Sensory and Cognitive Malingering: Studies and Tests
Abstract
:1. General Introduction
2. Differential Diagnosis
- Conversion disorder along with other manifestations of somatoform disorders. A conversion disorder is a form of altered voluntary motor or sensory function, in which clinical findings demonstrate incompatibility between the symptom and recognized medical or neurological conditions. It differs from malingering in that motivation is internal rather than external, and intentionality is absent. In contrast, in malingering, intentionality is conscious.
- Dissociative disorders. It is possible for the individual affected by the dissociative disorder to report psychic symptoms that are not attributable to a recognizable cognitive deficit or cerebral dysfunction. Dissociative disorders are characterized by a loss of continuity in the typical integration of consciousness, identity, memory, perception, behavior, and/or motor control. As opposed to conversion disorder, in dissociative disorders, symptoms are psychological rather than physical. Also, in this case, the differential diagnosis for malingering requires ruling out intentionality.
- Factitious disorder: faking physical or psychological signs or symptoms or inducing injury or disease to oneself to play the sick role, attaining all corollary advantages deriving from the potential benefits. Malingering and factitious disorder are two conditions that involve the intentional creation or exaggeration of symptoms. The primary difference between the two is the motivation behind the behaviour. Malingering is the intentional fabrication of medical symptoms for the purpose of external gain, such as financial compensation or avoiding legal consequences.
Other Diagnostic Categories
- Münchhausen syndrome [6]. This term was coined to describe those cases, predominantly in male individuals, that feigned physical symptoms and disorders. In this case, the aim is to perpetuate a pattern of hospital and care-related experiences, such as hospitalization, surgery, or quarrelsome relationships with medical professionals. It is distinguishable from factitious disorder because it is adopted to address more chronic and severe manifestations, less prone to recovery and where symptoms are legitimately auto-induced (with injury or medications) rather than purely feigned or merely lamented.
- Münchhausen syndrome by proxy. Like Münchhausen syndrome, this term is applied to the more severe cases. However, in this syndrome, the symptoms are induced by the perpetrator to another person (the victim). This term is ambiguous and sometimes is used to malingering by proxy. Still, it differs from the latter because it is not motivated by external gains (e.g., keeping a son sick for financial gain).
- Ganser syndrome [9] is typically observed in carceral environments and was initially noticed in convicts awaiting execution who would manifest a generalized plunge in superior cognitive functioning (with severe amnesia, absurd speech, failed logical reasoning) with preserved understanding, orientation, and consciousness instead. These symptoms are interpreted as signs of a dissociative disorder due to a highly stressogenic situation.
- Compensation neurosis [10] describes an exaggeration of symptoms that occur due to the unique stressor of seeking legally awarded compensation. Motivation in these cases is primarily internal, coupled with less anticipation of secondary gain. The financial reward may be a part of the condition and may influence the course, but the overall pattern of symptoms is more than just the pursuit of money. Again, in malingering, exaggeration occurs solely or primarily for external incentives, while internal incentives in compensation neurosis are equal to or larger than external ones. Moreover, the diagnosis of compensation neurosis requires determining the conscious and unconscious motivation (frequently made in distinguishing factitious disorder from conversion disorder).
- -
- subject’s conscious intentionality making psychic symptoms not based on a genuine dysfunction of the nervous system.
- -
- presence of external incentives.
3. Intermodal Criteria for Detection of Malingering: The Slick Criteria
4. Auditory and Visual Malingering
5. Olfactory Malingering
6. Studies on Olfactory Malingering
7. Malingering of Cognitive Disorders
8. Malingering in Psychopathology
- -
- Structured Inventory of Malingered Symptomatology (SIMS) [133].
- -
- Minnesota Multiphasic Personality Inventory (MMPI-2) [136]. This test is the most widely used and researched multi-scale measure of psychopathology.
