Scholar] [CrossRef]
- Nagelkerken, I.; Connell, S.D. Ocean acidification drives global reshuffling of ecological communities. Glob. Change Biol. 2022, 28, 7038–7048. [Google Scholar] [CrossRef]
- Kühn, S.F.; Raven, J.A. Photosynthetic oscillation in individual cells of the marine diatom Coscinodiscus wailesii (Bacillariophyceae) revealed by microsensor measurements. Photosynth. Res. 2008, 95, 37–44. [Google Scholar] [CrossRef]
- Liu, F.; Tan, Q.-G.; Weiss, D.; Crémazy, A.; Fortin, C.; Campbell, P.G.C. Unravelling metal speciation in the microenvironment surrounding phytoplankton cells to improve predictions of metal bioavailability. Environ. Sci. Technol. 2020, 54, 8177–8185. [Google Scholar] [CrossRef]
- Liu, F.; Gledhill, M.; Tan, Q.-G.; Zhu, K.; Zhang, Q.; Salaün, P.; Tagliabue, A.; Zhang, Y.; Weiss, D.; Achterberg, E.P.; et al. Phycosphere pH of unicellular nano- and micro- phytoplankton cells and consequences for iron speciation. ISME J. 2022, 16, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- Chrachri, A.; Hopkinson, B.M.; Flynn, K.; Brownlee, C.; Wheeler, G.L. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells. Nat. Commun. 2018, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Milligan, A.J.; Mioni, C.E.; Morel, F.M. Response of cell surface pH to pCO2 and iron limitation in the marine diatom Thalassiosira weissflogii. Mar. Chem. 2009, 114, 31–36. [Google Scholar] [CrossRef]
- Seymour, J.R.; Amin, S.A.; Raina, J.-B.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2017, 2, 17065. [Google Scholar] [CrossRef]
- Collins, S.; Rost, B.; Rynearson, T.A. Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl. 2014, 7, 140–155. [Google Scholar] [CrossRef]
- Lohbeck, K.T.; Riebesell, U.; Reusch, T.B.H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 2012, 5, 346–351. [Google Scholar] [CrossRef]
- Gao, K.; Xu, J.; Gao, G.; Li, Y.; Hutchins, D.A.; Huang, B.; Wang, L.; Zheng, Y.; Jin, P.; Cai, X.; et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat. Clim. Change 2012, 2, 519–523. [Google Scholar] [CrossRef]
- Li, F.; Beardall, J.; Collins, S.; Gao, K. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Glob. Change Biol. 2017, 23, 127–137. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Morris, J.J.; Follows, M.J.; Scott, J.; Levitan, O.; Dyhrman, S.T.; Berman-Frank, I. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Change 2015, 5, 1002–1006. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chen, T.C.; Chen, C.T.A.; Wong, S.L.; Meng, P.J.; Chen, M.H. Decreases in pH from effluent had a devastating but reversible impact on the coastal plankton communities. Mar. Pollut. Bull. 2025, 211, 117359. [Google Scholar] [CrossRef]
- Alvarez-Fernandez, S.; Bach, L.T.; Taucher, J.; Riebesell, U.; Sommer, U.; Aberle, N.; Brussaard, C.P.D.; Boersma, M. Plankton responses to ocean acidification: The role of nutrient limitation. Prog. Oceanogr. 2018, 165, 11–18. [Google Scholar] [CrossRef]
- Bach, L.T.; Alvarez-Fernandez, S.; Hornick, T.; Stuhr, A.; Riebesell, U. Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS ONE 2017, 12, e0188198. [Google Scholar] [CrossRef]
- Eberlein, T.; Wohlrab, S.; Rost, B.; John, U.; Bach, L.T.; Riebesell, U.; Van de Waal, D.B. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community. PLoS ONE 2017, 12, e0172594. [Google Scholar] [CrossRef]
- Donahue, K.; Klaas, C.; Dillingham, P.W.; Hoffmann, L.J. Combined effects of ocean acidification and increased light intensity on natural phytoplankton communities from two southern ocean water masses. J. Plankton Res. 2019, 41, 30–45. [Google Scholar] [CrossRef]
- Hattich, G.S.I.; Listmann, L.; Raab, J.; Ozod-Seradj, D.; Reusch, T.B.H.; Matthiessen, B. Inter- and intraspecific phenotypic plasticity of three phytoplankton species in response to ocean acidification. Biol. Lett. 2017, 13, 20160774. [Google Scholar] [CrossRef]
