The Genus Bryonia L. (Cucurbitaceae): A Systematic Review of Its Botany, Phytochemistry, Traditional Uses, and Biological Activities
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Study Selection
- (1)
- Validated source of material: plant materials were identified to the taxonomic levels of genus and species.
- (2)
- Appropriate methodology: standard methods for pharmacological assays both in vitro and in vivo were employed, along with phytochemical investigation.
- (3)
- Access to the full-text article in the English language: articles published only in non-English languages were excluded.
2.3. Data Extraction
3. Results and Discussion
3.1. Botany (Taxonomy, Description, and Distribution)
3.2. Traditional Uses
3.3. Pharmacological Proprieties (In Vivo/In Vitro Application)
- Antioxidant
- Anti-inflammatory
- Antibacterial
- Antiparasitic
- Anti-infection
- Antidiabetic
- Hepatoprotective effect
- Antinociceptive
- Anti-polycystic ovary syndrome
- Anticancer
Ailments/Activities | Bryonia Species (Family/Part) | Product | A Model/Strains | B Inhibitory Assay | Dosage | Control (Negative ⊖/Positive ⊕) | Effects | Ref. |
---|---|---|---|---|---|---|---|---|
In vitro assays | ||||||||
Anti-Oxidant | B. dioica fruits, leaves, stems, flowers, roots | Methanolic/ethanolic extract | DPPH, RP, inhibition of B-carotene bleaching, inhibition of lipid peroxidationTBARS | 1 mg/mL | Extract | An antioxidant effect | [32,34] | |
B. alba roots | N-hexane, ethylacetate (EtOAc), methanol (MeOH) | DPPH, ABTS, FRAP, and hydroxyl radicalscavenging assay | 0.01 mg dw/mL | EtOAc extract showed strong DPPH and ABTS radicalscavenging activity | [13] | |||
B. alba leaves, aerial parts | Flavonoids (lutonarin, saponarin, isoorientin, isovitexin) | L012 substrate (probe) | Horseradish peroxidase (HRP)-catalyzed oxidation assay | 2 and 100 lg/mL | Enzyme alone enzyme and probe | Inhibition ofthe peroxidase-catalyzed reactions showed significant antioxidant activity, proved to pass through cell membranes and to exhibit their antioxidant/antiradical effect | [14,17] | |
Myeloperoxidase | Direct MPO assay | Buffer DMSO | ||||||
Neutrophils | Effects on the total ROS produced by PMA-activated neutrophils | Non-PMA-activated cells | ||||||
HL-60 | Effects on the ROS produced by PMA-activated HL-60 monocytes | Non-activated cells | ||||||
SNPAC EPR | 1 mg/mL | An antioxidant effect | ||||||
Antibacterial | B. dioica roots, fruits | Lipid fraction | E. coli, S. typhimurium E. faecium, S. agalactiae, S. aureus | Disk diffusion method according to NCCLS method inhibition zone | 15 uL | Ampicillin | Inhibited the growth of all the test bacterial strains | [37] |
B. dioica leaves | Ethanolic extract | E. coli, S. aureas, K. pneumoniea, S. typhi, P. aeruginosa, P. valgaris | Well diffusion assay | 200 (mg mL−1) | Antimicrobial activity against three Gram-negative microorganisms E. coli, K. pneumoniea, and P. valgaris. | [33] | ||
Anti-Plasmodial | B. alba aerial parts | Methanolic extract | Plasmodium falciparum strains: 3D7 and W2 | Activity of the plasmodial lactate dehydrogenase (pLDH) at 630 nm | 0.8 and 100 ug/mL | Infected and uninfected erythrocytes | No cellular toxicity on the parasitic strains used | [14] |
Anti-proliferative | B. aspera roots | Hydro-ethanolic | HN-5 and Hela cells | MTT assay | 12.5 to 500 μg/mL | Decreased cell viability in Hela and HN-5 cell lines in a concentration- and time-dependent manner | [30] | |
B. cretica roots | Triterpene glycosides, bryoniosides A and B | Humanleukemia U937 cells | Cytotoxicity assay | 9.2 and 16 nM 72 h | Inhibition of cell proliferation | [31] | ||
B. cretica roots | Isocucurbitacin D (MeOH) | HT1080 cells | MTT assay | 1 uM | Positive control Cucurbitacin E | Cytotoxic effects with the disruption of the target protein cofilin | [31] | |
Cancer/Tumor | B. alba roots | 23, 24-dihydrocucurbitacin D (dhc D) Ethanol | Cancer cells A-549, COLO 205, SK-MEL-2, L121O | Cytotoxicity test | Antitumor effect on tumor cells | [49] | ||
B. dioica roots | Bryoniosides, cucurbitacins, cucurbitacin A, cucurbitacin G methanolic extract | In vitro B16F10 melanoma cancer cells | MTT assay Apoptotic effects | Increasing number of cells that express a block in cell cycle progression in the sub-G1phase, followed by cell death induced by apoptosis, anti-melanoma effects by inhibiting cell migration, and invasion through the FAK and Srcsignaling pathways | [48] | |||
B. dioica roots | Methanolic extract Cucurbitaneglycosides | EBV-EA activation Rajicells (virus nonproducer) | Method of probit-graphic interpolation | 1 × 10 mol ratio/TPA | MeOH-CHCl3-H2O | Deglycosylation enhances the inhibitory effects on EBV-EA activation (anti-tumor) | [36] | |
B. dioica roots | Aqueous extract | Burkitt’s lymphoma BL41 cells Propidium iodide (PI) staining of cell DNA | Corroborative assays Flow cytometry analysis of dot-blot light scatter profiles | 250 to 500 ug/mL | Untreated cells | Inducesapoptosis in Burkitt’s lymphoma cells line BL41 by triggering the mitochondria-mediated pathway (exp: activation of caspase-9 and -3 the cleavage of PARP and degradation of PUMA) | [28] | |
B. aspera aerial parts | Methanolic | NALM-6 and REH cell lines | MTT assay | 200–300 uL/mL | Cytotoxic effect causing apoptosis induction | [45] | ||
B. aspera roots | Hydro-ethanolic extract | HN-5 and Hela cell lines | Apoptosis assay | 12.5–100 μg/mL 48 h | Cells + Dulbecco’s modified Eagle’s medium (DMEM) Normal cells | Cell death is involved in B. aspera-induced toxicity in Hela and HN-5 cell lines | [30] | |