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Ganis, G.; Keenan, J.P. The cognitive neuroscience of deception. Soc. Neurosci. 2009, 4, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Greve, K.W.; Ord, J.S.; Bianchini, K.J.; Curtis, K.L. Prevalence of malingering in patients with chronic pain referred for psychologic evaluation in a medico-legal context. Arch. Phys. Med. Rehab. 2009, 90, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Regier, D.A.; Kuhl, E.A.; Kupfer, D.J. The DSM-5: Classification and criteria changes. World Psychiatry 2013, 12, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellingson, J.E.; McFarland, L.A. Understanding faking behavior through the lens of motivation: An application of VIE theory. Hum. Perform. 2011, 24, 322–337. [Google Scholar] [CrossRef]
- Monaro, M.; Mazza, C.; Colasanti, M.; Ferracuti, S.; Orrù, G.; di Domenico, A.; Roma, P. Detecting faking-good response style in personality questionnaires with four choice alternatives. Psychol. Res. 2021, 85, 3094–3107. [Google Scholar] [CrossRef]
- Abeln, B.; Love, R. An overview of Munchausen syndrome and Munchausen syndrome by proxy. Nurs. Clin. 2018, 53, 375–384. [Google Scholar] [CrossRef]
- Giromini, L.; Viglione, D.J. Assessing negative response bias with the Inventory of Problems-29 (IOP-29): A quantitative literature review. Psychol. Inj. Law 2022, 15, 79–93. [Google Scholar] [CrossRef]
- Abeare, K.; Razvi, P.; Sirianni, C.D.; Giromini, L.; Holcomb, M.; Cutler, L.; Kuzmenka, P.; Erdodi, L.A. Introducing alternative validity cutoffs to improve the detection of non-credible symptom report on the BRIEF. Psychol. Inj. Law 2021, 14, 2–16. [Google Scholar] [CrossRef]
- Dieguez, S. Ganser syndrome. In Neurologic-Psychiatric Syndromes in Focus-Part II; Karger: Basel, Switzerland, 2018; Volume 42, pp. 1–22. [Google Scholar]
- Hall, R.C.W.; Hall, R.C.W. Compensation neurosis: A too quickly forgotten concept. J. Am. Acad. Psychiatry 2012, 40, 390–398. [Google Scholar]
- Eissler, K.R. Malingering. In Psychoanalysis and Culture; Wilbur, G.B., Muensterberger, W., Eds.; Essays in Honor of Géza Róheim; International Universities Press: Madison, CT, USA, 1951; pp. 218–253. [Google Scholar]
- Slick, D.J.; Sherman, E.M.; Iverson, G.L. Diagnostic criteria for malingered neurocognitive dysfunction: Proposed standards for clinical practice and research. J. Clin. Neuropsychol. 1999, 13, 545–561. [Google Scholar] [CrossRef]
- Poudel, J.; Krishnasamy, P.; Optom, B.; Optom, M. Eye Examination Techniques for Malingering Patients—A Review. IJISRT 2020, 5, 3–6. [Google Scholar] [CrossRef]
- Sharma, M.; Kacker, S.; Sharma, M. A brief introduction and review on galvanic skin response. Int. J. Med. Res. Prof. 2016, 2, 13–17. [Google Scholar] [CrossRef]
- Austen, S.; Lynch, C. Non-organic hearing loss redefined: Understanding, categorizing and managing non-organic behaviour. Int. J. Audiol. 2004, 43, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.P. P300 in detecting concealed information and deception: A review. Psychophysiology 2020, 57, e13362. [Google Scholar] [CrossRef]
- Doty, R.L. The Olfactory System and Its Disorders. Semin. Neurol. 2009, 29, 074–081. [Google Scholar] [CrossRef] [Green Version]
- Deems, D.A.; Doty, R.L.; Settle, R.G.; Moore-Gillon, V.; Shaman, P.; Mester, A.F.; Kimmelman, C.P.; Brightman, V.J.; Snow, J.B.J. Smell and taste disorders: A study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch. Otorhinolaryngol. Head Neck Surg. 1991, 117, 519–528. [Google Scholar] [CrossRef]
