A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Design and Procedures
2.2. Participants
2.3. Base Metrics App
2.4. Biological Measurements
2.5. Behavioral Measurements
2.6. Self-Assessed Risk Measurements
2.7. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable Risk Factors, Cardiovascular Disease and Mortality in 155,722 Individuals from 21 High-, Middle-, and Low-Income Countries. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; et al. EUROASPIRE IV: A European Society of Cardiology Survey on the Lifestyle, Risk Factor and Therapeutic Management of Coronary Patients from 24 European Countries. Eur. J. Prev. Cardiol. 2016, 23, 636–648. [Google Scholar] [CrossRef]
- Steinmetz, M.; Rammos, C.; Rassaf, T.; Lortz, J. Digital Interventions in the Treatment of Cardiovascular Risk Factors and Atherosclerotic Vascular Disease. Int. J. Cardiol. Heart Vasc. 2020, 26, 100470. [Google Scholar] [CrossRef]
- Widmer, R.J.; Collins, N.M.; Collins, C.S.; West, C.P.; Lerman, L.O.; Lerman, A. Digital Health Interventions for the Prevention of Cardiovascular Disease: A Systematic Review and Meta-Analysis. Mayo Clin. Proc. 2015, 90, 469–480. [Google Scholar] [CrossRef]
- Neubeck, L.; Lowres, N.; Benjamin, E.J.; Freedman, S.B.; Coorey, G.; Redfern, J. The Mobile Revolution—Using Smartphone Apps to Prevent Cardiovascular Disease. Nat. Rev. Cardiol. 2015, 12, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Santo, K.; Richtering, S.S.; Chalmers, J.; Thiagalingam, A.; Chow, C.K.; Redfern, J. Mobile Phone Apps to Improve Medication Adherence: A Systematic Stepwise Process to Identify High-Quality Apps. JMIR mHealth uHealth 2016, 4, e132. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-M.; Lee, S.; Islam, S.M.S.; Kim, S.-Y. Theories Applied to M-Health Interventions for Behavior Change in Low- and Middle-Income Countries: A Systematic Review. Telemed. e-Health 2018, 24, 727–741. [Google Scholar] [CrossRef]
- Vandelanotte, C.; Müller, A.M.; Short, C.E.; Hingle, M.; Nathan, N.; Williams, S.L.; Lopez, M.L.; Parekh, S.; Maher, C.A. Past, Present, and Future of eHealth and mHealth Research to Improve Physical Activity and Dietary Behaviors. J. Nutr. Educ. Behav. 2016, 48, 219–228.e1. [Google Scholar] [CrossRef]
- Rosenstock, I.M. The Health Belief Model and Preventive Health Behavior. Health Educ. Monogr. 1974, 2, 354–386. [Google Scholar] [CrossRef]
- Godin, G.; Kok, G. The Theory of Planned Behavior: A Review of Its Applications to Health-Related Behaviors. Am. J. Health Promot. 1996, 11, 87–98. [Google Scholar] [CrossRef]
- Prochaska, J.O.; Velicer, W.F. The Transtheoretical Model of Health Behavior Change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Janz, N.K.; Becker, M.H. The Health Belief Model: A Decade Later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Barbara, K.; Rimer, K.; Viswanath, C.; Orleans, T. Health Behavior and Health Education: Theory, Research, and Practice, 4th ed.; Jossey-Bass Inc Pub: San Francisco, CA, USA, 2008; p. 552. ISBN 978-0-7879-9614-7. [Google Scholar]
- Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. Ann. Behav. Med. 2013, 46, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Vézina-Im, L.-A.; Godin, G.; Couillard, C.; Perron, J.; Lemieux, S.; Robitaille, J. Validity and Reliability of a Brief Self-Reported Questionnaire Assessing Fruit and Vegetable Consumption among Pregnant Women. BMC Public Health 2016, 16, 982. [Google Scholar] [CrossRef]
- Mainvil, L.A.; Horwath, C.C.; McKenzie, J.E.; Lawson, R. Validation of Brief Instruments to Measure Adult Fruit and Vegetable Consumption. Appetite 2011, 56, 111–117. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical Assessment of Skin Carotenoid Status as a Biomarker of Vegetable and Fruit Intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Di Noia, J.; Gellermann, W. Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults. Nutrients 2021, 13, 2270. [Google Scholar] [CrossRef] [PubMed]