B. aspera roots | Neocucurbitacin C and 7β-hydroxy dihydrocucurbitacin D chloroform extract | Cancer cell lines (MCF7, HepG2, and WEHI) and normal cells MDBK | MTT assay | <50 μg/mL | 5-fluorouracil and tamoxifen Non-treated cells | Strongly reduced growth of cancer cells | [46] | |
Cytotoxicity activity | B. alba leaves | Flavonoids (lutonarin, saponarin, isoorientin, isovitexin) | A549, HeLa, WI38, neutrophils, HL-60 cells | Cell viability | Non-treated cells | Very low toxicity or absence of toxicity of the tested samples | [17] | |
B. alba aerial parts | Methanolic extract | A549, HeLa, WI38 | Cytotoxicity assay | 100 ug/mL | -Non-treated cells + Camptothecin | No cellular toxicity | [14] | |
B. alba roots | Aqueous and methanol extracts | Human normal (lymphocytes) (HeLa and Caco-2) cells | Comet assay | No genotoxic effects | [50] | |||
B. dioica | Aqueous extract | BL41 cells | MTT assay | 250–500 ug/mL | Cytotoxicity effect | [28] | ||
In vivo assays | ||||||||
Inflammation | B. dioica roots | Glycosides | Female ICR mice | TPA-Induced Inflammation | 1 mg per ear | MeOH-CHCl3-H2O | Inhibitory effects against TPA-induced inflammation Anti-tumor | [36] |
B. alba roots | N-hexane, ethylacetate (EtOAc), methanol (MeOH) | Swiss albino mice | Carrageenan-induced hind paw edema model | 0.1 mg/kg | 25 μL of saline PC | EtOAc extract showed a statistically significant anti-inflammatory activity in a carrageenan-induced hind paw edema model and an acetic-acid-induced increase in capillary permeability | [13] | |
Acetic-acid-induced increase in capillarypermeability (Whittle method) | 0.2 mL/20 g | |||||||
Diabetes | B. dioica roots | Aqueous extract | n5-STZ diabetic rats (Wismar) | Acute toxicity | 30 mg/kg, i.p/21 days | Non-diabetic (5 mL/kg b.w./day of saline solution NaCl 9‰; i.p.); diabetic (5 mL/kg b.w./day of saline solution NaCl 9‰; i.p.) | Significantly decreased the level of serum glucose with 64% reductions. The body weight as well as serum levels of total cholesterol, triglycerides, and urea were markedly reversed secondary to subacute administrationof the aqueous extract. Changes in the weight of internal organs were restored to normal by the prolonged effect of the BDRaq extract treatment. The BDRaq extract appeared to have maximum antidiabetic activity in normalizing all studied parameters during the acute and subacute treatments | [39] |
B. multiflora | Wistar albino male rats | Acute toxicity test | 100, 200 and 400 mg/kg | Citrate buffer STZ | Prevented damage withliver, kidney, and pancreasamelioration in the functioning of the betacells. | [40] | ||
hepatotoxicity | B. dioica Leaves | Ethanolic extract | Albino male rats | CCL4-induced hepatic damage | 250 mg/kg | Saline Ccl4 | Protection against the toxic effects of CCL4, hepatoprotective effect | [29] |
Anti-nociceptive | B. alba Roots | N-hexane, ethylacetate (EtOAc), methanol (MeOH) | Swiss albino mice | P-benzoquinone-induced abdominal constriction Tail flick test | 0.1 mg/kg | Vehicle/ aspirin Morphine | EtOAc extract displayed antinociceptive activity in the p-benzoquinone-induced writhing mouse model Marked anti-inflammatory effects, with 50% inhibitory doses (ID50) of 0.2–0.6 mg None of the extracts showed any activity in the tail flick test | [13] |
SARSCoV-2 infections. | Bryonia alba | Ethanolic extract | Gallus gallus embryo | Induced pathogenesis assay | 10 μg/mL | Alcohol (70%) | Upregulation of IFN-α, IFN-ß, and TGF-ß by Delta SARS-CoV-2 spike protein RBD antigen | [38] |
Polycystic ovary syndrome | B. dioica | Methanolic extract | Immature female Wistar rats | DHEA antiandrogenic assay | 30 mg/kg/day for 28 days | Saline Metformin | Protective effect on PCOS rats and normalized the hormones, glucose, LDL, and LDL/HDL ratio, improvement effect on the symptoms and markers of PCOS and fertility | [41] |
Toxicity | B. dioica Roots | Aqueous extract | Male mice | Acute/subacute oral toxicity | 250–1000 mg/kg 62.5–250 mg/kg | Distilled water | Dose higher than 250 mg/kg was shown to be toxic for mice in acute toxicity Dose up to 250 mg/kg was shown to be safe for animals in subacute toxicity | [15] |
B. alba Leaves | Flavonoids (lutonarin, saponarin, isoorientin, isovitexin) | Zebrafish larvae | In vivo toxicity assay | 25 embryos not treated | No changes in the parameters were noticed within the 72 h, similar to the ones of the negative control Absence of zebrafish toxicity was confirmed | [17] | ||
B. alba Aerial parts | Methanolic extract | Zebrafish (Danio rerio) | In vivo acute toxicity | 0.1–100 ug/mL | Non-treated larvae | Lack of toxicity | [14] | |
Cancer | B. alba Roots | 23, 24-dihydrocucurbitacin D (dhc D) Ethanol | ICR mice sarcoma 180 ascites tumor cells | Antitumoric test | 5 to 10 mg/kg 60 days | 0.2% ethanol + saline Sarcoma 180 + saline | Antitumor effect | [49] |
B. dioïca Root | Bryoniosides, cucurbitacins, cucurbitacin A, cucurbitacin G Methanolic extract | Balb/c in mice | Apoptotic effect | 50 mg M/kg/d (for 28 days) | B16F10-injected mice treated only with PBS | Cell death induced by apoptosis anti-melanoma effects in vivo by inhibiting cell migration and invasion through the FAK and Srcsignaling pathways | [48] |
3.4. Phytochemistry and Bioactive Compounds
Compounds | Species | Plant Part | Area | Extract 1 | Analysis 2 | Ref. |
---|---|---|---|---|---|---|
Primary metabolites | ||||||
Elements | ||||||
Fe, Si, P, Al, Mn, Mg, Pb, Ni, Mo, Ca, Cu, Zn, Na, K, Sr, Co, Cd, As, and Hg | B. dioica B. alba | Root | Ukraine | Ash | AAS | [51] |
Sugars | ||||||
Fructose | B. dioica | Fruit | Portugal | MeOH | [34] | |
Glucose | ||||||
Sucrose | ||||||
Trehalose | ||||||
Raffinos | B. alba B. multiflora | Root | Ukraine | dH2O | GC/MS | [52] |