- Mélançon, J.; Levasseur, M.; Lizotte, M.; Scarratt, M.; Tremblay, J.; Tortell, P.; Yang, G.-P.; Shi, G.-Y.; Gao, H.; Semeniuk, D.; et al. Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters. Biogeosciences 2016, 13, 1677–1692. [Google Scholar] [CrossRef]
- Schlüter, L.; Lohbeck, K.T.; Gröger, J.P.; Riebesell, U.; Reusch, T.B.H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2016, 2, e1501660. [Google Scholar] [CrossRef]
- Spisla, C.; Taucher, J.; Bach, L.T.; Haunost, M.; Boxhammer, T.; King, A.L.; Jenkins, B.D.; Wallace, J.R.; Ludwig, A.; Meyer, J.; et al. Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: A mesocosm study. Front. Mar. Sci. 2021, 7, 611157. [Google Scholar] [CrossRef]
- Krumhardt, K.M.; Lovenduski, N.S.; Long, M.C.; Levy, M.; Lindsay, K.; Moore, J.K.; Nissen, C. Coccolithophore growth and calcification in an acidified ocean: Insights from community Earth system model simulations. J. Adv. Model. Earth Syst. 2019, 11, 1418–1437. [Google Scholar] [CrossRef]
- Rousseaux, C.S.; Gregg, W.W. Interannual variation in phytoplankton primary production at a global scale. Remote Sens. 2013, 6, 1–19. [Google Scholar] [CrossRef]
- Jin, P.; Ji, Y.; Huang, Q.; Li, P.; Pan, J.; Lu, H.; Liang, Z.; Guo, Y.; Zhong, J.; Beardall, J.; et al. A reduction in metabolism explains the tradeoffs associated with the long-term adaptation of phytoplankton to high CO2 concentrations. New Phytol. 2022, 233, 2155–2167. [Google Scholar] [CrossRef]
- Li, H.; Beardall, J.; Gao, K. Photoinhibition of the picophytoplankter Synechococcus is exacerbated by ocean acidification. Water 2023, 15, 1228. [Google Scholar] [CrossRef]
- Rahlff, J.; Khodami, S.; Voskuhl, L.; Humphreys, M.; Stolle, C.; Arbizu, P.M.; Wurl, O.; Ribas-Ribas, M. Short-term responses to ocean acidification: Effects on relative abundance of eukaryotic plankton from the tropical Timor Sea. Mar. Ecol. Prog. Ser. 2021, 658, 59–74. [Google Scholar] [CrossRef]
- Shang, Y.; Qiu, J.; Weng, Y.; Wang, X.; Zhang, D.; Zhou, Y.; Xu, J.; Li, F. Effects of pH/pCO2 fluctuations on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequence of coastal acidification. EGUsphere 2024, 22, 1203–1214. [Google Scholar] [CrossRef]
- Taucher, J.; Bach, L.T.; Prowe, A.E.F.; Boxhammer, T.; Kvale, K.; Riebesell, U. Enhanced silica export in a future ocean triggers global diatom decline. Nature 2022, 605, 696–700. [Google Scholar] [CrossRef]
- Kalliyil, A.; Tikoti, S.G.R.; Anudarsh, S.; Roy, S. pH induced motility pattern change in a marine dinoflagellate. bioRxiv 2025. [Google Scholar] [CrossRef]
- Figuerola, B.; Hancock, A.M.; Bax, N.; Cummings, V.J.; Downey, R.; Griffiths, H.J.; Smith, J.; Stark, J.S. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Front. Mar. Sci. 2021, 8, 584445. [Google Scholar] [CrossRef]
- e Ramos, J.B.; Müller, M.N.; Riebesell, U. Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences 2010, 7, 177–186. [Google Scholar] [CrossRef]
- Beaufort, L.; Probert, I.; de Garidel-Thoron, T.; Bendif, E.M.; Ruiz-Pino, D.; Metzl, N.; Goyet, C.; Buchet, N.; Coupel, P.; Grelaud, M.; et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 2011, 476, 80–83. [Google Scholar] [CrossRef]
- De Bodt, C.; Van Oostende, N.; Harlay, J.; Sabbe, K.; Chou, L. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: Study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 2010, 7, 1401–1412. [Google Scholar] [CrossRef]
- Feng, Y.; Warner, M.E.; Zhang, Y.; Sun, J.; Fu, F.-X.; Rose, J.M.; Hutchins, D.A. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 2008, 43, 87–98. [Google Scholar] [CrossRef]