- Doty, R.L. Olfactory dysfunction and its measurement in the clinic and workplace. Int. Arch. Occup. Environ. Health 2006, 79, 268–282. [Google Scholar] [CrossRef]
- Damm, M.; Leung, R.M.; Kern, R.C. Sinonasal olfactory disorders. In Management of Smell and Taste Disorders; Welge-Luessen, A., Hummel, T., Eds.; Thieme: Stuttgart, Germany, 2014; pp. 76–90. [Google Scholar]
- Damm, M.; Temmel, A.; Welge-Lussen, A.; Eckel, H.E.; Kreft, M.P.; Klussmann, J.P.; Gudziol, H.; Huttenbrink, K.B.; Hummel, T. [Olfactory dys functions. Epidemiology and therapy in Germany, Austria and Switzerland]. HNO 2004, 52, 112–120. [Google Scholar] [CrossRef]
- Brämerson, A.N.; Johansso, E.L.; Nordin, S.; Bende, M. Prevalence of olfactory dysfunction: The skövde population-based study. Laryngoscope 2004, 114, 733–737. [Google Scholar] [CrossRef]
- Luke, L.; Liam, L.; Jegatheeswaran, L.; Philpott, C. Investigations and Outcomes for Olfactory Disorders. Curr. Otorhinolaryngol. Rep. 2022, 10, 377–384. [Google Scholar] [CrossRef]
- Konstantinidis, I. Managing Post-traumatic Olfactory Disorders. Curr. Otorhinolaryngol. Rep. 2022, 10, 411–420. [Google Scholar] [CrossRef]
- Roberts, R.J.; Sheehan, W.; Thurber, S.; Roberts, M.A. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment. Indian J. Psychol. Med. 2010, 32, 93–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanzo, R.M.; Zasler, N.D. Head trauma. In Smell and Taste in Health and Disease; Getchell, T.V., Doty, R.L., Bartoshuk, L.M., Snow, J.B.J., Eds.; Raven Press: New York, NY, USA, 1991; pp. 711–730. [Google Scholar]
- Bratt, M.; Skandsen, T.; Hummel, T.; Moen, K.G.; Vik, A.; Nordgård, S.; Helvik, A.S. Frequency and prognostic factors of olfactory dysfunction after traumatic brain injury. Brain Inj. 2018, 32, 1021. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.; Langdon, C.; Alobid, I.; Mullol, J. Olfactory dysfunction in traumatic brain injury: The role of neurogenesis. Cur. Allergy Asthma Rep. 2020, 9, 55. [Google Scholar] [CrossRef]
- Duncan, H.J.; Seiden, A.M. Long-term follow-up of olfactory loss secondary to head trauma and upper respiratory tract infection. Arch. Otolaryngol. Head Neck Surg. 1995, 121, 1183–1187. [Google Scholar] [CrossRef]
- Howell, J.; Costanzo, R.M.; Reiter, E.R. Head trauma and olfactory function. World J. Otorhinolaryngol. Head Neck Surg. 2018, 14, 39–45. [Google Scholar]
- Schofield, P.W.; Moore, T.M.; Gardner, A. Traumatic brain injury and olfaction: A systematic review. Front. Neurol. 2014, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Schriever, V.A.; Studt, F.; Smit, M.; Grosser, K.; Hummel, T. Olfactory function after mild head injury in children. Chem. Senses 2014, 39, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Delank, K.W.; Nieschalk, M.; Schmäl, F.; Stoll, W. Besonderheiten in der Begutachtung von Riech und Schmeckstörungen (Specific Aspects of Medical Expert Opinions of Smell and Taste Disorders). Laryngorhinootologie 1999, 78, 365–372. [Google Scholar] [CrossRef]
- Doty, R.L. Psychophysical testing of smell and taste function. Handb. Clin. Neurol. 2019, 164, 229–246. [Google Scholar]