Ribose | ||||||
Rhamnose | ||||||
Arabinose | ||||||
Xylose | ||||||
Fucose | ||||||
Mannose | ||||||
Galactose | ||||||
Vitamins | ||||||
α-Tocopherol | B. dioica | Fruit | Portugal | MeOH | [34] | |
β-Tocopherol | ||||||
γ-Tocopherol | ||||||
δ-Tocopherol | ||||||
Ascorbic acid | ||||||
Proteins/a.a | ||||||
Lectin | B. dioica | Root | ||||
Bryodiofin | ||||||
Bryodin | ||||||
N4-(2-hydroxyethyl)-L-asparagine | B. dioica | |||||
Other a.a | B. alba B. mutiflora | Root | Ukraine | dH2O, MeOH | HPLC | [34,53] |
Fatty acids | ||||||
Methyl jasmonate | B. dioica | |||||
α-linolenic acid | B. dioica | |||||
Trihydroxyocdecadeinoic acids | B. multiflora B. alba | Root | ||||
Bryonolicacid (Ba) 3β-Hydroxy-D: C-Friedoolean-8en-29-Oic acid | [38] | |||||
Other essential oils | B. dioica | Fruit, aerial parts, root | Tunisia | Oil | GC-FID/GC–MS | [37] |
Secondary metabolites | ||||||
Terpenoids (Triterpenoid) | ||||||
Dihydrocucurbitacin B (DHCB) | B. cretica | Root | Egypt | EtOH | HPLC | [31] |
B. aspera | Iran | TCM | [46] | |||
Dihydrocucurbitacin D (DHCD) | B. alba | Root | Armenia | MeOH | H/C-NMR, UV, MS | [46,49] |
B. aspera | Iran | TCM | ||||
Dihydrocucurbitacin E (DHCE) | B. cretica | Root | Egypt | EtOH | HPLC | [31] |
Hexanorcucurbitacin D | B. cretica | Root | Egypt | EtOH | HPLC | [31] |
Cucurbitacin B(CuB) (Amarine) | B. multiflora | Root | Turkey | MeOH | HPLC | [54] |
B. verrucosa | TCM | |||||
B. cretica | ||||||
Cucurbitacin G | B. cretica | Root | Egypt | MeOH | NMR, X-ray crystallography | [27] |
Cucurbitacin H | B. cretica | Root | Egypt | MeOH | NMR, X-ray crystallography | [27] |
Cucurbitacin I (Elatericin B) | B. alba | Root | Turkey | MeOH | HPLC | [27,31,36,54] |
B. multiflora | TCM | |||||
B. dioica | MeOH | |||||
B. verrucosa | Germany | EtOH | C-Sephadex LH-20 | |||
B. cretica | Egypt | MeOH | HPLC | |||
Cucurbitacin D (Elatericin A) | B. alba | Root | EtOH | HPLC | [31,54] | |
B. verrucosa | ||||||
B. cretica | Egypt | MeOH | ||||
Cucurbitacin E (α-Elaterin) | B. alba | Root | HPLC | [31,54] | ||
B. verrucosa | ||||||
B. cretica | Root | Egypt | EtOH | |||
Cucurbitacin J | B. alba | Root | HPLC | [31,54] | ||
B. dioica | ||||||
B. cretica | Egypt | EtOH | ||||
Cucurbitacin K | B. alba | Root Root | [36,54] | |||
B. dioica | ||||||
Cucurbitacin L | B. alba | Root | MeOH | H/C-NMR TLC, C- Sephadex LH-20 | [23,36,46,54,55] | |
B. melanocarpa | Uzbekistan | |||||
B. dioica | Germany | |||||
B. cretica | ||||||
B. aspera | Iran | TCM | ||||
Cucurbitacin S | B. dioica | |||||
Bryoamaride | B. melanocarpa | Root | Uzbekistan | MeOH | H/C-NMR TLC, C/H NMR | [23,36,55] |
B. dioica | Japan | |||||
Isomultiflorenol | B. melanocarpa | |||||
bryocoumaricacid | B. dioica | |||||
3a-hydroxy-multiflora-7, 9 (11)-dien-29a-oic acid | B. dioica | |||||
Arvenin IV | B. alba | |||||
Isocucurbitacin G | B. cretica | Root | Egypt | MeOH | NMR, X-ray crystallography | [27] |
Isocucurbitacin H | B. cretica | Root | Egypt | MeOH | NMR, X-ray crystallography | |
Isocucurbitacin D | B. cretica | Root | Egypt | MeOH | NMR, X-ray crystallography | |
Iso Dihydrocucurbitacin D | B. aspera | Root | Iran | TCM MeOH | 2D NMR | [26,46] |
Epi-Iso Dihydrocucurbitacin B | ||||||
7β-hydroxy dihydrocucurbitacin D | ||||||
25-Oglucosyl Dihydrocucurbitacin D | ||||||
2-O-Glucosyl Dihydrocucurbitacin D | ||||||
4-Hydroxy-N-(2-hydroxyethyl)-benzamide (bryonamide A) | ||||||
4-Hydroxy-3-methoxy-N-(2-hydroxyethyl)-benzamide (bryonamide B) | ||||||
Bryonolic acid | B. aspera | Root | Iran | TCM | 2D NMR | [26,46] |
B. melanocarpa | MeOH | |||||
Tirucalla-5, 24-dien-3b-ol | B. dioica | Root | MeOH | [36] | ||
25-O-acetyl bryoamaride | B. dioica | Root | Germany | MeOH | C-Sephadex LH-20 | |
Bryodiosides A | B. dioica | Root | Japan | EtOH | C-Sephadex LH-20 | |
Bryodiosides B | ||||||
Bryodiosides C | ||||||
Bryodulcoside | B. dioica | Root | Germany | MeOH | ||
Bryonoside | B. dioica | Root | Japan | EtOH | C-Sephadex LH-20 FDMS, H/C NMR | |
Bryoside | B. dioica | Root | Chemical, FDMS, H/C NMR | |||
Cucurbitacin I 2-O-â-D-glucopyranoside | B. dioica | Root | Germany | MeOH | C-Sephadex LH-20 | |
10α-cucurbitadienol | B. dioica | Root | Japan | ACE -MeOH | HPLC | |
(24R)-24-ethyl-5a-cholest-7-en-3b-ol | B. melanocarpa | |||||
B-sitosterol-3-O-glucoside | B. cretica | |||||
Stigmasta-7E, 24 (28)-dien-3b-ol | B. melanocarpa | Root | ||||
4a-methyl stigmasta-7E, 24 (28)-dien-3b-ol | ||||||
(24R)-24-ethyl-5a-cholest-7-en-3b-ol 3-O-b-D-glucopyranoside | ||||||
10 Is 2-O-B-D-glucopyranoside | ||||||
Elaterinide | B. dioica | Root | Germany Algeria | MeOH | C-Sephadex LH-20 | [28,36] |
Tetrahydrocucurbitacin | B. dioica | Root | Algeria | [36] | ||
Bryonioside A | B. dioica B. cretica | Root | Japan Egypt | EtOAc EtOH | HPLC | [26,36] |
Bryonioside B | B. dioica B. cretica | Root | Japan Egypt | EtOAc EtOH | HPLC | [26,36] |
Bryonioside C | B. dioica | Root | Japan | EtOAc of MeOH | HPLC | [36] |
Bryonioside D | ||||||
Bryonioside E | ||||||
Bryonioside F | ||||||
Bryonioside G | ||||||
Cabenoside D | B. dioica | Root | Japan | EtOAc | C/H NMR | [36] |
Bryodulcosigenin | B. dioica | Root | Japan | EtOAc | C/H NMR | |
Bryosigenin | B. dioica | Root | Japan | EtOAc | C/H NMR | |
Bryogenin | B. dioica | |||||
22-deoxocucurbitosides A | B. alba B. multiflora | Root | EtOH | |||
22-deoxocucurbitosides B | B. alba | EtOH | ||||
22-deoxocucurbitosides D | B. multiflora | Root | ||||
22-deoxocucurbitacin D | B. alba | EtOH | ||||
Neocucurbitacin C | B. aspera | Root | Iran | TCM | 2D NMR | [26,46] |
Terpenoids (Sesquiterpenoids) | ||||||