- Fiorini, S.; Middelburg, J.J.; Gattuso, J.-P. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquat. Microb. Ecol. 2011, 64, 221–232. [Google Scholar] [CrossRef]
- Fiorini, S.; Middelburg, J.J.; Gattuso, J.P. Testing the effects of elevated Pco2 on coccolithophores (Prymnesiophyceae): Comparison between haploid and diploid life stages 1. J. Phycol. 2011, 47, 1281–1291. [Google Scholar] [CrossRef]
- Langer, G.; Nehrke, G.; Probert, I.; Ly, J.; Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosci. Discuss. 2009, 6, 2637–2646. [Google Scholar] [CrossRef]
- Lefebvre, S.C.; Benner, I.; Stillman, J.H.; Parker, A.E.; Drake, M.K.; Rossignol, P.E.; Okimura, K.; Komada, T.; Carpenter, E.J. Nitrogen source and p CO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore E. huxleyi: Potential implications of ocean acidification for the carbon cycle. Glob. Change Biol. 2012, 18, 493–503. [Google Scholar] [CrossRef]
- Li, F.; Xu, J.; Beardall, J.; Gao, K. Diurnally fluctuating p CO2 enhances growth of a coastal strain of Emiliania huxleyi under future-projected ocean acidification conditions. ICES J. Mar. Sci. 2021, 78, 1301–1310. [Google Scholar] [CrossRef]
- Meyer, J.; Riebesell, U. Reviews and Syntheses: Responses of coccolithophores to ocean acidification: A meta-analysis. Biogeosciences 2015, 12, 1671–1682. [Google Scholar] [CrossRef]
- Müller, M.N.; Schulz, K.G.; Riebesell, U. Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences 2010, 7, 1109–1116. [Google Scholar] [CrossRef]
- Müller, M.N.; Beaufort, L.; Bernard, O.; Pedrotti, M.L.; Talec, A.; Sciandra, A. Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta). Biogeosciences 2012, 9, 4155–4167. [Google Scholar] [CrossRef]
- Riebesell, U.; Bach, L.T.; Bellerby, R.G.J.; Monsalve, J.R.B.; Boxhammer, T.; Czerny, J.; Larsen, A.; Ludwig, A.; Schulz, K.G. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nat. Geosci. 2017, 10, 19–23. [Google Scholar] [CrossRef]
- Riebesell, U.; Zondervan, I.; Rost, B.; Tortell, P.D.; Zeebe, R.E.; Morel, F.M.M. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 2000, 407, 364–367. [Google Scholar] [CrossRef]
- Rokitta, S.D.; Rost, B. Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 2012, 57, 607–618. [Google Scholar] [CrossRef]
- Shetye, S.; Gazi, S.; Manglavil, A.; Shenoy, D.; Kurian, S.; Pratihary, A.; Shirodkar, G.; Mohan, R.; Dias, A.; Naik, H.; et al. Malformation in coccolithophores in low pH waters: Evidences from the eastern Arabian Sea. Environ. Sci. Pollut. Res. 2023, 30, 42351–42366. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, H.; Chen, F.; Zhang, X.; Zhang, Z.; Ma, J.; Pan, K.; Liu, H. Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods. Mar. Environ. Res. 2023, 192, 106232. [Google Scholar] [CrossRef]
- Chauhan, N.; Rickaby, R.E. Differential impacts of pH on growth, physiology, and elemental stoichiometry across three coccolithophore species. Limnol. Oceanog. 2025, 70, 68–83. [Google Scholar] [CrossRef]
- Richier, S.; Fiorini, S.; Kerros, M.-E.; Von Dassow, P.; Gattuso, J.-P. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: From physiology to molecular level. Mar. Biol. 2011, 158, 551–560. [Google Scholar] [CrossRef]
- Penales, P.J.F.; Skampa, E.; Dimiza, M.D.; Parinos, C.; Velaoras, D.; Pavlidou, A.; Malinverno, E.; Gogou, A.; Triantaphyllou, M.V. Coccolithophore assemblage dynamics and Emiliania huxleyi Morphological patterns during three sampling campaigns Between 2017 and 2019 in the South Aegean Sea (Greece, NE Mediterranean). Geosci 2025, 15, 268. [Google Scholar] [CrossRef]
- Schubert, N.; Alvarez-Filip, L.; Hofmann, L.C. Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal carbonate production. Clim. Change Ecol. 2023, 4, 100059. [Google Scholar] [CrossRef]