- Doty, R.L. Measurement of chemosensory function. World J. Otorhinolaryngol. Head Neck Surg. 2018, 4, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Laing, D.G. Psychophysical measurement of human olfactory function. In Handbook of Olfaction and Gustation, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hedner, M.; Larsson, M.; Arnold, N.; Zucco, G.M.; Hummel, T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J. Clin. Exp. Neuropsychol. 2010, 32, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Hummel, C.; Zucco, G.M.; Iannilli, E.; Maboshe, W.; Landis, B.N.; Hummel, T. OLAF: Standardization of international olfactory tests. Eur. Arch. Otorhinolaryngol. 2012, 269, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Zucco, G.M. Olfactory performance assessed via a new odour recognition test: Reliability and normative data. J. Cogn. Psych. 2011, 23, 1–7. [Google Scholar] [CrossRef]
- Vodicka, J.; Pellant, A.; Chrobok, V. Screening of olfactory function using odourized Markers. Rhinology 2007, 45, 164–168. [Google Scholar]
- Freiherr, J.; Gordon, A.R.; Alden, E.C.; Ponting, A.L.; Hernandez, M.F.; Boesveldt, S.; Lundström, J.N. The 40-item Monell Extended Sniffin’ Sticks Identification Test (MONEX-40). J. Neurosci. Methods 2012, 205, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Cain, W.S.; Gent, J.F.; Goodspeed, R.B.; Leonard, G. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope 1988, 98, 83–88. [Google Scholar] [CrossRef]
- Eibenstein, A.; Fioretti, A.B.; Lena, C.; Rosati, N.; Amabile, G.; Fusetti, M. Modern psychophysical tests to assess olfactory function. Neurol. Sci. 2005, 26, 147–155. [Google Scholar] [CrossRef]
- Jiang, R.S.; Liang, K.L. A pilot study of the snap & sniff threshold test. Ann. Otol. Rhinol. Laryngol. 2018, 127, 312–316. [Google Scholar]
- Philpott, C.; Gaskin, J.; McClelland, L.; Goodenough, P.; Clark, A.; Robinson, A.; Murty, G. The Leicester semi-automated olfactory threshold test- a psychophysical olfactory test for the 21st century. Rhinology 2009, 47, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Thomas-Danguin, T.; Rouby, C.; Sicard, G.; Vigouroux, M.; Farget, V.; Johanson, A.; Bengtzon, A.; Hall, G.; Ormel, W.; De Graaf, C.; et al. Development of the ETOC: A European test of olfactory capabilities. Rhinology 2003, 41, 142–151. [Google Scholar] [PubMed]
- Weierstall, R.; Pause, B.M. Development of a 15-item odour discrimination test (Düsseldorf Odour Discrimination Test). Perception 2012, 41, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Nishida, K.; Nakamura, S.; Oishi, M.; Shiozaki, T.; Majima, Y.; Maeda, T.; Furuta, S.; Takashima, Y.; Saito, S. Suitability of the odor stick identification test for the Japanese in patients suffering from olfactory disturb-ances. Acta Otolaryngol. Suppl. 2004, 553, 74–79. [Google Scholar] [CrossRef]
- Höchenberger, R.; Ohla, K. Estimation of olfactory sensitivity using a bayesian adaptive method. Nutrients 2019, 11, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voznessenskaya, V.V.; Klyuchnikova, M.A.; Rodionova, E.I.; Laktionova, T.K.; Kvasha, I.G.; Klinov, A.B.; Vozne-senskaya, A.E. A Standardized Test for Evaluation of Olfactory Function for the Russian Population. Biol. Bull. 2018, 45, 485–489. [Google Scholar] [CrossRef]
- Rombaux, P.; Collet, S.; Martinage, S.; Eloy, P.; Bertrand, B.; Negoias, S.; Hummel, T. Olfactory testing in clinical practice. B-ENT 2009, 5 (Suppl. 13), 39–51. [Google Scholar] [PubMed]
- Gudziol, V.; Lötsch, J.; Hähner, A.; Zahnert, T.; Hummel, T. Clinical significance of results from olfactory testing. Laryngoscope 2006, 116, 1858–1863. [Google Scholar] [CrossRef]
- Hummel, T.; Landis, B.N.; Hüttenbrink, K.B. Smell and taste disorders. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2011, 10, Doc04. [Google Scholar]
