Changes in Anthropometric Characteristics and Isokinetic Muscle Strength in Elite Team Sport Players during an Annual Training Cycle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Anthropometric Measurements
2.4. Isokinetic Muscle Strength Testing
Testing Protocol
2.5. Statistics
3. Results
3.1. Physical and Anthropometric Characteristics
3.2. Isokinetic Muscle Strength of Knee Flexors and Extensors
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiewelhove, T.; Raeder, C.; Meyer, T.; Kellmann, M.; Pfeiffer, M.; Ferrauti, A. Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PLoS ONE 2015, 10, e0139801. [Google Scholar] [CrossRef]
- Wisløff, U.; Helgerud, J.; Hoff, J. Strength and endurance of elite soccer players. Med. Sci. Sports Exerc. 1998, 30, 462–467. [Google Scholar] [CrossRef]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Støne, N.M.; Kilding, A.E. Aerobic conditioning for team sport athletes. Sports Med. 2009, 39, 615–642. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.; Wisløff, U.; Engen, L.C.; Kemi, O.J.; Helgerud, J. Soccer specific aerobic endurance training. Br. J. Sports Med. 2002, 36, 218–221. [Google Scholar] [CrossRef]
- Bangsbo, J.; Nørregaard, L.; Thorsø, F. Activity profile of competition soccer. Can. J. Sport Sci. 1991, 16, 110–116. [Google Scholar] [PubMed]
- McInnes, S.E.; Carlson, J.S.; Jones, C.J.; McKenna, M.J. The physiological load imposed on basketball players during competition. J. Sports Sci. 1995, 13, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Zakas, A.; Mandroukas, K.; Vamvakoudis, E.; Christoulas, K.; Aggelopoulou, N. Peak torque of quadriceps and hamstring muscles in basketball and soccer players of different divisions. J. Sports Med. Phys. Fitness 1995, 35, 199–205. [Google Scholar]
- Holcomb, W.R.; Rubley, M.D.; Lee, H.J.; Guadagnoli, M.A. Effect of hamstring-emphasized resistance training on hamstring: Quadriceps strength ratios. J. Strength Cond. Res. 2007, 21, 41–47. [Google Scholar] [CrossRef]
- Kannus, P. Isokinetic evaluation of muscular performance. Int. J. Sports Med. 1994, 15, 11–18. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Magnusson, S.P.; Larsson, B.; Dyhre-Poulsen, P. A new concept for isokinetic hamstring: Quadriceps muscle strength ratio. Am. J. Sports Med. 1998, 26, 231–237. [Google Scholar] [CrossRef]
- Powers, S.; Howley, E.; Quindry, J. Exercise Physiology: Theory and Application to Fitness and Performance, 11th ed.; McGraw Hill: Boston, MA, USA, 2021. [Google Scholar]
- Brown, L.E. Isokinetics in Human Performance; Human Kinetics: Champaign, IL, USA, 2000; p. 344. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Miller, T.A.; Thierry-Aguilera, R.; Congleton, J.J.; Amendola, A.A.; Clark, M.J.; Crouse, S.F.; Martin, S.M.; Jenkins, O.C. Seasonal changes in VO2max among Division 1A collegiate women soccer players. J. Strength Cond. Res. 2007, 21, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Casajús, J.A. Seasonal variation in fitness variables in professional soccer players. J. Sports Med. Phys. Fitness 2001, 41, 463–469. [Google Scholar] [PubMed]
- Edwards, A.M.; Clark, N.; Macfadyen, A.M. Lactate and ventilatory thresholds reflect the training status of professional soccer players where maximum aerobic power is unchanged. J. Sports Sci. Med. 2003, 2, 23–29. [Google Scholar] [PubMed]