Maaliol | B. dioica | Root | Morocco | dH2O | GC–MS | [15] |
Saponins | ||||||
Brydiosides A | B. dioica | Root | Algeria | [26,28,49] | ||
Brydiosides B | ||||||
Brydiosides C | ||||||
Steroids | ||||||
Delta7-stigmastenol | B. dioica | |||||
Flavonoids | ||||||
Saponarin | B. dioica B. alba | Root Leaves/aerial part | Algeria Romania | MeOH | HPLC–DAD, MS/NMR | [14,17,28,39] |
Isovitexin | B. alba | Aerial parts | Romania | MeOH | HPLC–DAD | [14,17] |
Vitexin | ||||||
Vicenin | B. dioica | [11] | ||||
Lutonarin | B. alba | Leaves/aerial parts | Romania | MeOH | HPLC–DAD, MS/NMR | [14,17] |
Isoorientin | B. alba | Leaves/aerial parts | Romania | MeOH | HPLC–DAD, MS/NMR | [14,17] |
5, 7, 4′-trihydroxy flavone 8-Cglucopyranoside | B. alba | |||||
Alliaroside | B. dioica | |||||
Apigenin-C-Hexoside-O-Hexoside | B. dioica | Fruit | Portugal | EtOH | HPLC–DAD–ESI/MS | [56] |
Apigenin-6-C-Glucoside-8-C-Glucoside | ||||||
Apigenin-6-C-Glucoside-7-O-Glucoside | ||||||
Apigenin-C-Hexoside-O-Hexoside | ||||||
Apigenin-6-C-Glucoside (Isovitexin) | ||||||
Quercetin-3-O-Neohesperidoside | ||||||
Quercetin-O-Rhamnosyl-Pentoside | ||||||
Quercetin-O-Rhamnosyl-Rhamnoside | B. dioica | Root | [12] | |||
Quercetin-O-Hexoside 8 | ||||||
Kempferol 3,7-Di-O-Rhamnoside | ||||||
Kaempferol-O-Rhamnosyl-Hexoside-O-Rhamnoside | ||||||
Kaempferol-3-O-Neohesperidoside | ||||||
Kaempferol-O-Pentosyl-Rhamnoside | ||||||
Kaempferol-3,4′-Di-O-Rhamnoside | ||||||
Alkaloid | ||||||
Bryonicine | B. alba | Leaves | EtOH | [38,57] | ||
Coumarans | ||||||
Coumaran | B. dioica | Root | Morocco | dH2O | GC–MS | [15] |
Pigments | ||||||
Chlorophyll A | B. dioica | Fruit | Portugal | MeOH | [34] | |
Chlorophyll B | ||||||
Lycopene | ||||||
β-carotene | B. dioica | Fruit/shoot | Portugal Spain | MeOH | [34,58] | |
Lutein | B. dioica | Shoot | Spain | HPLC–PDA | [58] | |
Neoxanthin | ||||||
Violaxanthin |
- Terpenoids
- Flavonoids
- Alkaloids
- Fatty acids
- Other compounds:
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Assefa, B.; Glatzel, G.; Buchmann, C. Ethnomedicinal Uses of Hagenia abyssinica (Bruce) J.F. Gmel. Among Rural Communities of Ethiopia. J. Ethnobiol. Ethnomedicine 2010, 6, 20. [Google Scholar] [CrossRef]
- Belhouala, K.; Benarba, B. Medicinal Plants Used by Traditional Healers in Algeria: A Multiregional Ethnobotanical Study. Front. Pharmacol. 2021, 12, 760492. [Google Scholar] [CrossRef]
- Kocyan, A.; Zhang, L.-B.; Schaefer, H.; Renner, S.S. A Multi-Locus Chloroplast Phylogeny for the Cucurbitaceae and Its Implications for Character Evolution and Classification. Mol. Phylogenetics Evol. 2007, 44, 553–577. [Google Scholar] [CrossRef] [PubMed]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmondson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europea; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA; Melbourne, Australia, 2010; Volume 3, pp. 297–299. [Google Scholar]
- Schaefer, H.; Renner, S.S. Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae). Taxon 2011, 60, 122–138. [Google Scholar] [CrossRef]
- WFO. Available online: http://www.worldfloraonline.org (accessed on 30 December 2022).
- POWO. Available online: https://powo.science.kew.org (accessed on 30 December 2022).
- Volz, S.; Renner, S.S. Phylogeography of the ancient Eurasian medicinal plant genus Bryonia (Cucurbitaceae) inferred from nuclear and chloroplast sequences. Taxon 2009, 58, 550–560. [Google Scholar] [CrossRef]
- Patel, S.; Showers, D.; Vedantam, P.; Tzeng, T.-R.; Qian, S.; Xuan, X. Microfluidic Separation of Live and Dead Yeast Cells Using Reservoir-Based Dielectrophoresis. Biomicrofluidics 2012, 6, 34102. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, M.; Thacker, M.; Kadhim, A.; Holmes, L. Treatment of Unicameral Bone Cyst: Systematic Review and Meta Analysis. J. Child. Orthop. 2014, 8, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Benarba, B. Ethnomedicinal study of Bryonia dioica, a plant used as anti-breast cancer herbal therapy in North West Algeria. J. Med. Herbs Ethnomed. 2015, 1, 113. [Google Scholar]
- Jasiem, T.M.; Eldalawy, R.; Alnaqqash, Z.A.E. Pharmacological Activities and Chemical Constituents and of Bryonia dioica L.: A Review. Indian J. Public Health Res. Dev. 2020, 11, 2189. [Google Scholar] [CrossRef]
- Ilhan, M.; Dereli, F.T.G.; Tümen, I.; Akkol, E.K. Anti-inflammatory and antinociceptive features of Bryonia alba L.: As a possible alternative in treating rheumatism. Open Chem. 2019, 17, 23–30. [Google Scholar] [CrossRef]
- Ielciu, I.; Frédérich, M.; Hanganu, D.; Angenot, L.; Olah, N.-K.; Ledoux, A.; Crișan, G.; Păltinean, R. Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts. Antioxidants 2019, 8, 108. [Google Scholar] [CrossRef]
- Bourhia, M.; Bari, A.; Ali, S.W.; Benbacer, L.; Khlil, N. Phytochemistry and Toxicological Assessment of Bryonia dioica Roots Used in North-African Alternative Medicine. Open Chem. 2019, 17, 1403–1411. [Google Scholar] [CrossRef]
- Neogi, S.B.; Roy, D.K.; Sachdeva, A.K.; Sharma, R.; Gupta, R.; Ganguli, A. Evidence of prenatal toxicity of herbal based indigenous formulations for sex selection in rat models. J. Tradit. Complement. Med. 2021, 11, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ielciu, I.; Mouithys-Mickalad, A.; Franck, T.; Angenot, L.; Ledoux, A.; Păltinean, R.; Cieckiewicz, E.; Etienne, D.; Tits, M.; Crişan, G.; et al. Flavonoid composition, cellular antioxidant activity and (myelo)peroxidase inhibition of a Bryonia alba L. (Cucurbitaceae) leaves extract. J. Pharm. Pharmacol. 2018, 71, 230–239. [Google Scholar] [CrossRef]
- TPL. Available online: www.theplantlist.org (accessed on 30 December 2022).