- Hummel, T.; Podlesek, D. Clinical assessment of olfactory function. Chem. Senses 2021, 46, bjab053. [Google Scholar] [CrossRef]
- Simmen, D.; Briner, H.R. Olfaction in rhinology-methods of assessing the sense of smell. Rhinology 2006, 44, 98–101. [Google Scholar]
- Dalton, P.; Doty, R.L.; Murphy, C.; Frank, R.; Hoffman, H.J.; Maute, C.; Kallen, M.A.; Slotkin, J. Olfactory assessment using the NIH Toolbox. Neurology 2013, 80 (Suppl. S3), S32–S36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okutani, F.; Hirose, K.; Kobayashi, T.; Kaba, H.; Hyodo, M. Evaluation of “Open Essence” odor-identification test card by application to healthy volunteers. Auris Nasus Larynx. 2013, 40, 76–80. [Google Scholar] [CrossRef]
- Demir, S.; Sizer, B.; Gül, A.; Topçu, İ. Culturally modified olfactory test adapted to East-Turkey: A comparison with Sniffin’ Sticks. Int. J. Clin. Pract. 2021, 75, e14458. [Google Scholar] [CrossRef]
- Jackman, A.H.; Doty, R.L. Utility of a three-item smell identification test in detecting olfactory dysfunction. Laryngoscope 2005, 115, 2209–2212. [Google Scholar] [CrossRef] [PubMed]
- Davidson, T.M.; Murphy, C. Rapid clinical evaluation of anosmia. The alcohol sniff test. Arch. Otolaryngol. Head Neck Surg. 1997, 123, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Cardesín, A.; Alobid, I.; Benítez, P.; Sierra, E.; de Haro, J.; Bernal-Sprekelsen, M.; Picado, C.; Mullol, J. Barcelona Smell Test-24 (BAST-24): Validation and smell characteristics in the healthy Spanish population. Rhinology 2006, 44, 83–89. [Google Scholar]
- Landis, B.N.; Frasnelli, J.; Reden, J.; Lacroix, J.S.; Hummel, T. Differences between orthonasal and retronasal olfactory functions in patients with loss of the sense of smell. Arch. Otolaryngol. Head Neck Surg. 2005, 131, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Güttich, H. Gustatorische Riechprüfung mit Riechstoffen und Mischreizschmeckstoffen. Arch. Ohren Nasen Kehlk. Heilk. 1961, 178, 327–330. [Google Scholar] [CrossRef]
- Heilmann, S.; Strehle, G.; Rosenheim, K.; Damm, M.; Hummel, T. Clinical assessment of retronasal olfactory function. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Besser, G.; Tianxiang Liu, D.; Prem, B.; Iabloncsik, D.; Pablik, E.; Mueller, C.A.; Renner, B. Retronasal olfactory testing using candies sent by post and for screening purposes: A feasibility study. Rhinology 2020, 58, 218–225. [Google Scholar] [CrossRef]
- Renner, B.; Mueller, C.A.; Dreier, J.; Faulhaber, S.; Rascher, W.; Kobal, G. The candy smell test: A new test for retronasal olfactory performance. Laryngoscope 2009, 119, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, S.; Hummel, T. A new method for comparing orthonasal and retronasal olfaction. Behav. Neurosci. 2004, 118, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Shaman, P.; Dann, M. Development of the University of Pennsylvania Smell Identification Test: A standardized microencapsulated test of olfactory function. Physiol. Behav. 1984, 32, 489–502. [Google Scholar] [CrossRef]
- Kobal, G.; Hummel, T.; Sekinger, B.; Barz, S.; Roscher, S.; Wolf, S. “Sniffin’ sticks”: Screening of olfactory performance. Rhinology 1996, 34, 222–226. [Google Scholar] [PubMed]
- Doty, R.L.; Marcus, A.; Lee, W.W. Development of the 12-item Cross-Cultural Smell Identification Test (CC-SIT). Laryngoscope 1996, 106 Pt 1, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Wylie, C.; Potter, M.; Beston, R.; Cope, B.; Majam, K. Clinical validation of the olfactory detection threshold module of the Snap & Sniff® olfactory test system. Int. Forum Allergy Rhinol. 2019, 9, 986–992. [Google Scholar]
