A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Design and Procedures
2.2. Participants
2.3. Base Metrics App
2.4. Biological Measurements
2.5. Behavioral Measurements
2.6. Self-Assessed Risk Measurements
2.7. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable Risk Factors, Cardiovascular Disease and Mortality in 155,722 Individuals from 21 High-, Middle-, and Low-Income Countries. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; et al. EUROASPIRE IV: A European Society of Cardiology Survey on the Lifestyle, Risk Factor and Therapeutic Management of Coronary Patients from 24 European Countries. Eur. J. Prev. Cardiol. 2016, 23, 636–648. [Google Scholar] [CrossRef]
- Steinmetz, M.; Rammos, C.; Rassaf, T.; Lortz, J. Digital Interventions in the Treatment of Cardiovascular Risk Factors and Atherosclerotic Vascular Disease. Int. J. Cardiol. Heart Vasc. 2020, 26, 100470. [Google Scholar] [CrossRef]
- Widmer, R.J.; Collins, N.M.; Collins, C.S.; West, C.P.; Lerman, L.O.; Lerman, A. Digital Health Interventions for the Prevention of Cardiovascular Disease: A Systematic Review and Meta-Analysis. Mayo Clin. Proc. 2015, 90, 469–480. [Google Scholar] [CrossRef]
- Neubeck, L.; Lowres, N.; Benjamin, E.J.; Freedman, S.B.; Coorey, G.; Redfern, J. The Mobile Revolution—Using Smartphone Apps to Prevent Cardiovascular Disease. Nat. Rev. Cardiol. 2015, 12, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Santo, K.; Richtering, S.S.; Chalmers, J.; Thiagalingam, A.; Chow, C.K.; Redfern, J. Mobile Phone Apps to Improve Medication Adherence: A Systematic Stepwise Process to Identify High-Quality Apps. JMIR mHealth uHealth 2016, 4, e132. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-M.; Lee, S.; Islam, S.M.S.; Kim, S.-Y. Theories Applied to M-Health Interventions for Behavior Change in Low- and Middle-Income Countries: A Systematic Review. Telemed. e-Health 2018, 24, 727–741. [Google Scholar] [CrossRef]
- Vandelanotte, C.; Müller, A.M.; Short, C.E.; Hingle, M.; Nathan, N.; Williams, S.L.; Lopez, M.L.; Parekh, S.; Maher, C.A. Past, Present, and Future of eHealth and mHealth Research to Improve Physical Activity and Dietary Behaviors. J. Nutr. Educ. Behav. 2016, 48, 219–228.e1. [Google Scholar] [CrossRef]
- Rosenstock, I.M. The Health Belief Model and Preventive Health Behavior. Health Educ. Monogr. 1974, 2, 354–386. [Google Scholar] [CrossRef]
- Godin, G.; Kok, G. The Theory of Planned Behavior: A Review of Its Applications to Health-Related Behaviors. Am. J. Health Promot. 1996, 11, 87–98. [Google Scholar] [CrossRef]
- Prochaska, J.O.; Velicer, W.F. The Transtheoretical Model of Health Behavior Change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Janz, N.K.; Becker, M.H. The Health Belief Model: A Decade Later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Barbara, K.; Rimer, K.; Viswanath, C.; Orleans, T. Health Behavior and Health Education: Theory, Research, and Practice, 4th ed.; Jossey-Bass Inc Pub: San Francisco, CA, USA, 2008; p. 552. ISBN 978-0-7879-9614-7. [Google Scholar]
- Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. Ann. Behav. Med. 2013, 46, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Vézina-Im, L.-A.; Godin, G.; Couillard, C.; Perron, J.; Lemieux, S.; Robitaille, J. Validity and Reliability of a Brief Self-Reported Questionnaire Assessing Fruit and Vegetable Consumption among Pregnant Women. BMC Public Health 2016, 16, 982. [Google Scholar] [CrossRef]
- Mainvil, L.A.; Horwath, C.C.; McKenzie, J.E.; Lawson, R. Validation of Brief Instruments to Measure Adult Fruit and Vegetable Consumption. Appetite 2011, 56, 111–117. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical Assessment of Skin Carotenoid Status as a Biomarker of Vegetable and Fruit Intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Di Noia, J.; Gellermann, W. Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults. Nutrients 2021, 13, 2270. [Google Scholar] [CrossRef] [PubMed]