- Thomas, V.; Reilly, T. Changes in fitness profiles during a season of track and field training and competition. Br. J. Sports Med. 1976, 10, 217–222. [Google Scholar] [CrossRef]
- Papaevangelou, E.; Papadopoulou, Z.; Michailidis, Y.; Mandroukas, A.; Nikolaidis, P.T.; Margaritelis, N.V.; Metaxas, T. Changes in cardiorespiratory fitness during a season in elite female soccer, basketball, and handball players. Appl. Sci. 2023, 13, 9593. [Google Scholar] [CrossRef]
- Durnin, J.V.; Rahaman, M.M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br. J. Nutr. 1967, 21, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. The gross composition of the body. Adv. Biol. Med. Phys. 1956, 4, 239–280. [Google Scholar] [PubMed]
- Mandroukas, A.; Vamvakoudis, E.; Metaxas, T.; Papadopoulos, P.; Kotoglou, K.; Stefanidis, P.; Christoulas, K.; Kyparos, A.; Mandroukas, K. Acute partial passive stretching increases range of motion and muscle strength. J. Sports Med. Phys. Fitness 2014, 54, 289–297. [Google Scholar]
- Mandroukas, A.; Michailidis, Y.; Metaxas, T. Muscle strength and hamstrings to quadriceps ratio in young soccer players: A cross-sectional study. J. Funct. Morphol. Kinesiol. 2023, 8, 70. [Google Scholar] [CrossRef]
- Oliveira, R.; Francisco, R.; Fernandes, R.; Martins, A.; Nobari, H.; Clemente, F.M.; Brito, J.P. In-Season Body Composition Effects in Professional Women Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 12023. [Google Scholar] [CrossRef] [PubMed]
- McFadden, B.A.; Walker, A.J.; Arent, M.A.; Bozzini, B.N.; Sanders, D.J.; Cintineo, H.P.; Bello, M.L.; Arent, S.M. Biomarkers correlate with body composition and performance changes throughout the season in women’s Division I collegiate soccer players. Front. Sports Act. Living 2020, 2, 74. [Google Scholar] [CrossRef] [PubMed]
- Manson, S.A.; Brughelli, M.; Harris, N.K. Physiological characteristics of international female soccer players. J. Strength Cond. Res. 2014, 28, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Tumilty, D. Protocols for the physiological assessment of male and female soccer players. In Test Methods Manual: Sports—Specific Guidelines for the Physiological Assessment of Elite Athletes, 3rd ed.; Gore, C., Ed.; Australian Sports Commission: Canberra, Australia, 1998; pp. 1–16. [Google Scholar]
- Tumilty, D. Protocols for the physiological assessment of male and female soccer players. In Physiological Tests for Elite Athletes; Core, C.J., Ed.; Australian Sports Commission, Human Kinetics: Champaign, IL, USA, 2000; pp. 356–362. [Google Scholar]
- Nishisaka, M.M.; Zorn, S.P.; Kristo, A.S.; Sikalidis, A.K.; Reaves, S.K. Assessing Dietary Nutrient Adequacy and the Effect of Season—Long Training on Body Composition and Metabolic Rate in Collegiate Male Basketball Players. Sports 2022, 10, 127. [Google Scholar] [CrossRef]
- Cichy, I.; Dudkowski, A.; Kociuba, M.; Ignasiak, Z.; Sebastjan, A.; Kochan, K.; Koziel, S.; Rokita, A.; Malina, R.M. Sex Differences in Body Composition Changes after Preseason Training in Elite Handball Players. Int. J. Environ. Res. Public Health 2020, 17, 3880. [Google Scholar] [CrossRef] [PubMed]
- Bayios, I.A.; Bergeles, N.K.; Apostolidis, N.G.; Noutsos, K.S.; Koskolou, M.D. Anthropometric, body composition and somatotype differences of Greek elite female basketball, volleyball and handball players. J. Sports Med. Phys. Fitness 2006, 46, 271–280. [Google Scholar] [PubMed]