- Hummel, T.; Kobal, G.; Gudziol, H.; Mackay-Sim, A. Normative data for the Sniffin’ Sticks including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3000 subjects. Eur. Arch. Otorhinolaryngol. 2007, 264, 37–43. [Google Scholar] [CrossRef]
- Kobal, G.; Klimek, L.; Wolfensberger, M.; Gudziol, H.; Temmel, A.; Owen, C.M.; Seeber, H.; Pauli, E.; Hummel, T. Multicenter investigation of 1036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination and olfactory thresholds. Eur. Arch. Otorhinolaryngol. 2000, 257, 205–211. [Google Scholar] [CrossRef]
- Hummel, T.; Sekinger, B.; Wolf, S.; Pauli, E.; Kobal, G. Sniffin Sticks: Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory thresholds. Chem. Senses 1997, 22, 39–52. [Google Scholar] [CrossRef]
- Oleszkiewicz, A.; Schriever, V.A.; Croy, I.; Hähner, A.; Hummel, T. Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. Eur. Arch. Otorhinolaryngol. 2019, 276, 719–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savic, I.; Gulyas, B.; Larsson, M.; Roland, P. Olfactory functions are mediated by parallel and hierarchical processing. Neuron 2000, 26, 735–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hummel, T.; Kobal, G. Differences in human evoked potentials related to olfactory or trigeminal chemosensory activation. Electroencephalogr. Clin. Neurophysiol. 1992, 84, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Pause, B.M.; Krauel, K. Chemosensory event-related potentials (CSERP) as a key to the psychology of odors. Int. J. Psychophysiol. 2000, 36, 105–122. [Google Scholar] [CrossRef]
- Stuck, B.A.; Frey, S.; Freiburg, C.; Hörmann, K.; Zahnert, T.; Hummel, T. Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin. Neurophysiol. 2006, 117, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Livermore, A.; Hummel, T.; Kobal, G. Chemosensory event-related potentials in the investigation of interactions between the olfactory and the somatosensory (trigeminal) systems. Electroencephalogr. Clin. Neurophysiol. 1992, 83, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. Olfactory dysfunction and its measurement in the clinic. World J. Otorhinolaryngol.-Head Neck Surg. 2015, 1, 28e33. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.R. Chemosensory Malingering. In Neurological Malingering; Hirsch, A.R., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2018. [Google Scholar]
- Leopold, D. Distortion of Olfactory Perception: Diagnosis and Treatment. Chem. Senses 2002, 27, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Bonfils, P.; Avan, P.; Faulcon, P.; Malinvaud, D. Distorted odorant perception: Analysis of a series of 56 patients with parosmia. Arch. Otolaryngol. Head Neck Surg. 2005, 131, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Landis, B.N.; Frasnelli, J.; Hummel, T. Euosmia: A rare form of parosmia. Acta Otolaryngol. 2006, 126, 101–103. [Google Scholar] [CrossRef]
- Pellegrino, R.; Mainland, J.D.; Kelly, C.A.; Parker, J.K.; Hummel, T. Prevalence and correlates of parosmia and phantosmia among smell disorders. Chem. Senses 2021, 1, 46. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.; Oertel, B.G.; Felden, L.; Nöth, U.; Vermehren, J.; Deichmann, R.; Lötsch, J. Effects of oral Δ9-tetrahydrocannabinol on the cerebral processing of olfactory input in healthy non-addicted subject. Eur. J. Clin. Pharmacol. 2017, 73, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.O.; Mott, A.E. Differential effects of cocaine, alcohol, and nicotine dependence on olfactory evoked potentials. Drug Alcohol Depend. 1996, 42, 21–22. [Google Scholar] [CrossRef] [PubMed]