- May, K.; Jilcott Pitts, S.; Stage, V.C.; Kelley, C.J.; Burkholder, S.; Fang, X.; Zeng, A.; Lazorick, S. Use of the Veggie Meter® as a Tool to Objectively Approximate Fruit and Vegetable Intake among Youth for Evaluation of Preschool and School-Based Interventions. J. Hum. Nutr. Diet. 2020, 33, 869–875. [Google Scholar] [CrossRef]
- Woringer, M.; Nielsen, J.J.; Zibarras, L.; Evason, J.; Kassianos, A.P.; Harris, M.; Majeed, A.; Soljak, M. Development of a Questionnaire to Evaluate Patients’ Awareness of Cardiovascular Disease Risk in England’s National Health Service Health Check Preventive Cardiovascular Programme. BMJ Open 2017, 7, e014413. [Google Scholar] [CrossRef]
- McCarroll, R.; Eyles, H.; Ni Mhurchu, C. Effectiveness of Mobile Health (mHealth) Interventions for Promoting Healthy Eating in Adults: A Systematic Review. Prev. Med. 2017, 105, 156–168. [Google Scholar] [CrossRef]
- Thom, S.J.M.; Sivakumar, B.; Ayodele, T.; Tan, M.C.; Brown, J.M.; Arcand, J. Impact of mHealth Interventions on Supporting Dietary Adherence in Cardiovascular Disease: A Systematic Review. J. Nutr. Educ. Behav. 2023, 55, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, L.; Ding, D.; Heleno, B.; Kocaballi, B.; Quiroz, J.C.; Tong, H.L.; Chahwan, B.; Neves, A.L.; Gabarron, E.; Dao, K.P.; et al. Do Smartphone Applications and Activity Trackers Increase Physical Activity in Adults? Systematic Review, Meta-Analysis and Metaregression. Br. J. Sports Med. 2021, 55, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.M.; Alley, S.; Schoeppe, S.; Vandelanotte, C. The Effectiveness of E-& mHealth Interventions to Promote Physical Activity and Healthy Diets in Developing Countries: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 109. [Google Scholar] [CrossRef]
- Bernabe-Ortiz, A.; Pauschardt, J.; Diez-Canseco, F.; Miranda, J.J. Sustainability of mHealth Effects on Cardiometabolic Risk Factors: Five-Year Results of a Randomized Clinical Trial. J. Med. Internet Res. 2020, 22, e14595. [Google Scholar] [CrossRef]
- Ranjani, H.; Avari, P.; Nitika, S.; Jagannathan, N.; Oliver, N.; Valabhji, J.; Mohan, V.; Chambers, J.C.; Anjana, R.M. Effectiveness of Mobile Health Applications for Cardiometabolic Risk Reduction in Urban and Rural India: A Pilot, Randomized Controlled Study. J. Diabetes Sci. Technol. 2025, 36, 34–55. [Google Scholar] [CrossRef]
- Abe, M.; Hirata, T.; Morito, N.; Kawashima, M.; Yoshida, S.; Takami, Y.; Fujimoto, T.; Kawasoe, S.; Shibukawa, T.; Segawa, H.; et al. Smartphone Application-Based Intervention to Lower Blood Pressure: A Systematic Review and Meta-Analysis. Hypertens. Res. 2025, 48, 492–505. [Google Scholar] [CrossRef]
- Villinger, K.; Wahl, D.R.; Boeing, H.; Schupp, H.T.; Renner, B. The Effectiveness of App-Based Mobile Interventions on Nutrition Behaviours and Nutrition-Related Health Outcomes: A Systematic Review and Meta-Analysis. Obes. Rev. 2019, 20, 1465–1484. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, J.; Sweeney, G.; Whiteson, J.; Dodson, J.A. Mobile Health and Cardiac Rehabilitation in Older Adults. Clin. Cardiol. 2020, 43, 118–126. [Google Scholar] [CrossRef]
- Cajita, M.I.; Gleason, K.T.; Han, H.-R. A Systematic Review of mHealth-Based Heart Failure Interventions. J. Cardiovasc. Nurs. 2016, 31, E10. [Google Scholar] [CrossRef]
- Cruz-Cobo, C.; Bernal-Jiménez, M.Á.; Vázquez-García, R.; Santi-Cano, M.J. Effectiveness of mHealth Interventions in the Control of Lifestyle and Cardiovascular Risk Factors in Patients After a Coronary Event: Systematic Review and Meta-Analysis. JMIR mHealth uHealth 2022, 10, e39593. [Google Scholar] [CrossRef]