- May, K.; Jilcott Pitts, S.; Stage, V.C.; Kelley, C.J.; Burkholder, S.; Fang, X.; Zeng, A.; Lazorick, S. Use of the Veggie Meter® as a Tool to Objectively Approximate Fruit and Vegetable Intake among Youth for Evaluation of Preschool and School-Based Interventions. J. Hum. Nutr. Diet. 2020, 33, 869–875. [Google Scholar] [CrossRef]
- Woringer, M.; Nielsen, J.J.; Zibarras, L.; Evason, J.; Kassianos, A.P.; Harris, M.; Majeed, A.; Soljak, M. Development of a Questionnaire to Evaluate Patients’ Awareness of Cardiovascular Disease Risk in England’s National Health Service Health Check Preventive Cardiovascular Programme. BMJ Open 2017, 7, e014413. [Google Scholar] [CrossRef]
- McCarroll, R.; Eyles, H.; Ni Mhurchu, C. Effectiveness of Mobile Health (mHealth) Interventions for Promoting Healthy Eating in Adults: A Systematic Review. Prev. Med. 2017, 105, 156–168. [Google Scholar] [CrossRef]
- Thom, S.J.M.; Sivakumar, B.; Ayodele, T.; Tan, M.C.; Brown, J.M.; Arcand, J. Impact of mHealth Interventions on Supporting Dietary Adherence in Cardiovascular Disease: A Systematic Review. J. Nutr. Educ. Behav. 2023, 55, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, L.; Ding, D.; Heleno, B.; Kocaballi, B.; Quiroz, J.C.; Tong, H.L.; Chahwan, B.; Neves, A.L.; Gabarron, E.; Dao, K.P.; et al. Do Smartphone Applications and Activity Trackers Increase Physical Activity in Adults? Systematic Review, Meta-Analysis and Metaregression. Br. J. Sports Med. 2021, 55, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.M.; Alley, S.; Schoeppe, S.; Vandelanotte, C. The Effectiveness of E-& mHealth Interventions to Promote Physical Activity and Healthy Diets in Developing Countries: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 109. [Google Scholar] [CrossRef]
- Bernabe-Ortiz, A.; Pauschardt, J.; Diez-Canseco, F.; Miranda, J.J. Sustainability of mHealth Effects on Cardiometabolic Risk Factors: Five-Year Results of a Randomized Clinical Trial. J. Med. Internet Res. 2020, 22, e14595. [Google Scholar] [CrossRef]
- Ranjani, H.; Avari, P.; Nitika, S.; Jagannathan, N.; Oliver, N.; Valabhji, J.; Mohan, V.; Chambers, J.C.; Anjana, R.M. Effectiveness of Mobile Health Applications for Cardiometabolic Risk Reduction in Urban and Rural India: A Pilot, Randomized Controlled Study. J. Diabetes Sci. Technol. 2025, 36, 34–55. [Google Scholar] [CrossRef]
- Abe, M.; Hirata, T.; Morito, N.; Kawashima, M.; Yoshida, S.; Takami, Y.; Fujimoto, T.; Kawasoe, S.; Shibukawa, T.; Segawa, H.; et al. Smartphone Application-Based Intervention to Lower Blood Pressure: A Systematic Review and Meta-Analysis. Hypertens. Res. 2025, 48, 492–505. [Google Scholar] [CrossRef]
- Villinger, K.; Wahl, D.R.; Boeing, H.; Schupp, H.T.; Renner, B. The Effectiveness of App-Based Mobile Interventions on Nutrition Behaviours and Nutrition-Related Health Outcomes: A Systematic Review and Meta-Analysis. Obes. Rev. 2019, 20, 1465–1484. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, J.; Sweeney, G.; Whiteson, J.; Dodson, J.A. Mobile Health and Cardiac Rehabilitation in Older Adults. Clin. Cardiol. 2020, 43, 118–126. [Google Scholar] [CrossRef]
- Cajita, M.I.; Gleason, K.T.; Han, H.-R. A Systematic Review of mHealth-Based Heart Failure Interventions. J. Cardiovasc. Nurs. 2016, 31, E10. [Google Scholar] [CrossRef]
- Cruz-Cobo, C.; Bernal-Jiménez, M.Á.; Vázquez-García, R.; Santi-Cano, M.J. Effectiveness of mHealth Interventions in the Control of Lifestyle and Cardiovascular Risk Factors in Patients After a Coronary Event: Systematic Review and Meta-Analysis. JMIR mHealth uHealth 2022, 10, e39593. [Google Scholar] [CrossRef]