- Rus, L.M.; Ielciu, I.I.; Păltinean, R.; Vlase, L.; Ştefănescu, C.; Crişan, G.C. Morphological and Histo-Anatomical Study of Bryonia alba L. (Cucurbitaceae). Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 47–52. [Google Scholar] [CrossRef]
- Volz, S.M.; Renner, S.S. Hybridization, polyploidy, and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae). Am. J. Bot. 2008, 95, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Svanberg, I. From Medicinal Plant to Noxious Weed: Bryonia alba L. (Cucurbitaceae) in Northern and Eastern Europe. J. Ethnobiol. Ethnomedicine 2019, 15, 22. [Google Scholar] [CrossRef]
- Baars, E.W.; Zoen, E.B.-V.; Willcox, M.; Huber, R.; Hu, X.-Y.; van der Werf, E.T. CAM treatments for cough and sore throat as part of an uncomplicated acute respiratory tract infection: A systematic review of prescription rates and a survey among European integrative medical practitioners. Eur. J. Integr. Med. 2020, 39, 101194. [Google Scholar] [CrossRef]
- Isaev, M.I. Bryonia isoprenes. II. Cucurbitacin L and bryoamaride from Bryonia melanocarpa. Chem. Nat. Compd. 2000, 36, 292–294. [Google Scholar] [CrossRef]
- Ghorbani, A. Studies on Pharmaceutical Ethnobotany in the Region of Turkmen Sahra, North of Iran. J. Ethnopharmacol. 2005, 102, 58–68. [Google Scholar] [CrossRef]
- Renner, S.S.; Scarborough, J.; Schaefer, H.; Paris, H.S.; Janick, J.; Pitrat, M. Dioscorides’s Bruonia Melaina Is Bryonia alba, Not Tamus communis, and an Illustration Labeled Bruonia Melaina in the Codex Vindobonensis Is Humulus lupulus Not Bryonia dioica. In Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Avignon, France, 21–24 May 2008; pp. 273–280. [Google Scholar]
- Sahranavard, S.; Naghibi, F.; Siems, K.; Jenett-Siems, K. New Cucurbitane-Type Triterpenoids from Bryonia aspera. Planta Medica 2010, 76, 1014–1017. [Google Scholar] [CrossRef]
- Sallam, A.A.; Hitotsuyanagi, Y.; Mansour, E.-S.S.; Ahmed, A.F.; Gedara, S.; Fukaya, H.; Takeya, K. Cucurbitacins from Bryonia cretica. Phytochem. Lett. 2010, 3, 117–121. [Google Scholar] [CrossRef]
- Benarba, B.; Meddah, B.; Aoues, A. Bryonia dioica Aqueous Extract Induces Apoptosis through Mitochondrial Intrinsic Pathway in BL41 Burkitt’s Lymphoma Cells. J. Ethnopharmacol. 2012, 141, 510–516. [Google Scholar] [CrossRef]
- Kadhim, E.J. Phytochemical investigation and hepato-protective studies of Iraqi Bryonia dioica (Family Cucurbitaceae). Int. J. Pharm. Pharm. Sci. 2014, 6, 187–190. [Google Scholar]
- Pourgonabadi, S.; Amiri, M.S.; Mousavi, S.H. Cytotoxic and Apoptogenic Effects of Bryonia aspera Root Extract against Hela and HN-5 Cancer Cell Lines. DOAJ Dir. Open Access J. 2017, 7, 66–72. [Google Scholar]
- Matsuda, H.; Nakashima, S.; Abdel-Halim, O.B.; Morikawa, T.; Yoshikawa, M. Cucurbitane-Type Triterpenes with Anti-proliferative Effects on U937 Cells from an Egyptian Natural Medicine, Bryonia cretica: Structures of New Triterpene Glycosides, Bryoniaosides A and B. Chem. Pharm. Bull. 2010, 58, 747–751. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Piryaei, M. The antioxidant activity, total phenolics and total flavonoids content of Bryonia dioica Jacq. Biologija 2012, 58, 3. [Google Scholar] [CrossRef]
- Khamees, A.H.; Kadhim, E.J.; Sahib, H.B.; Mutlag, S.H. In vitro analysis of antioxidant and antimicrobial activity of Iraqi Bryonia dioica. Int. J. Pharm. Sci. Rev. Res. 2017, 43, 248–252. [Google Scholar]
- Rafael, M.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. Topical anti-inflammatory plant species: Bioactivity of Bryonia dioica, Tamus communis and Lonicera periclymenum fruits. Ind. Crop. Prod. 2011, 34, 1447–1454. [Google Scholar] [CrossRef]
- Gilca, M.; Tiplica, G.S.; Salavastru, C.M. Traditional and ethnobotanical dermatology practices in Romania and other Eastern European countries. Clin. Dermatol. 2018, 36, 338–352. [Google Scholar] [CrossRef]
- Ukiya, M.; Akihisa, T.; Yasukawa, K.; Tokuda, H.; Toriumi, M.; Koike, K.; Kimura, Y.; Nikaido, T.; Aoi, W.; Nishino, H.; et al. Anti-Inflammatory and Anti-Tumor-Promoting Effects of Cucurbitane Glycosides from the Roots of Bryonia dioica. J. Nat. Prod. 2002, 65, 179–183. [Google Scholar] [CrossRef]
- Dhouioui, M.; Boulila, A.; Jemli, M.; Schiets, F.; Casabianca, H.; Zina, M.S. Fatty Acids Composition and Antibacterial Activity of Aristolochia longa L. and Bryonia dioïca Jacq. Growing Wild in Tunisia. J. Oleo Sci. 2016, 65, 655–661. [Google Scholar] [CrossRef]
- Goswami, P.; Chatterjee, D.; Ghosh, S.; Paira, K.; Das, S. Balanced cytokine upregulation by diluted ethanolic extract of Bryonia alba in Delta SARS-CoV-2 Spike protein RBD-induced pathogenesis in Gallus gallus embryo. Bull. Natl. Res. Cent. 2022, 46, 169. [Google Scholar] [CrossRef]
- Chekroun, E.; Bechiri, A.; Azzi, R.; Adida, H.; Benariba, N.; Djaziri, R. Antidiabetic Activity of Two Aqueous Extracts of Two Cucurbitaceae: Citrullus Colocynthis and Bryonia dioica. Phytotherapie 2016, 15, 57–66. [Google Scholar] [CrossRef]
- Uyar, A.; Yaman, T.; Kele, O.; Alkan, E.; Celik, I.; Yener, Z. Protective Effects of Bryonia Multiflora Extract on Pancreatic Beta Cells, Liver and Kidney of Streptozotocin-Induced Diabetic Rats: Histopathological and Immunohistochemical Investigations. Indian J. Pharm. Educ. Res. 2017, 51, s403–s411. [Google Scholar] [CrossRef]
- Tahvilian, R.; Gravandi, M.M.; Noori, T.; Papzan, A.; Jamshidi, N.; Iranpanah, A.; Afsaneh, M.; Shirooie, S. The therapeutic effect of methanolic extract Bryonia dioica Jacq. in a female rat model of polycystic ovary syndrome. J. Rep. Pharm. Sci. 2022, 11, 79. [Google Scholar]