- Cai, J.; Ni, J.; Chen, Z.; Wu, S.; Wu, R.; He, C.; Wang, J.; Liu, Y.; Zhou, W.; Xu, J. Effects of ocean acidification and eutrophication on the growth and photosynthetic performances of a green tide alga Ulva prolifera. Front. Mar. Sci. 2023, 10, 1145048. [Google Scholar] [CrossRef]
- Wada, S.; Agostini, S.; Harvey, B.P.; Omori, Y.; Hall-Spencer, J.M. Ocean acidification increases phytobenthic carbon fixation and export in a warm-temperate system. Estuar. Coast. Shelf Sci. 2021, 250, 107113. [Google Scholar] [CrossRef]
- Vinuganesh, A.; Kumar, A.; Prakash, S.; Alotaibi, M.O.; Saleh, A.M.; Mohammed, A.E.; Beemster, G.T.S.; AbdElgawad, H. Influence of seawater acidification on biochemical composition and oxidative status of green algae Ulva compressa. Sci. Total. Environ. 2022, 806, 150445. [Google Scholar] [CrossRef] [PubMed]
- Santin, A.; Moschin, E.; Lorenti, M.; Buia, M.C.; Moro, I. A look to the future acidified ocean through the eyes of the alien and invasive alga Caulerpa cylindracea (Chlorophyta, Ulvophyceae). Phycologia 2022, 61, 628–640. [Google Scholar] [CrossRef]
- Zhong, Z.; Sun, L.; Liu, Z.; Song, Z.; Liu, M.; Tong, S.; Qin, S. Ocean acidification exacerbates the inhibition of fluctuating light on the productivity of Ulva prolifera. Mar. Pollut. Bull. 2022, 175, 113367. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.T.; Tang, J.; Hong, H.; Kao, S.; Dai, M.; Shi, D. Changes in isotope fractionation during nitrate assimilation by marine eukaryotic and prokaryotic algae under different pH and CO2 conditions. Limnol. Oceanogr. 2024, 69, 1045–1055. [Google Scholar] [CrossRef]
- Yan, Q.; Xiao, P.; Li, J.; He, Y.; Shao, J. Physiological responses of a diazotrophic cyanobacterium to acidification of paddy floodwater: N2 fixation, photosynthesis, and oxidative—Antioxidative characteristics. Int. J. Environ. Res. Public Health 2022, 19, 15070. [Google Scholar] [CrossRef]
- Wen, Z.; Jiang, R.; He, T.; Browning, T.J.; Hong, H.; Kao, S.-J.; Yang, J.-Y.T.; Shi, D. Effects of CO2 on the nitrogen isotopic composition of marine diazotrophic cyanobacteria. Geophys. Res. Lett. 2024, 51, e2024GL110599. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, Z.; Wang, S.; Tang, W.; Luo, Y.-W.; Kranz, S.A.; Hong, H.; Shi, D. Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium. Nat. Commun. 2022, 13, 6730. [Google Scholar] [CrossRef]
- Leung, J.Y.S.; Zhang, S.; Connell, S.D. Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades. Small 2022, 18, e2107407. [Google Scholar] [CrossRef]
- Boyce, D.G.; Lewis, M.R.; Worm, B. Global phytoplankton decline over the past century. Nature 2010, 466, 591–596. [Google Scholar] [CrossRef]
- Boyce, D.; Worm, B. Patterns and ecological implications of historical marine phytoplankton change. Mar. Ecol. Prog. Ser. 2015, 534, 251–272. [Google Scholar] [CrossRef]
- Boyce, D.G.; Dowd, M.; Lewis, M.R.; Worm, B. Estimating global chlorophyll changes over the past century. Prog. Oceanogr. 2014, 122, 163–173. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Reid, P.C.; Edwards, M.; Burkill, P.H.; Castellani, C.; Batten, S.; Gieskes, W.; Beare, D.; Bidigare, R.R.; Head, E.; et al. Is there a decline in marine phytoplankton? Nature 2011, 472, E6–E7. [Google Scholar] [CrossRef]
- da Silveira Bueno, C.; Paytan, A.; de Souza, C.D.; Franco, T.T. Global warming and coastal protected areas: A study on phytoplankton abundance and sea surface temperature in different regions of the Brazilian South Atlantic Coastal Ocean. Ecol. Evol. 2024, 14, e11724. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; McKenna, H.; Livina, V. The human physiological impact of global deoxygenation. J. Physiol. Sci. 2017, 67, 97–106. [Google Scholar] [CrossRef]