- Luquis, R.R.; Paz, H.L. Attitudes About and Practices of Health Promotion and Prevention Among Primary Care Providers. Health Promot. Pract. 2015, 16, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Cordani, C.; Perillo, S.; Corbetta, D.; Sarasso, E.; Agosta, F.; Filippi, M.; Mazzali, A.G.; Pennestrì, F. Developing Physiotherapy in Primary Health Care: A First Snapshot from the Italian Metropolitan City of Milan. Healthcare 2024, 12, 1628. [Google Scholar] [CrossRef] [PubMed]
App Feature | Behavior Change Theory | Description of Link |
---|---|---|
Tracking and visualizing CVD risk factors | Self-monitoring of behavior | Users track and view trends in their risk factors over time. |
Weekly health messages | Information about health consequences Salience of consequences | Messages relate how behaviors relate to CVD risk and overall health. Messages are individualized based on personal risk factors. |
Heart health lessons | Instruction on how to perform a behavior Salience of consequences | Lessons provide guidance on how to adopt heart-healthy behaviors. Lessons communicate relationships between behaviors and CVD risk. |
Goal setting based on risk factor goals | Goal setting | The app recommends personalized goals based on the user’s risk factor profile. |
Comparison of user values to healthy ranges | Comparison of outcomes | Users compare their current risk factors to ideal/target ranges to assess their progress. |
Pre-Intervention | Post-Intervention | p-Value 1,2 | Cohen’s d 3 | |
---|---|---|---|---|
Body mass (kg) | 82.4 ± 23.9 | 81.6 ± 21.8 | 0.91 | 0.03 |
BMI 4 (kg/m2) | 28.3 ± 7.1 | 28.1 ± 6.5 | 0.90 | 0.03 |
Fat mass (kg) | 30.2 ± 15.4 | 30.8 ± 14.4 | 0.52 | 0.04 |
Fat mass (%) | 35.7 ± 9.4 | 36.1 ± 9.5 | 0.52 | 0.04 |
Muscle mass (kg) | 23.9 ± 6.9 | 23.5 ± 6.4 | 0.99 | 0.06 |
Muscle mass (%) | 30.3 ± 5.3 | 29.7 ± 5.7 | 0.35 | 0.11 |
Systolic BP (mmHg) | 122.4 ± 12.9 | 124.2 ± 14.3 | 0.71 | 0.13 |
Diastolic BP (mmHg) | 83.0 ± 8.3 | 84.3 ± 7.5 | 0.55 | 0.16 |
Glucose (mg/dL) | 101.0 ± 7.1 | 100.0 ± 7.0 | 0.17 | 0.14 |
Triglycerides (mg/dL) | 115.0 ± 45.9 | 104.1 ± 39.8 | 0.24 | 0.25 |
Total-C (mg/dL) | 176.9 ± 27.3 | 186.6 ± 41.4 | 0.19 | 0.28 |
HDL-C (mg/L) | 61.5 ± 15.6 | 62.7 ± 16.2 | 0.43 | 0.08 |
LDL-C (mg/dL) | 90.9 ± 26.9 | 102.3 ± 36.6 | 0.07 | 0.35 |
ALT (U/L) | 30.4 ± 9.4 | 30.6 ± 12.7 | 0.95 | 0.02 |
AST (U/L) | 29.5 ± 7.7 | 31.4 ± 10.2 | 0.42 | 0.21 |
Steps/day | 8800 ± 3019 | 8135 ± 2348 | 0.04 | 0.25 |
EE (kcal/day) | 2021 ± 925 | 2462 ± 515 | 0.07 | 0.59 |
FV servings/day | 3.3 ± 1.8 | 4.4 ± 2.0 | 0.002 | 0.58 |
Skin carotenoids (a.u.) | 275.8 ± 76.4 | 304.1 ± 69.3 | 0.04 | 0.39 |
CVD knowledge (a.u.) | 7.2 ± 0.9 | 7.5 ± 0.9 | 0.06 | 0.33 |
Perceived risk (a.u.) | 16.8 ± 2.9 | 16.1 ± 3.0 | 0.23 | 0.24 |
Perceived benefit (a.u.) | 3.1 ± 0.3 | 3.2 ± 0.3 | 0.61 | 0.33 |
Health intentions (a.u.) | 2.7 ± 0.4 | 2.7 ± 0.3 | 0.89 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, J.H.; Keirns, B.H.; Braun, A.; Walstad, S.; Ultzsch, I.; Baham, J.; Rosebrook, A.; Emerson, S.R. A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge. Sci 2025, 7, 71. https://doi.org/10.3390/sci7020071
Rajendran JH, Keirns BH, Braun A, Walstad S, Ultzsch I, Baham J, Rosebrook A, Emerson SR. A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge. Sci. 2025; 7(2):71. https://doi.org/10.3390/sci7020071
Chicago/Turabian StyleRajendran, Jai Hariprasad, Bryant H. Keirns, Ashlea Braun, Sydney Walstad, Isabel Ultzsch, Jamie Baham, Abagail Rosebrook, and Sam R. Emerson. 2025. "A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge" Sci 7, no. 2: 71. https://doi.org/10.3390/sci7020071
APA StyleRajendran, J. H., Keirns, B. H., Braun, A., Walstad, S., Ultzsch, I., Baham, J., Rosebrook, A., & Emerson, S. R. (2025). A Novel App-Based Mobile Health Intervention for Improving Prevention Behaviors and Cardiovascular Disease Knowledge. Sci, 7(2), 71. https://doi.org/10.3390/sci7020071