- Hussain, H.; Green, I.R.; Saleem, M.; Khattak, K.F.; Irshad, M.; Ali, M. Cucurbitacins as Anticancer Agents: A Patent Review. Recent Patents Anti-Cancer Drug Discov. 2019, 14, 133–143. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, B.; Sharma, U.; Parashar, G.; Parashar, N.C.; Rani, I.; Ramniwas, S.; Kaur, S.; Haque, S.; Tuli, H.S. Apoptotic and antimetastatic effect of cucurbitacins in cancer: Recent trends and advancement. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 1867–1878. [Google Scholar] [CrossRef]
- Nakashima, S.; Oda, Y.; Morita, M.; Ohta, A.; Morikawa, T.; Matsuda, H.; Nakamura, S. Analysis of Active Compounds Using Target Protein Cofilin―Cucurbitacins in Cytotoxic Plant Bryonia cretica. Toxins 2022, 14, 212. [Google Scholar] [CrossRef]
- Yazdanpanah, S.; Esmaeili, S.; Bashash, D.; Nayeri, N.D.; Farahani, M.E.; Gharehbaghian, A. Cytotoxic and Apoptogenic Activity of Bryonia aspera Extract on Pre-B Acute Lymphoblastic Leukemia Cell Lines. DOAJ Dir. Open Access J. 2018, 12, 204–212. [Google Scholar]
- Sahranavard, S.; Naghibi, F.; Ghaffari, S. Cytotoxic activity of extracts andpure compounds of Bryonia aspera. Int. J. Pharm. Pharm. Sci. 2012, 4, 541–543. [Google Scholar]
- Benarba, B.; Elmallah, A.; Pandiella, A. Bryonia dioica Aqueous Extract Induces Apoptosis and G2/M Cell Cycle Arrest in MDA-MB 231 Breast Cancer Cells. Mol. Med. Rep. 2019, 20, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Abdessamad, I.B.; Bouhlel, I.; Chekir-Ghedira, L.; Krifa, M. Antitumor Effect of Bryonia Dioïca Methanol Extract: In Vitro and In Vivo Study. Nutr. Cancer 2019, 72, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.O.; Lee, Y.G.; Lim, H.B.; Kwon, N.S.; Aprikian, G.V.; Lee, D.W. Antitumor Activity of 23, 24-dihydrocucurbitacin D IsoIated from Bryonia alba L. Toxicol. Res. 2000, 16, 263–267. [Google Scholar]
- Nersesyan, A.k.; Ar, C. Possible Genotoxic Activity of Extracts of Bryonia alba Roots on Human Lymphocytes and Transformed Cells. Neoplasma 2002, 49, 114–116. [Google Scholar] [PubMed]
- Karpiuk, U.V.; Al Azzam, K.M.; Abudayeh, Z.H.M.; Kislichenko, V.; Naddaf, A.; Cholak, I.; Yemelianova, O. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia alba L. Roots using Flame Atomic Absorption Spectroscopy Technique. Adv. Pharm. Bull. 2016, 6, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Karpyuk, U.V.; Kislichenko, V.S.; Gur’eva, I.G. Carbohydrate Composition of Bryonia alba. Chem. Nat. Compd. 2016, 52, 672–673. [Google Scholar] [CrossRef]
- Karpyuk, U.V.; Kislichenko, V.S.; Gur’eva, I.G. HPLC Determination of Free and Bound Amino Acids in Bryonia alba. Chem. Nat. Compd. 2015, 51, 399–400. [Google Scholar] [CrossRef]
- Toker, G.; Erdemoğlu, N.; Toker, M.C. High performance liquid chromatographic analysis of cucurbitacins in some Bryonia species. FABAD J. Pharm. Sci. 2000, 25, 153–156. [Google Scholar]
- Khan, M.T.H.; Choudhary, M.I.; Rahman, A.U.; Mamedova, R.P.; Agzamova, M.A.; Sultankhodzhaev, M.N.; Isaev, M.I. Tyrosinase inhibition studies of cycloartane and cucurbitane glycosides and their structure–activity relationships. Bioorganic Med. Chem. 2006, 14, 6085–6088. [Google Scholar] [CrossRef]
- Barreira, J.C.; Pereira, E.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. Bryonia dioica, Tamus communis and Lonicera periclymenum fruits: Characterization in phenolic compounds and incorporation of their extracts in hydrogel formulations for topical application. Ind. Crop. Prod. 2013, 49, 169–176. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Yek, S.M.; Motahharifar, N.; Gorab, M.G. Recent Developments in the Plant-Mediated Green Synthesis of Ag-Based Nanoparticles for Environmental and Catalytic Applications. Chem. Rec. 2019, 19, 2436–2479. [Google Scholar] [CrossRef] [PubMed]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J.; Olmedilla-Alonso, B. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). J. Sci. Food Agric. 2014, 94, 1914–1916. [Google Scholar] [CrossRef]
- Zhang, T.-L.; Yu, H.; Ye, L. Metabolic Engineering of Yarrowia Lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth. Biol. 2023, 12, 639–656. [Google Scholar] [CrossRef]
- Kaushik, U.; Aeri, V.; Mir, S.R. Cucurbitacins—An insight into medicinal leads from nature. Pharmacogn. Rev. 2015, 9, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Pohlmann, J. Die Cucurbitacine in Bryonia alba Und Bryonia dioica. Phytochemistry 1975, 14, 1587–1589. [Google Scholar] [CrossRef]
- Hylands, P.J.; Kosugi, J. Bryonoside and bryoside—New triterpene glycosides from Bryonia dioica. Phytochemistry 1982, 21, 1379–1384. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Cisowski, W. High-performance liquid chromatographic determination of flavone C-glycosides in some species of the Cucurbitaceae family. J. Chromatogr. A 1994, 675, 240–243. [Google Scholar] [CrossRef]
- Parida, S.P.; Das, T.; Ahemad, M.A.; Pati, T.; Mohapatra, S.; Nayak, S. Recent advances on synthesis of C-glycosides. Carbohydr. Res. 2023, 530, 108856. [Google Scholar] [CrossRef]
- Schwab, W.; Fischer, T.; Wüst, M. Terpene Glucoside Production: Improved Biocatalytic Processes Using Glycosyltransferases. Eng. Life Sci. 2015, 15, 376–386. [Google Scholar] [CrossRef]