- Erčulj, F.; Bračič, M. Comparison of the morphological profiles of young European female basketball players from different competitive levels. Physical. Cult. 2010, 64, 14–21. [Google Scholar]
- Ronglan, L.T.; Raastad, T.; Børgesen, A. Neuromuscular fatigue and recovery in elite female handball players. Scand. J. Med. Sci. Sports 2006, 16, 267–273. [Google Scholar] [CrossRef]
- Vargas, R.P.; Dick, D.D.; de Santi, H.; Duarte, M.; da Cunha Júnior, A.T. Evaluation of physiological characteristics of female handball athletes. Fit. Perf. J. 2008, 7, 93–98. [Google Scholar] [CrossRef]
- Narazaki, K.; Berg, K.; Stergiou, N.; Chen, B. Physiological demands of competitive basketball. Scand. J. Med. Sci. Sports 2009, 19, 425–432. [Google Scholar] [CrossRef]
- Scanlan, A.T.; Dascombe, B.J.; Reaburn, P.; Dalbo, V.J. The physiological and activity demands experienced by Australian female basketball players during competition. J. Sci. Med. Sport 2012, 15, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Granados, C.; Izquierdo, M.; Ibanez, J.; Bonnabau, H.; Gorostiaga, E.M. Differences in physical fitness and throwing velocity among elite and amateur female handball players. Int. J. Sports Med. 2007, 28, 860–867. [Google Scholar] [CrossRef]
- Granados, C.; Izquierdo, M.; Ibanez, J.; Ruesta, M.; Gorostiaga, E.M. Effects of an entire season on physical fitness in elite female handball players. Med. Sci. Sports Exerc. 2008, 40, 351–361. [Google Scholar] [CrossRef]
- Ghiani, G.; Marongiu, E.; Melis, F.; Angioni, G.; Sanna, I.; Loi, A.; Pusceddu, M.; Pinna, V.; Crisafulli, A.; Tocco, F. Body composition changes affect energy cost of running during 12 months of specific diet and training in amateur athletes. Appl. Physiol. Nutr. Metab. 2015, 40, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, E.; Moen, D.S.; Holt, N.C. The importance of comparative physiology: Mechanisms, diversity and adaptation in skeletal muscle physiology and mechanics. J. Exp. Biol. 2023, 226, jeb245158. [Google Scholar] [CrossRef]
- Risberg, M.A.; Steffen, K.; Nilstad, A.; Myklebust, G.; Kristianslund, E.; Moltubakk, M.M.; Krosshaug, T. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players. J. Strength Cond. Res. 2018, 32, 2314–2323. [Google Scholar] [CrossRef] [PubMed]
- Weingart, A.; Rynecki, N.; Pereira, D. A Review of Neuromuscular Training and Biomechanical Risk Factor Screening for ACL Injury Prevention Among Female Soccer Players. Bull. Hosp. Jt. Dis. 2022, 80, 253–259. [Google Scholar]
- Ziv, G.A.; Lidor, R. Physical characteristics, physiological attributes, and on-court performances of handball players: A review. Eur. J. Sport Sci. 2009, 9, 375–386. [Google Scholar] [CrossRef]
- Reilly, T. An ergonomics model of the soccer training process. J. Sports Sci. 2005, 23, 561–572. [Google Scholar] [CrossRef]
- Hoff, J.; Helgerud, J. Endurance and strength training for soccer players. Sports Med. 2004, 34, 165–180. [Google Scholar] [CrossRef]