- Luquis, R.R.; Paz, H.L. Attitudes About and Practices of Health Promotion and Prevention Among Primary Care Providers. Health Promot. Pract. 2015, 16, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Cordani, C.; Perillo, S.; Corbetta, D.; Sarasso, E.; Agosta, F.; Filippi, M.; Mazzali, A.G.; Pennestrì, F. Developing Physiotherapy in Primary Health Care: A First Snapshot from the Italian Metropolitan City of Milan. Healthcare 2024, 12, 1628. [Google Scholar] [CrossRef] [PubMed]
App Feature | Behavior Change Theory | Description of Link |
---|---|---|
Tracking and visualizing CVD risk factors | Self-monitoring of behavior | Users track and view trends in their risk factors over time. |
Weekly health messages | Information about health consequences Salience of consequences | Messages relate how behaviors relate to CVD risk and overall health. Messages are individualized based on personal risk factors. |
Heart health lessons | Instruction on how to perform a behavior Salience of consequences | Lessons provide guidance on how to adopt heart-healthy behaviors. Lessons communicate relationships between behaviors and CVD risk. |
Goal setting based on risk factor goals | Goal setting | The app recommends personalized goals based on the user’s risk factor profile. |
Comparison of user values to healthy ranges | Comparison of outcomes | Users compare their current risk factors to ideal/target ranges to assess their progress. |
Pre-Intervention | Post-Intervention | p-Value 1,2 | Cohen’s d 3 | |
---|---|---|---|---|
Body mass (kg) | 82.4 ± 23.9 | 81.6 ± 21.8 | 0.91 | 0.03 |
BMI 4 (kg/m2) | 28.3 ± 7.1 | 28.1 ± 6.5 | 0.90 | 0.03 |
Fat mass (kg) | 30.2 ± 15.4 | 30.8 ± 14.4 | 0.52 | 0.04 |
Fat mass (%) | 35.7 ± 9.4 | 36.1 ± 9.5 | 0.52 | 0.04 |
Muscle mass (kg) | 23.9 ± 6.9 | 23.5 ± 6.4 | 0.99 | 0.06 |
Muscle mass (%) | 30.3 ± 5.3 | 29.7 ± 5.7 | 0.35 | 0.11 |
Systolic BP (mmHg) | 122.4 ± 12.9 | 124.2 ± 14.3 | 0.71 | 0.13 |
Diastolic BP (mmHg) | 83.0 ± 8.3 | 84.3 ± 7.5 | 0.55 | 0.16 |
Glucose (mg/dL) | 101.0 ± 7.1 | 100.0 ± 7.0 | 0.17 | 0.14 |
Triglycerides (mg/dL) | 115.0 ± 45.9 | 104.1 ± 39.8 | 0.24 | 0.25 |
Total-C (mg/dL) | 176.9 ± 27.3 | 186.6 ± 41.4 | 0.19 | 0.28 |
HDL-C (mg/L) | 61.5 ± 15.6 | 62.7 ± 16.2 | 0.43 | 0.08 |
LDL-C (mg/dL) | 90.9 ± 26.9 | 102.3 ± 36.6 | 0.07 | 0.35 |
ALT (U/L) | 30.4 ± 9.4 | 30.6 ± 12.7 | 0.95 | 0.02 |
AST (U/L) | 29.5 ± 7.7 | 31.4 ± 10.2 | 0.42 | 0.21 |
Steps/day | 8800 ± 3019 | 8135 ± 2348 | 0.04 | 0.25 |
EE (kcal/day) | 2021 ± 925 | 2462 ± 515 | 0.07 | 0.59 |
FV servings/day | 3.3 ± 1.8 | 4.4 ± 2.0 | 0.002 | 0.58 |
Skin carotenoids (a.u.) | 275.8 ± 76.4 | 304.1 ± 69.3 | 0.04 | 0.39 |
CVD knowledge (a.u.) | 7.2 ± 0.9 | 7.5 ± 0.9 | 0.06 | 0.33 |
Perceived risk (a.u.) | 16.8 ± 2.9 | 16.1 ± 3.0 | 0.23 | 0.24 |
Perceived benefit (a.u.) | 3.1 ± 0.3 | 3.2 ± 0.3 | 0.61 | 0.33 |
Health intentions (a.u.) | 2.7 ± 0.4 | 2.7 ± 0.3 | 0.89 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, J.H.; Keirns, B.H.; Braun, A.; Walstad, S.; Ultzsch, I.; Baham, J.; Rosebrook, A.; Emerson, S.R. A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge. Sci 2025, 7, 71. https://doi.org/10.3390/sci7020071
Rajendran JH, Keirns BH, Braun A, Walstad S, Ultzsch I, Baham J, Rosebrook A, Emerson SR. A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge. Sci. 2025; 7(2):71. https://doi.org/10.3390/sci7020071
Chicago/Turabian StyleRajendran, Jai Hariprasad, Bryant H. Keirns, Ashlea Braun, Sydney Walstad, Isabel Ultzsch, Jamie Baham, Abagail Rosebrook, and Sam R. Emerson. 2025. "A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge" Sci 7, no. 2: 71. https://doi.org/10.3390/sci7020071
APA StyleRajendran, J. H., Keirns, B. H., Braun, A., Walstad, S., Ultzsch, I., Baham, J., Rosebrook, A., & Emerson, S. R. (2025). A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge. Sci, 7(2), 71. https://doi.org/10.3390/sci7020071