Relationship Between Ankle Mobility, Elastic Strength, and Rate of Force Development in the Two Karate Disciplines: Kata and Kumite
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Statistical Analysis
- 0.1–0.3: low correlation, −0.1/−0.3 Weak negative correlation
- 0.4–0.6: moderate correlation, −0.4/−0.6 Moderate negative correlation
- 0.7–0.9: high correlation, −0.7/−0.9 Strong negative correlation
- >0.9: very strong correlation. −1.0 Perfect negative correlation
3. Results
4. Discussion
4.1. Practical Applications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danardono, D.; Kristiyanto, A.; Purnama, S.K.; Tomoliyus; Ariani, N. The effect of plyometric training on the power and reactive agility of karate athletes. Int. J. Hum. Mov. Sports Sci. 2023, 11, 378–387. [Google Scholar] [CrossRef]
- Dilekçi, U. The comparison of reaction times in competing karate athletes. Int. J. Disabil. Sports Health Sci. 2023, 1, 125–133. [Google Scholar] [CrossRef]
- Piepiora, P.A.; Jurczyk, J.B.; Vveinhardt, J. Mental preparation of karateka for sports competition in kata. Front. Sports Act. Living 2025, 7, 1525853. [Google Scholar] [CrossRef]
- Hadad, A.; Ganz, N.; Intrator, N.; Maimon, N.; Molcho, L.; Hausdorff, J.M. Postural control in karate practitioners: Does practice make perfect? Gait Posture 2020, 77, 218–224. [Google Scholar] [CrossRef]
- D’Isanto, T.; Esposito, G.; Ceruso, R.; D’Elia, F.; Raiola, G. The role of the sports kinesiologist to prevent grade II ankle sprains in volleyball. Eur. J. Hum. Mov. 2024, 53, 101–113. [Google Scholar] [CrossRef]
- D’Isanto, T.; Aliberti, S.; Altavilla, G.; Esposito, G.; D’Elia, F. Heuristic learning as a method for improving students’ teamwork skills in physical education. Int. J. Environ. Res. Public Health 2022, 19, 12596. [Google Scholar] [CrossRef]
- Cinarli, F.S.; Aydogdu, O.; Aydin, Y.; Tokgöz, G.; Kahraman, A.; Beykumül, A.; Aygoren, C.; Yılmaz, N.; Ramirez-Campillo, R. Maximal strength, sprint and jump performance in elite kumite karatekas. BMC Sports Sci. Med. Rehabil. 2025, 17, 8. [Google Scholar] [CrossRef]
- Wade, L.; Birch, J.; Farris, D.J. Walking with increasing acceleration is achieved by tuning ankle torque onset timing and rate of torque development. J. R. Soc. Interface 2022, 19, 20220035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Elia, F.; D’Isanto, T.; Altavilla, G. Training and performance in the transition period. J. Hum. Sport Exerc. 2019, 14, S258–S262. [Google Scholar] [CrossRef]
- Altavilla, G.; Aliberti, S.; D’Elia, F. Assessment of Motor Performance and Self-Perceived Psychophysical Well-Being in Relation to Body Mass Index in Italian Adolescents. Children 2024, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Jara, C.; Cerda-Kohler, H.; Aedo-Muñoz, E.; Miarka, B. Eccentric resistance training: A methodological proposal of eccentric muscle exercise classification based on exercise complexity, training objectives, methods, and intensity. Appl. Sci. 2023, 13, 7969. [Google Scholar] [CrossRef]
- Moreno-Azze, A.; Prad-Lucas, E.; Fandos Soñén, D.; Pradas de la Fuente, F.; Falcón-Miguel, D. Plyometric training’s effects on young male karatekas’ jump, change of direction, and inter-limb asymmetry. Sports 2024, 12, 1. [Google Scholar] [CrossRef]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Kawamori, N.; Jackson, J.R.; Morris, R.T.; Sands, W.A.; Stone, M.H. Force-time curve characteristics of dynamic and isometric muscle actions of elite women Olympic weightlifters. J. Strength Cond. Res. 2005, 19, 741–748. [Google Scholar] [CrossRef] [PubMed]
- D’Isanto, T.; Di Domenico, F.; D’Elia, F.; Aliberti, S.; Esposito, G. The effectiveness of constraints-led training on skill development in football. Int. J. Hum. Mov. 2021, 9, 1344–1351. [Google Scholar] [CrossRef]