- Verma, A.K.; Chennaiah, A.; Dubbu, S.; Vankar, Y.D. Palladium catalyzed synthesis of sugar-fused indolines via C(sp2)–H/N H activation. Carbohydr. Res. 2019, 473, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Dubbu, S.; Chennaiah, A.; Verma, A.K.; Vankar, Y.D. Stereoselective synthesis of 2-deoxy-β-C-aryl/alkyl glycosides using Prins cyclization: Application in the synthesis of C-disaccharides and differently protected C-aryl glycosides. Carbohydr. Res. 2018, 468, 64–68. [Google Scholar] [CrossRef]
- Huang, H.-K.; Lee, S.-Y.; Huang, S.-F.; Lin, Y.-S.; Chao, S.-C.; Lee, S.-C.; Cheng, T.-H.; Loh, S.-H.; Tsai, Y.-T. Isoorientin Decreases Cell Migration via Decreasing Functional Activity and Molecular Expression of Proton-Linked Monocarboxylate Transporters in Human Lung Cancer Cells. Am. J. Chin. Med. 2020, 48, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, Z.; Huang, P.; Sun, C.; Yu, W.-Y.; Zhang, H.; Yu, C.; He, J. Isovitexin Potentiated the Antitumor Activity of Cisplatin by Inhibiting the Glucose Metabolism of Lung Cancer Cells and Reduced Cisplatin-Induced Immunotoxicity in Mice. Int. Immunopharmacol. 2021, 94, 107357. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Ma, W.; Kou, W.; Li, C.; Zhao, J. Anticancer Activity of Cucurbitacin-A in Ovarian Cancer Cell Line SKOV3 Involves Cell Cycle Arrest, Apoptosis and Inhibition of MTOR/PI3K/Akt Signaling Pathway. J. BUON 2018, 23, 124–128. [Google Scholar]
- Xu, J.; Chen, Y.; Yang, R.; Tong, Z.; Wei, K.; Su, Y.; Yang, S.; Zhang, T.; Li, X.; Zhang, L.; et al. Cucurbitacin B Inhibits Gastric Cancer Progression by Suppressing STAT3 Activity. Arch. Biochem. Biophys. 2020, 684, 108314. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, Z.; Lin, M.; Shang, Y.; Wang, F.; Zhou, J.; Huang, W. In vitro and in vivo antitumor activity of cucurbitacin C, a novel natural product from cucumber. Front. Pharmacol. 2019, 10, 1287. [Google Scholar] [CrossRef] [PubMed]
- Sikander, M.; Bin Hafeez, B.; Malik, S.; Alsayari, A.; Halaweish, F.T.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci. Rep. 2016, 6, 36594. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Dong, A.; Huo, X.; Wang, H.; Wang, J.; Si, J. The Inhibition of Gastric Cancer Cells’ Progression by 23,24-Dihydrocucurbitacin E through Disruption of the Ras/Raf/ERK/MMP9 Signaling Pathway. Molecules 2022, 27, 2697. [Google Scholar] [CrossRef]
- Yang, J.Y.; Woo, S.-Y.; Lee, M.J.; Kim, H.Y.; Lee, J.H.; Kim, S.-H.; Seo, W.D. Lutonarin from Barley Seedlings Inhibits the Lipopolysacchride-Stimulated Inflammatory Response of RAW 264.7 Macrophages by Suppressing Nuclear Factor-κB Signaling. Molecules 2021, 26, 1571. [Google Scholar] [CrossRef]
- Min, S.-Y.; Park, C.-H.; Yu, H.-W.; Park, Y.-J. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int. J. Mol. Sci. 2021, 22, 8431. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Zhang, X.; Li, J.; Xi, C.; Wang, W.; Lu, Y.; Xuan, L. 23,24-Dihydrocucurbitacin B Promotes Lipid Clearance by Dual Transcriptional Regulation of LDLR and PCSK9. Acta Pharmacol. Sin. 2019, 41, 327–335. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wei-Tan, H.; Hu, C.Y.; Wang, W.Q.; Chu, G.H.; Wei, L.H.; Chen, L. Anticancer activity of 23, 24-dihydrocucurbitacin B against the HeLa human cervical cell line is due to apoptosis and G2/M cell cycle arrest Retraction in/10.3892/etm. 2021.10033. Exp. Ther. Med. 2018, 15, 2575–2582. [Google Scholar]
- Soh, D.; Bakang, B.T.; Tchouboun, E.N.; Nganso, Y.O.D.; Defokou, U.D.; Sidjui, L.S.; Nyassé, B. New cucurbitane type triterpenes from Momordica foetida Schumach.(Cucurbitaceae). Phytochem. Lett. 2020, 38, 90–95. [Google Scholar]
Scientific Name | Status | Synonym |
---|---|---|
Bryonia alba L. | Accepted | B. dioica M.Bieb. B. monoeca E.H.L.Krause B. nigra Gilib. B.vulgaris Gueldenst ex Ledeb. |
Bryonia aspera Steven ex Ledeb. | Accepted | B. afghanica Podlech B. haussknechtiana Bornm. B. macrostylis Heilbr. and Bilge |
Bryonia cretica L. | Accepted | B. cretica f. monoica (Nábělek) Feinbrun B. cretica var. Monoica Nábělek |
Bryonia cretica subsp. acuta (Desf.) Tutin | Accepted | B. acuta Desf. B. dioica var. acuta (Desf.) Cogn. |
Bryonia cretica subsp. dioica (Jacq.) Tutin | Accepted | B. dioica Jacq. B. ruderalis Salisb. B. scarlatina Dumort. B. acuta var. sicula (Jan) Fiori and Paol. B. digyna Pomel B.dioica var. digyna (Pomel) Batt. B. dioica var. elongata Ten. B.dioica var. lavifrons Pau B.dioica var. lutea Ser. B. dioica var. sicula Jan B.lutea Bastard ex Ser. B.nitida Link B.sicula (Jan) Guss. B.tineoi A.Huet ex Cogn |
Bryonia cretica subsp. marmorata (E.M.A.Petit) Jauzein | Accepted | B. angulosa (Mabille ex Gillet) Bouchard B. corsica (Maire) A.W. Hill B. cretica subsp. marmorata (E. Petit) Govaerts B. dioica f. corsica Maire B. dioica var. angulosa Mabille ex Gill. B. marmorata E.Petit B. syriaca var. marmorata (Petit) Fiori and Paol |
Bryonia lappifolia Vassilcz. | Accepted | |
Bryonia melanocarpa Nabiev | Accepted | |
Bryonia monoica Aitch. and Hemsl. | Accepted | B. transoxana Vassilcz |
Bryonia multiflora Boiss. and Heldr. | Accepted | B. lasiocarpa Mouterde B. macrophylla Kotschy ex Boiss. B. macrophylla var. condensata Boiss. B. subsessilis (Boiss.) Bornm |
Bryonia syriaca Boiss. | Accepted | B. micrantha Boiss. B. multiflora var. pauciflora Post B. syriaca f. monoica Feinbrun |
Bryonia verrucosa Aiton | Accepted | B. hederifolia Jacq. |
Bryonia flexuosa Yıld. | Accepted |
Species | Vernacular Names | Native to | Flowering | Macroscopy Details | Reproduction | Ref. | ||
---|---|---|---|---|---|---|---|---|
Fruit | Leaves | Flower | ||||||