- Sekerci, Y.; Petrovskii, S. Mathematical modelling of plankton-oxygen dynamics under the climate change. Bull. Math. Biol. 2015, 77, 2325–2353. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.D.; Murray, A.B.; Pierce, J.L.; Bierman, P.R.; Breshears, D.D.; Crosby, B.T.; Ellis, M.; Foufoula-Georgiou, E.; Heimsath, A.M.; Houser, C.; et al. Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs. Earth’s Future 2015, 3, 220–251. [Google Scholar] [CrossRef]
- Irvine, P.J.; Kravitz, B.; Lawrence, M.G.; Muri, H. An overview of the Earth system science of solar geoengineering. Wiley Interdiscip. Rev. Clim. Change 2016, 7, 815–833. [Google Scholar] [CrossRef]
- Joel, O.T.; Oguanobi, V.U. Geological survey techniques and carbon storage: Optimizing renewable energy site selection and carbon sequestration. Open Access Res. J. Sci. Technol. 2024, 11, 39–51. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Renewable energy and energy reductions or solar geoengineering for climate change mitigation? Energies 2022, 15, 7315. [Google Scholar] [CrossRef]
- Reynolds, J.L. Solar geoengineering to reduce climate change: A review of governance proposals. Proc. R. Soc. A 2019, 475, 20190255. [Google Scholar] [CrossRef]
- Williamson, P.; Wallace, D.W.; Law, C.S.; Boyd, P.W.; Collos, Y.; Croot, P.; Denman, K.; Riebesell, U.; Takeda, S.; Vivian, C. Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance. Process Saf. Environ. Prot. 2012, 90, 475–488. [Google Scholar] [CrossRef]
- Zhang, Z.; Moore, J.C.; Huisingh, D.; Zhao, Y. Review of geoengineering approaches to mitigating climate change. J. Clean. Prod. 2015, 103, 898–907. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Han, K.; Zhao, J.; Wu, J.J.; Li, Y. Calcium looping for CO2 capture and thermochemical heat storage, a potential technology for carbon neutrality: A review. Green Energy Resour. 2024, 2, 100078. [Google Scholar] [CrossRef]
- Moritz, M.; Kawa, N. The world needs wicked scientists. Am. Sci. 2022, 110, 212–217. [Google Scholar] [CrossRef]
- Seiter, K.L. The wicked problem of transitioning to renewable energy. Am. Sci. 2024, 112, 336–339. [Google Scholar] [CrossRef]
- Richards, K.R.; Stokes, C. A review of forest carbon sequestration cost studies: A dozen years of research. Clim. Change 2004, 63, 1–48. [Google Scholar] [CrossRef]
- Pullins, S.W. The NETL Modern Grid Initiative: What will the US Modern Grid cost? In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Stavins, R.N. The costs of carbon sequestration: A revealed-preference approach. Am. Econ. Rev. 1999, 89, 994–1009. [Google Scholar] [CrossRef]
- Torres, A.B.; Marchant, R.; Lovett, J.C.; Smart, J.C.; Tipper, R. Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol. Econ. 2010, 69, 469–477. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proc. Natl. Acad. Sci. USA 2017, 114, E5021–E5023. [Google Scholar] [CrossRef]
- Santos, F.D.; Ferreira, P.L.; Pedersen, J.S.T. The climate change challenge: A review of the barriers and solutions to deliver a Paris solution. Climate 2022, 10, 75. [Google Scholar] [CrossRef]
- Schickhoff, U.; Bobrowski, M.; Offen, I.A.; Mal, S. The biodiversity crisis in the Anthropocene. In Geography of the Anthropocene; Gönencgil, B., Meadows, M.E., Eds.; Istanbul University Press: Istanbul, Turkey, 2024; Chapter 5; pp. 79–111. [Google Scholar] [CrossRef]
- Aghahosseini, A.; Bogdanov, D.; Barbosa, L.S.N.S.; Breyer, C. Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renew. Sustain. Energy Rev. 2019, 105, 187–205. [Google Scholar] [CrossRef]
- Cochran, J.; Denholm, P.; Speer, B.; Miller, M. Grid Integration and the Carrying Capacity of the US Grid to Incorporate Variable Renewable Energy (No. NREL/TP-6A20-62607); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015. Available online: https://www.osti.gov/scitech (accessed on 29 September 2025).