- Sannicandro, I.; Esposito, G.; D’Onofrio, R.; Giacomo, C. The effects of fatigue on landing performance in young female soccer players. Phys. Educ. Theory Methodol. 2024, 24, 254–262. [Google Scholar] [CrossRef]
- Jona, J.J.; Al-Dadah, O. Ankle injuries in athletes: A review of the literature. World J. Meta-Anal. 2021, 9, 128–138. [Google Scholar] [CrossRef]
- Sohrabi, T.; Saki, F.; Ramezani, F.; Tahayori, B. Comprehensive corrective exercise program improves ankle function in female athletes with limited weight-bearing ankle dorsiflexion: A randomized controlled trial. PLoS ONE 2024, 19, e0312152. [Google Scholar] [CrossRef]
- Giardullo, G.; Aliberti, S.; Sannicandro, I.; Fattore, S.; Ceruso, R. Karate Game: Using a playful and participatory approach to enhancing children’s social and motor perception during the developmental age. Phys. Educ. Theory Methodol. 2024, 24, 539–544. [Google Scholar] [CrossRef]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of direction speed: Toward a strength training approach with accentuated eccentric muscle actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Wang, S. Effect of ankle proprioceptive training on preventing ankle injury of martial arts players. Front. Sport Res. 2021, 3, 48–55. [Google Scholar] [CrossRef]
- Almansoof, H.S.; Nuhmani, S.; Muaidi, Q. Role of ankle dorsiflexion in sports performance and injury risk: A narrative review. Electron. J. Gen. Med. 2023, 20, e m521. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Shimokochi, Y.; Sheikhi, B. Ankle dorsiflexion range of motion and landing postures during a soccer-specific task. PLoS ONE 2023, 18, e0283150. [Google Scholar] [CrossRef]
- Aliberti, S. Beach Volley and Wellbeing: A Qualitative Research on Psychophysical Efforts. Acta Kinesiol. 2025, 19, 54–60. [Google Scholar] [CrossRef]
- Koropanovski, N.; Berjan, B.; Bozic, P.R.; Pazin, N.; Sanader, A.; Jovanovic, S.; Jaric, S. Anthropometric and Physical Performance Profiles of Elite Karate Kumite and Kata Competitors. J. Hum. Kinet. 2011, 30, 107–114. [Google Scholar] [CrossRef]
- Koropanovski, N.; Vujkov, S.; Jovanovic, S. Success Factors for Competitive Karate: Kata vs. Kumite. In Science and Medicine in Combat Sports; Nova Science Publishers: New York, NY, USA, 2017; pp. 213–248. [Google Scholar]
- Sbriccoli, P.; Camomilla, V.; Di Mario, A.; Quinzi, F.; Figura, F.; Felici, F. Neuromuscular control adaptations in elite athletes: The case of top level karateka. Eur. J. Appl. Physiol. 2010, 108, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Gaweł, E.; Zwierzchowska, A. The Acute and Long-Term Effects of Olympic Karate Kata Training on Structural and Functional Changes in the Body Posture of Polish National Team Athletes. Sports 2024, 12, 55. [Google Scholar] [CrossRef]
- Gauchard, G.; Lion, A.; Bento, L.; Perrin, P.; Ceyte, H. Postural control in high-level kata and kumite karatekas. Mov. Sport Sci. Sci. Mot. 2018, 100, 21–26. [Google Scholar] [CrossRef]
- Liew, B.X.W.; Drovandi, C.C.; Clifford, S.; Keogh, J.W.L.; Morris, S.; Netto, K. Joint-level energetics differentiate isoinertial from speed-power resistance training: A Bayesian analysis. PeerJ. 2018, 6, e4620. [Google Scholar] [CrossRef]