B. dioica Jacq. | Red bryony Fashra | Central/Southern Europe, North Africa, Western Asia | May | red | five-pointed | blue or white | dioecious | [11] |
B. alba L. | White bryony | Central, E. and S.E. Europe to Kazakhstan | May–June/July | black fruits | 5-angular, irregular palmate | whitish, green-veined | monoecious | [19,22] |
B. acuta (Desf.) Tutin | Algeria, Libya, Sicilia, Tunisia | bright red | 3–5 lobed | white | dioecious | [8] | ||
B. marmorata E. Petit | Corse, Sardegna | dioecious | [8] | |||||
B. verrucosa Aiton | Canary Islands | March to May | orange–yellow | rough and warty | greenish–white to light yellow | dioecious | [8] | |
B. syriaca Boiss. | Lebanon–Syria, Palestine, Sinai | red | Palmate, three-pointed | dioecious | [8] | |||
B. lappifolia Vassilcz. | Tadzhikistan | |||||||
B. cretica L. | Europe to N. Africa and Central Asia | May to August | bay | palmate | green | dioecious | [8,22] | |
B. multiflora Boiss. and Heldr. | Turkey, S. Syria, N. Iraq, W. and S.W. Iran | March–April | purple berries | palmate and have 5–7 deep lobes | yellow | dioecious | [8] | |
B. monoica Aitch. and Hemsl. | N.E. Iran to Central Asia and Pakistan | orbicular | yellowish green | monoecious | [8] | |||
B. melanocarpa Nabiev | Kazakhstan, Uzbekistan | black | [23] | |||||
B. aspera Steven ex Ledeb. | Rough Bryony (Andaz) | Pakistan, N.W. India, N. Afghanistan, N. and N.E. Iran, Caucasus, and Turkey | red or yellow | heart-shaped-cordate–ovate, five-lobed | corymbose, yellow | monoecious | [24] | |
B. flexuosa Yıld. | Turkey, the Mediterranean | alternate | White/yellow, tubular |
Compounds | Agent against | Effects | Ref. |
---|---|---|---|
Lutonarin | Oxidation Inflammation | Inhibition of the peroxidase-catalyzed reactions with significant antioxidant/antiradical effect. Suppression of LPS-induced expression, phosphorylation, and nuclear translocation of NF-κB. Inhibition of LPS-induced upregulation of proinflammatory cytokines IL-6 and TNF-α and of the inflammatory enzymes COX-2 and iNOS. | [14,17,75] |
Saponarin | Inflammation | Inhibition of phosphorylation of extracellular signal-regulated kinase (ERK) and p38. Inhibition of both β-hexosaminidase degranulation and phosphorylation of signaling effectors and the expression of inflammatory mediators TNF-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ. Inhibition of expression of macrophage-derived chemokine, thymus, and activation-regulated chemokine, IL-33, and thymic stromal lymphopoietin, and the phosphorylation of signaling molecules in TNF-α- and interferon (IFN)-γ-stimulated HaCaT cells. Induction of the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells. Inhibition of factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells. | [76] |
Bryoniosides A/B | Proliferation | Inhibition of cell proliferation. | [31] |
Isocucurbitacin D | Cytotoxic effects with the disruption of target protein cofilin. | [31] | |
Isoorientin | Cancer | Inhibition of cellmigration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. | [68] |
Isovitexin | Inhibition of cell proliferation and glucose metabolism via downregulating the expression of PKM2 to enhance the antitumor activity of DDP against lung cancer cells and improve DDP-induced immunotoxicity in mice. | [69] | |
23, 24-dihydrocucurbitacin D | Antitumor effect on tumor cells Suppression of gastric cancer cell proliferation, migration, and invasion through targeting ERK2 and disrupting the Ras/Raf/ERK/MMP9 signaling pathway. Dual transcriptional regulation of LDLR and PCSK9 in HepG2 cells by increasing SREBP2 protein levels and decreasing HNF1α protein levels in the nuclei. Decrease inthe expression of important proteins in the PI3K/Akt/mTOR cascade. Induction of apoptosis in HeLa cells and caused ROS-mediated shifts in the ΔΨm. | [49,74,77,78]. | |
Cucurbitacin A | Inhibition of the expression of key proteins in thePI3K/Akt/mTOR signaling pathway in ovarian cancer cells. | [70] | |
Cucurbitacin C | Inhibition of growth of cancer-cell-derived xenograft tumors in athymic nude mice and induction of apoptosis. | [72] | |
Cucurbitacin B | Decrease inthe phosphorylation of TYR-705 in STAT3 and suppression of STAT3 target gene expression, including c-Myc and Bcl-xL in gastric cancer. | [71] | |
Cucurbitacin D | Inhibition of growth of cervical-cancer-cell-derived orthotopic xenograft tumors in athymic nude mice. | [73] | |
Cucurbitaneglycosides | Deglycosylation enhances the inhibitory effects on EBV-EA activation (anti-tumor). Moderate anti-tumor activity toward HeLa cell lines. | [36,79] | |
Neocucurbitacin C | Cytotoxic. | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benarba, B.; Belhouala, K. The Genus Bryonia L. (Cucurbitaceae): A Systematic Review of Its Botany, Phytochemistry, Traditional Uses, and Biological Activities. Sci 2024, 6, 7. https://doi.org/10.3390/sci6010007
Benarba B, Belhouala K. The Genus Bryonia L. (Cucurbitaceae): A Systematic Review of Its Botany, Phytochemistry, Traditional Uses, and Biological Activities. Sci. 2024; 6(1):7. https://doi.org/10.3390/sci6010007
Chicago/Turabian StyleBenarba, Bachir, and Khadidja Belhouala. 2024. "The Genus Bryonia L. (Cucurbitaceae): A Systematic Review of Its Botany, Phytochemistry, Traditional Uses, and Biological Activities" Sci 6, no. 1: 7. https://doi.org/10.3390/sci6010007
APA StyleBenarba, B., & Belhouala, K. (2024). The Genus Bryonia L. (Cucurbitaceae): A Systematic Review of Its Botany, Phytochemistry, Traditional Uses, and Biological Activities. Sci, 6(1), 7. https://doi.org/10.3390/sci6010007