- Hamdan, A.; Daudu, C.D.; Fabuyide, A.; Etukudoh, E.A.; Sonko, S. Next-generation batteries and U. S. energy storage: A comprehensive review: Scrutinizing advancements in battery technology, their role in renewable energy, and grid stability. World J. Adv. Res. Rev. 2024, 21, 1984–1998. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Coughlin, S.J.; Hay, C.A.; Manogaran, I.P.; Shu, Y.; von Krauland, A.-K. Impacts of green new deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries. One Earth 2019, 1, 449–463. [Google Scholar] [CrossRef]
- Kim, J.; Jaumotte, F.; Panton, A.J.; Schwerhoff, G. Energy security and the green transition. Energy Policy 2025, 198, 114409, ISBN 979840026374. [Google Scholar] [CrossRef]
- Li, L.; Lin, J.; Wu, N.; Xie, S.; Meng, C.; Zheng, Y.; Wang, X.; Zhao, Y. Review and outlook on the international renewable energy development. Energy Built Environ. 2022, 3, 139–157. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741–764. [Google Scholar] [CrossRef]
- Bass, S.D.; De Roeck, A.; Kado, M. The Higgs boson implications and prospects for future discoveries. Nat. Rev. Phys. 2021, 3, 608–624. [Google Scholar] [CrossRef]
- Li, K. Analysis on the relationship between the Higgs boson and the standard model. Theor. Nat. Sci. 2024, 38, 20–25. [Google Scholar] [CrossRef]
- Hu, B.; Jiang, W.; Miyagi, T.; Sun, Z.; Ekström, A.; Forssén, C.; Hagen, G.; Holt, J.D.; Papenbrock, T.; Stroberg, S.R.; et al. Ab initio predictions link the neutron skin of 208Pb to nuclear forces. Nat. Phys. 2022, 18, 1196–1200. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net zero emissions energy systems. Science 2018, 360, eaas97f93. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, A.; Han, L.; Jo, Y.-H.; Yan, X.-H. Decadal western Pacific warm pool variability: A centroid and heat content study. Sci. Rep. 2017, 7, 13141. [Google Scholar] [CrossRef]
- Wyrtki, K. Some thoughts about the west Pacific warm pool. In Proceedings of the Western Pacific International Meeting and Workshop on TOGA COARE, Nouméa, New Caledonia, 24–30 May 1989; ORSTOM: Nouméa, New Caledonia, 1989; pp. 99–109. [Google Scholar]
- Cheng, L. Sensitivity of ocean heat content to various instrumental platforms in global ocean observing systems. Ocean-Land-Atmos. Res. 2024, 3, 0037. [Google Scholar] [CrossRef]



















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, W.J. Human Versus Natural Influences on Climate and Biodiversity: The Carbon Dioxide Connection. Sci 2025, 7, 152. https://doi.org/10.3390/sci7040152
Davis WJ. Human Versus Natural Influences on Climate and Biodiversity: The Carbon Dioxide Connection. Sci. 2025; 7(4):152. https://doi.org/10.3390/sci7040152
Chicago/Turabian StyleDavis, W. Jackson. 2025. "Human Versus Natural Influences on Climate and Biodiversity: The Carbon Dioxide Connection" Sci 7, no. 4: 152. https://doi.org/10.3390/sci7040152
APA StyleDavis, W. J. (2025). Human Versus Natural Influences on Climate and Biodiversity: The Carbon Dioxide Connection. Sci, 7(4), 152. https://doi.org/10.3390/sci7040152