- Kopper, B.; Csende, Z.; Trzaskoma, L.; Tihanyi, J. Stretch-shortening cycle characteristics during vertical jumps carried out with small and large range of motion. J. Electromyogr. Kinesiol. 2014, 24, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.D., Jr.; Safran, M.R. Current concepts: The hip, core, and kinetic chain in the overhead athlete. J. Shoulder Elb. Surg. 2023, 33, 123–132. [Google Scholar] [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of plyometric training on muscle–tendon mechanical properties and behavior of fascicles during jumping. Physiol. Rep. 2021, 9, e15073. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of Force Development: Physiological and Methodological Considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Molinaro, L.; Taborri, J.; Montecchiani, M.; Rossi, S. Assessing the Effects of Kata and Kumite Techniques on Physical Performance in Elite Karatekas. Sensors 2020, 20, 3186. [Google Scholar] [CrossRef] [PubMed]
- Gedrimas, D.; Lideikaitė, M. Effect of Balance Training Exercises on Kickboxing Athlete’s Balance, Muscle Strength and Reaction Time in Chronic Ankle Joint Instability: A Case Study. Prof. Stud. Theory Pract. 2023, 26, 53–63. [Google Scholar]
- Darbandi, S.M.; Zarei, M.; Mohammadi, H.; Hosseinzadeh, M. Investigating the Value of Balance and Proprioception Scores to Predict Lower Limb Injuries in Professional Male Judokas. Sci. Rep. 2023, 13, 21726. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Ceruso, R.; Aliberti, S.; Raiola, G. Ecological-Dynamic Approach vs. Traditional Prescriptive Approach in Improving Technical Skills of Young Soccer Players. J. Funct. Morphol. Kinesiol. 2024, 9, 162. [Google Scholar] [CrossRef]


| Period (Weeks) | Specific Physical Exercises | Technical/Tactical Content Trained | 
|---|---|---|
| Phase 1 (Weeks 1–4) Base construction | General mobility Central stability reinforcement (core: plank, dead bug, medical ball) Lower limb strengthening (squats, lunges, monopodal exercises) Postural and proprioceptive control (BOSU, instability) | Fundamental techniques: stances (zenkutsu, kiba, kokutsu), moves and transitions. Work on hikite, torso rotation and kime First Kata segments analysed in sections (simplified technical bunkai) Study of breathing and timing | 
| Phase 2 (Weeks 5–8) Specific development and coordination | Controlled plyometrics: vertical and horizontal jumps, split squat jumps Explosive power exercises with elastic bands (punch band, squat jump with resistance) Isometric work on positions (kiba dachi, zenkutsu dachi) for postural endurance Technique combinations in balance (on unstable cushion, trampoline) Segmental quickness training (fist and kicks in quickness with minimal resistance) | Complete Kata at low/medium intensity, focusing on rhythm and form Analysis of the critical points of the chosen Kata (shitei or tokui) Study of smooth transitions and emphasis on kime Work on lines, timing and quality of movement | 
| Phase 3 (Weeks 9–12) Refinement and simulation race | Short pre-race activation sessions: leaps, dynamic mobility exercises, light core Explosive strength recall (2×/week, with controlled load) Relaxation and breathing routines (box breathing, myofascial release) Simulations with actual race times and specific recovery times Posture and centring optimisation | Performance of complete Kata at competition intensity Bunkai work and interpretation of technical gestures Correction of postural and temporal micro-errors Simulations with judges or external evaluators (including video) Study of pre-execution rituality (entrance, greeting, breathing) | 
| Period (Weeks) | Specific Physical Exercises | Technical/Tactical Content Trained | 
|---|---|---|
| Phase 1 (Weeks 1–4) Construction | Free-body circuit training (squats, lunges, push-ups, planks, jumping jacks) Core stability (dynamic plank, Russian twist, empty body grip) Continuous running (30–40′) and mild interval training (3 × 6′) General active mobility Dynamic functional stretching (leg swings, hip openers) | Fundamental techniques in movement: kizami tsuki, gyaku tsuki, uraken, mae geri, mawashi geri Guarding transitions, maintaining balance when attacking Study of maai (distance) and rhythm control Reactivity exercises on visual/sound stimulus | 