- Sjöstrand, C.; Savic, I.; Laudon-Meyer, E.; Hillert, L.; Lodin, K.; Waldenlind, K. Migraine and Olfactory Stimuli. Curr. Pain Headache Rep. 2010, 14, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Marmura, M.J.; Monteith, T.S.; Anjum, W.; Doty, R.L.; Hegarty, S.E.; Keith, S.W. Olfactory function in migraine both during and between attacks. Cephalalgia 2014, 34, 977–985. [Google Scholar] [CrossRef]
- Seiden, A.M. Postviral olfactory loss. Otolaryngol. Clin. N. Am. 2004, 37, 1159–1166. [Google Scholar] [CrossRef]
- Doty, R.L.; Hastings, L. Neurotoxic exposure and olfactory impairment. J. Occup. Environ. Med. 2001, 1, 547–575. [Google Scholar]
- Schiffman, S.S. Influence of medications on taste and smell. WJOHNS 2018, 4, 84–91. [Google Scholar] [CrossRef]
- Kaneda, H.; Maeshima, K.; Goto, N.; Kobayakawa, T.; Ayabe-Kanamura, S.; Saito, S. Decline in taste and odor discrimination abilities with age, and relationship between gustation and olfaction. Chem. Senses 2000, 25, 331–337. [Google Scholar] [CrossRef]
- Doty, R.L.; Petersen, I.; Mensah, N.; Christensen, K. Genetic and environmental influences on odor identification ability in the very old. Psychol. Aging 2011, 26, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res. Rev. 2004, 3, 215–232. [Google Scholar] [CrossRef]
- Hawkes, C.H. Olfaction in neurodegenerative disorders. Mov. Disord. 2003, 4, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. The olfactory vector hypothesis of neurodegenerative disease: Is it viable? Ann. Neurol. 2008, 63, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Tveit Sødal, A.T.; Singh, P.-B.; Skudutyte-Rysstad, R.; Tien Diep, M.; Hove, L.H. Smell, taste and trigeminal disorders in a 65-year-old population. BMC Geriatr. 2021, 21, 300. [Google Scholar]
- Varney, N.R. Prognostic significance of anosmia in patients with closed head trauma. J. Clin. Exp. Neurop. 1988, 10, 250–254. [Google Scholar] [CrossRef]
- Amoore, J.E. Proposal for a unifying scale to express olfactory threshold and odor levels. In Proceedings of the APCA 81st Annual Meeting, Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, USA, 3 May 1987. [Google Scholar]
- Callahan, C.D.; Hinkebein, J.H. Assessment of Anosmia After Traumatic Brain Injury: Performance Characteristics of the University of Pennsylvania Smell Identification Test. J. Head Trauma Rehabil. 2002, 17, 251–256. [Google Scholar] [CrossRef]
- Migneault-Bouchard, C.; Wen Hsieh, J.; Hugentobler, M.; Frasnelli, J.; Landis, B.N. Chemosensory decrease in different forms of olfactory dysfunction. J. Neurol. 2020, 267, 138–143. [Google Scholar] [CrossRef]
- Frasnelli, J.; Hummel, T. Interactions between the chemical senses: Trigeminal function in patients with olfactory loss. Int. J. Psychophysiol. 2007, 65, 177–181. [Google Scholar] [CrossRef]
- Doty, R.L.; Brugger, W.E.; Jurs, P.C.; Orndorff, M.A.; Snyder, P.J.; Lowry, L.D. Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans. Physiol. Behav. 1978, 20, 175–185. [Google Scholar] [CrossRef]