- Alexiou, H.; Coutts, A.J. A comparison of methods used for quantifying internal training load in women soccer players. Int. J. Sports Physiol. Perform. 2008, 3, 320–330. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Marcora, S.M. Physiological assessment of aerobic training in soccer. J. Sports Sci. 2005, 23, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Rollo, S.; Sampson, M.; Magnussen, C.G.; Lang, J.J.; Tremblay, M.S.; Tomkinson, G.R. Health-Related Criterion-Referenced Cut-Points for Musculoskeletal Fitness Among Youth: A Systematic Review. Sports Med. 2021, 51, 2629–2646. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Chen, Z.; Baker, B.; Buchanan, S.; Bemben, D.; Bemben, M. Muscle-Bone Interactions in Chinese Men and Women Aged 18–35 Years. J. Osteoporos. 2020, 2020, 8126465. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Fusco, D.; Sisto, A.; Ortolani, E.; Savera, G.; Salini, S.; Marzetti, E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results From the Milan EXPO Survey. J. Am. Med. Dir. Assoc. 2017, 18, 88.e17–88.e24. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; McGuigan, M.; Sánchez-Martínez, G.; Torrontegi, E.; Vázquez-Carrión, J.; Montalvo, Z.; Abad, C.C.; Pereira, L.A.; Loturco, I. Reference power values for the jump squat exercise in elite athletes: A multicenter study. J. Sports Sci. 2020, 38, 2273–2278. [Google Scholar] [CrossRef]
Measurements | |||
---|---|---|---|
1st | 2nd | 3rd | |
Soccer (n= 19) | |||
Height (cm) | 164.9 ± 6.0 | 165.1 ± 6.0 | 165.2 ± 5.9 |
Weight (kg) | 58.7 ± 6.1 ***,### | 57.5 ± 6.1 $$$ | 56.1 ± 5.8 |
Lean body mass (kg) | 46.7 ± 3.7 ### | 46.1 ± 3.8 | 45.7 ± 3.8 |
Body fat (%) | 20.2 ± 3.6 ### | 19.5 ± 3.4 $$ | 18.4 ± 3.2 |
HRrest (b/min) | 67.2 ± 6.9 | 66.8 ± 6.9 | 67.7 ± 7.4 |
Basketball (n = 26) | |||
Height (cm) | 175.4 ± 5.7 ***,### | 176.0 ± 5.5 $$$ | 176.4 ± 5.3 |
Weight (kg) | 71.6 ± 13.7 ***,### | 69.4 ± 13.3 $$$ | 67.5 ± 12.8 |
Lean body mass (kg) | 52.0 ± 7.6 ### | 51.7 ± 7.7 $$$ | 50.7 ± 7.3 |
Body fat (%) | 26.4 ± 4.4 ***,### | 24.9 ± 4.7 $$ | 24.1 ± 4.3 |
HRrest (b/min) | 66.8 ± 9.3 *** | 64.1 ± 8.5 $$ | 70.3 ± 11.8 |
Handball (n = 26) | |||
Height (cm) | 167.3 ± 4.7 *,## | 167.5 ± 4.6 $$$ | 167.8 ± 4.5 |
Weight (kg) | 63.1 ± 6.5 ***,### | 61.2 ± 6.4 $$$ | 59.5 ± 6.1 |
Lean body mass (kg) | 46.2 ± 3.2 **,### | 45.4 ± 3.4 | 45.0 ± 3.3 |
Body fat (%) | 26.6 ± 4.7 **,### | 25.5 ± 4.0 $$$ | 24.1 ± 3.8 |
HRrest (b/min) | 70.1 ± 8.1 ** | 68.2 ± 9.6 $$ | 74.0 ± 10.6 |
1st Measurement | |||
---|---|---|---|
Soccer (n = 19) | Basketball (n = 26) | Handball (n = 26) | |
Height (cm) | 164.9 ± 6.0 *** | 175.4 ± 5.7 $$$ | 167.3 ± 4.7 |
Weight (kg) | 58.7 ± 6.1 *** | 71.6 ± 13.7 $$ | 63.1 ± 6.5 |
Lean body mass (kg) | 46.7 ± 3.7 ** | 52.0 ± 7.6 $$$ | 46.2 ± 3.2 |
Body fat (%) | 20.2 ± 3.6 ***,### | 26.4 ± 4.4 | 26.6 ± 4.7 |
HRrest (b/min) | 67.2 ± 6.9 | 66.8 ± 9.3 | 70.1 ± 8.1 |
2nd Measurement | |||
Height (cm) | 165.1 ± 6.0 *** | 176.0 ± 5.5 $$$ | 167.5 ± 4.6 |
Weight (kg) | 57.5 ± 6.1 *** | 69.4 ± 13.3 $$ | 61.2 ± 6.4 |
Lean body mass (kg) | 46.1 ± 3.8 ** | 51.7 ± 7.7 $$$ | 45.4 ± 3.4 |
Body fat (%) | 19.5 ± 3.4 ***,### | 24.9 ± 4.7 | 25.5 ± 4.0 |
HRrest (b/min) | 66.8 ± 6.9 | 64.1 ± 8.5 | 68.2 ± 9.6 |
3rd Measurement | |||
Height (cm) | 165.2 ± 5.9 *** | 176.4 ± 5.3 $$$ | 167.8 ± 4.5 |
Weight (kg) | 56.1 ± 5.8 *** | 67.5 ± 12.8 $$ | 59.5 ± 6.1 |
Lean body mass (kg) | 45.7 ± 3.8 ** | 50.7 ± 7.3 $$$ | 45.0 ± 3.3 |
Body fat (%) | 18.4 ± 3.2 ***,### | 24.1 ± 4.3 | 24.1 ± 3.8 |
HRrest (b/min) | 67.7 ± 7.4 | 70.3 ± 11.8 | 74.0 ± 10.6 |
1st Measurement | |||