| Phase 2 (Weeks 5–8) Specialisation | Plyometrics: box jumps, monopodalic jumps, reactive sprints 10–15 m Technical HIIT (20′/10′ with specific techniques) Work with elastic bands for acceleration/deceleration Changes in direction (agility ladder, cone drill) Speed training with partner (variable resistance) | Attack combinations: kizami-gyaku, mae geri-gyaku, kizami-mawashi Techniques on change in direction (tai sabaki + attack) Advance and counter-attack strategies Themed training: attack after feint, point and exit, countering the opponent’s attack | 
| Phase 3 (Weeks 9–12) Refining and competition simulation | Pre-competition neuromuscular activation: mini-jumps, reactivity, light work with elastic bands Dynamic stretching and fluid mobility Booster circuits (medium-low intensity, short duration) Volume reduction to maintain freshness Training with race times (1:30–2:00) | Simulated fights Tactical management: advantage, disadvantage, draw Personal strategy training (offensive/defensive) Pre-fight routines: breathing, visualisation | 
| Ankle ROM DX (cm) | Ankle ROM SX (cm) | Elastic Force Contribution (cm) | Propulsive RFD (kg/s) | 
|---|---|---|---|
| 19.5 | 16 | 5.38 | 222.77 | 
| 17 | 17 | 2.39 | 418.88 | 
| 20 | 20 | 2.27 | 246.66 | 
| 18 | 17.5 | 2.89 | 498.50 | 
| 17 | 16.5 | 4.79 | 330.10 | 
| 17,5 | 17 | 3.38 | 440.54 | 
| 18 | 16 | 4.28 | 435.25 | 
| 19 | 18 | 3.49 | 470.86 | 
| 16 | 16 | 6.52 | 420.15 | 
| 19 | 19 | 2.98 | 290.35 | 
| 20 | 18 | 3.24 | 295.97 | 
| 19 | 17 | 3.75 | 265.25 | 
| 20 | 20 | 2.70 | 410.86 | 
| 18 | 18 | 3.42 | 460.14 | 
| 17.5 | 17.5 | 3.77 | 435.48 | 
| 19 | 19 | 2.9 | 300.10 | 
| 20 | 20 | 3.19 | 298.99 | 
| 20 | 19 | 2.28 | 315.8 | 
| Ankle ROM Dx (cm) | Ankle ROM Sx (cm) | Elastic Force Contribution (cm) | Propulsive RFD (kg/s) | 
|---|---|---|---|
| 14 | 14 | 1.99 | 668.47 | 
| 14 5 | 14 | 1.95 | 468.79 | 
| 14 | 13.5 | 1.99 | 361.56 | 
| 14 | 14 | 1.18 | 322.67 | 
| 10.5 | 10.5 | 4.85 | 419.68 | 
| 10 | 10 | 3.22 | 1119.17 | 
| 14 | 14 | 1.19 | 488.33 | 
| 14 | 14 | 1.22 | 460.06 | 
| 11 | 11 | 5.7 | 318.25 | 
| 13 | 11 | −0.72 | 292.44 | 
| 14 | 14 | 1.22 | 667.15 | 
| 13 | 13 | 6.09 | 456.76 | 
| 14 | 14 | 1.09 | 555.93 | 
| 14 | 12 | 1.42 | 647.36 | 
| 13 | 13 | 6.40 | 555.14 | 
| 12.5 | 12.5 | 7.65 | 518.11 | 
| 13 | 13 | −0.72 | 519.22 | 
| 14 | 14 | 11.58 | 636.35 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giardullo, G.; Di Lascio, G.; Ceruso, R.; Manzi, V.; Raiola, G. Relationship Between Ankle Mobility, Elastic Strength, and Rate of Force Development in the Two Karate Disciplines: Kata and Kumite. Sci 2025, 7, 151. https://doi.org/10.3390/sci7040151
Giardullo G, Di Lascio G, Ceruso R, Manzi V, Raiola G. Relationship Between Ankle Mobility, Elastic Strength, and Rate of Force Development in the Two Karate Disciplines: Kata and Kumite. Sci. 2025; 7(4):151. https://doi.org/10.3390/sci7040151
Chicago/Turabian StyleGiardullo, Giuseppe, Giuseppe Di Lascio, Rosario Ceruso, Vincenzo Manzi, and Gaetano Raiola. 2025. "Relationship Between Ankle Mobility, Elastic Strength, and Rate of Force Development in the Two Karate Disciplines: Kata and Kumite" Sci 7, no. 4: 151. https://doi.org/10.3390/sci7040151
APA StyleGiardullo, G., Di Lascio, G., Ceruso, R., Manzi, V., & Raiola, G. (2025). Relationship Between Ankle Mobility, Elastic Strength, and Rate of Force Development in the Two Karate Disciplines: Kata and Kumite. Sci, 7(4), 151. https://doi.org/10.3390/sci7040151
 
        




 
       