---|---|---|---|
Soccer (n = 19) | Basketball (n = 26) | Handball (n = 26) | |
Flexion 60°·s−1 (Nm) | 103.2 ± 22.0 | 96.1 ± 23.2 | 89.4 ± 14.7 |
Flexion 180°·s−1 (Nm) | 68.5 ± 15.3 | 60.4 ± 12.7 | 60.0 ± 12.7 |
Flexion 300°·s−1 (Nm) | 46.1 ± 11.1 | 40.2 ± 11.7 | 43.3 ± 12.3 |
Extension 60°·s−1 (Nm) | 156.5 ± 32.6 | 165.7 ± 30.5 | 154.0 ± 22.0 |
Extension 180°·s−1 (Nm) | 110.2 ± 21.4 | 119.0 ± 23.5 $ | 101.6 ± 16.8 |
Extension 300°·s−1 (Nm) | 81.5 ± 15.7 | 81.5 ± 17.7 | 74.8 ± 20.5 |
H:Q ratio 60°·s−1 (%) | 66.8 ± 11.3 *,# | 58.2 ± 9.8 | 58.4 ± 7.8 |
H:Q ratio 180°·s−1 (%) | 62.6 ± 10.5 ** | 51.6 ± 10.4 | 59.7 ± 11.3 |
H:Q ratio 300°·s−1 (%) | 57.3 ± 13.6 | 49.6 ± 10.7 | 59.6 ± 14.3 |
2nd Measurement | |||
Flexion 60°·s−1 (Nm) | 105.0 ± 22.2 | 97.4 ± 22.9 | 93.0 ± 15.8 |
Flexion 180°·s−1 (Nm) | 70.3 ± 16.5 | 63.3 ± 12.5 | 63.0 ± 14.1 |
Flexion 300°·s−1 (Nm) | 48.3 ± 12.1 | 41.0 ± 13.8 | 44.7 ± 13.1 |
Extension 60°·s−1 (Nm) | 158.2 ± 32.7 | 168.6 ± 32.2 | 157.3 ± 21.5 |
Extension 180°·s−1 (Nm) | 112.6 ± 20.9 | 123.7 ± 23.7 $$ | 105.1 ± 17.5 |
Extension 300°·s−1 (Nm) | 83.9 ± 15.3 | 83.5 ± 20.5 | 79.5 ± 21.3 |
H:Q ratio 60°·s−1 (%) | 67.2 ± 11.2 **,# | 58.0 ± 9.2 | 59.4 ± 8.5 |
H:Q ratio 180°·s−1 (%) | 62.8 ± 11.6 ** | 52.1 ± 10.6 $ | 60.6 ± 12.5 |
H:Q ratio 300°·s−1 (%) | 58.1 ± 13.3 | 49.1 ± 12.2 | 57.8 ± 14.7 |
3rd Measurement | |||
Flexion 60°·s−1 (Nm) | 108.4 ± 22.3 | 104.5 ± 26.0 | 97.8 ± 16.5 |
Flexion 180°·s−1 (Nm) | 75.4 ± 15.8 | 66.9 ± 13.1 | 68.3 ± 14.4 |
Flexion 300°·s−1 (Nm) | 52.7 ± 11.9 | 44.5 ± 14.4 | 48.4 ± 13.3 |
Extension 60°·s−1 (Nm) | 164.5 ± 30.9 | 176.5 ± 33.4 | 161.8 ± 22.4 |
Extension 180°·s−1 (Nm) | 118.2 ± 20.6 | 126.8 ± 23.7 $ | 110.2 ± 17.6 |
Extension 300°·s−1 (Nm) | 90.8 ± 14.2 | 90.6 ± 17.9 | 83.0 ± 20.2 |
H:Q ratio 60°·s−1 (%) | 66.2 ± 8.7 | 59.4 ± 10.6 | 60.8 ± 8.7 |
H:Q ratio 180°·s−1 (%) | 64.0 ± 8.8 ** | 53.5 ± 9.7 $$ | 62.4 ± 10.6 |
H:Q ratio 300°·s−1 (%) | 58.0 ± 10.3 * | 49.0 ± 12.5 $$ | 59.3 ± 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papaevangelou, E.; Papadopoulou, Z.; Mandroukas, A.; Michaildis, Y.; Nikolaidis, P.T.; Margaritelis, N.V.; Metaxas, T.I. Changes in Anthropometric Characteristics and Isokinetic Muscle Strength in Elite Team Sport Players during an Annual Training Cycle. Sci 2023, 5, 43. https://doi.org/10.3390/sci5040043
Papaevangelou E, Papadopoulou Z, Mandroukas A, Michaildis Y, Nikolaidis PT, Margaritelis NV, Metaxas TI. Changes in Anthropometric Characteristics and Isokinetic Muscle Strength in Elite Team Sport Players during an Annual Training Cycle. Sci. 2023; 5(4):43. https://doi.org/10.3390/sci5040043
Chicago/Turabian StylePapaevangelou, Evangelia, Zacharoula Papadopoulou, Athanasios Mandroukas, Yiannis Michaildis, Pantelis T. Nikolaidis, Nikos V. Margaritelis, and Thomas I. Metaxas. 2023. "Changes in Anthropometric Characteristics and Isokinetic Muscle Strength in Elite Team Sport Players during an Annual Training Cycle" Sci 5, no. 4: 43. https://doi.org/10.3390/sci5040043
APA StylePapaevangelou, E., Papadopoulou, Z., Mandroukas, A., Michaildis, Y., Nikolaidis, P. T., Margaritelis, N. V., & Metaxas, T. I. (2023). Changes in Anthropometric Characteristics and Isokinetic Muscle Strength in Elite Team Sport Players during an Annual Training Cycle. Sci, 5(4), 43. https://doi.org/10.3390/sci5040043