- Hummel, T.; Barz, S.; Lotsch, J.; Roscher, S.; Kettenmann, B.; Kobal, G. Loss of olfactory function leads to a decrease of trigeminal sensitivity. Chem. Senses 1996, 21, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Frank, R.A.; Dulay, M.F.; Gesteland, R.C. Assessment off the Sniff Magnitude Test as a clinical test of olfactory function. Physiol. Behav. 2003, 78, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Crastnopol, B. Correlates of Chemosensory Malingering. Laryngoscope 2010, 120, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Malaspina, D. Hidden consequences of olfactory dysfunction: A patient report series. BMC Ear Nose Throat Disord. 2013, 23, 8. [Google Scholar] [CrossRef] [Green Version]
- Doty, R.L.; Bromley, S.M. Effects of drugs on olfaction and taste. Otolar. Clin. 2004, 37, 1229–1254. [Google Scholar] [CrossRef] [PubMed]
- Henao, J.L.; Janjua, K.A.; Hirsch, A.R. Neurological Examination of Malingering. In Neurological Malingering; Hirsch, A.R., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bailie, J.M.; Rybalsky, K.A.; Griffith, N.M.; Horning, S.M.; Gesteland, R.C.; Frank, R.A. The susceptibility of olfactory measure to malingering. Chem. Percept. 2008, 1, 168–173. [Google Scholar] [CrossRef]
- Hirsh, A.R.; Gruss, J.J. How successful are malingerers? Dissimulating olfactory dysfunction. J. Neur. Orthop. Med. Surg. 1998, 18, 154–160. [Google Scholar]
- Trimble, M.R. Posttraumatic Neurosis from Railway Spine to the Whiplash; John Wiley: New York, NY, USA, 1986. [Google Scholar]
- Edens, J.F.; Guy, L.S.; Ott, R.K.; Buffington, J.K.; Tomicic, T.L.; Poythress, N.G. Factor differentiating successful versus unsuccessful malingerers. J. Personal. Assess. 2001, 77, 333–338. [Google Scholar] [CrossRef]
- Linschoten, M.R.; Harvey, L.O. Detecting malingerers by means of response-sequence analysis. Percept. Psychophys. 2004, 66, 1190–1201. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, D.B.; White, T.L.; Hornung, D.E.; Belknap, E. What a tangled web we weave: Discriminating between malingering and anosmia. Chem. Senses 1999, 24, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Hornung, D.E.; Kurtz, D.B.; Youngetob, S.L. Can anosmic patients separate trigeminal and non-trigeminal stimulants? In Proceedings of the 11th International Symposium on Olfaction and Taste, Sapporo, Japan, 12–16 July 1993. [Google Scholar]
- Erfanian, R.; Taherkani, S.; Abdullah, H.; Sohrabpour, S.; Emami, H.; Hoorang, M.; Amirzargar, B. New modification of smell identification test for the detection of malingerers: A pilot experimental study. Iran J. Med. Sci. 2022, 47, 248–487. [Google Scholar]
- Pouraghaei, S.; Samadirad, B.; Baybordi, E.; Seyffarshad, A.; Seraj, J.M.; Kolahi, F.; Taherkhani, S. A comparative study of Iranian smell identification test and single-photon emission computed tomography result in discrimination of anosmia and malingering in forensic cases. Gen. Surg. 2018, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mehdizade, J.; Babak, S.; Fotouhi, R.; Safavi, A. A novel test to differentiate anosmic malingerers from actually anosmic patients. Am. J. Rhinol. Allergy 2012, 26, 485–488. [Google Scholar] [CrossRef]
- Merckelbach, H.; Dandachi-FitzGerald, B.; van Helvoort, D.; Jelicic, M.; Otgaar, H. When patients overreport symptoms: More than just malingering. Curr. Dir. Psychol. Sci. 2019, 28, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.K.; Schroeder, R.W. Malingering: Maintaining a perspective of clinical care when patients feign. In Validity Assessment in Clinical Neuropsychological Practice: Evaluating and Managing Noncredible Performance; Schroeder, R.W., Martin, P.K., Eds.; The Guilford Press: New York, NY, USA, 2022; pp. 31–46. [Google Scholar]
- Bond Jr, C.F.; DePaulo, B.M. Accuracy of deception judgments. Pers. Soc. Psychol. Rev. 2006, 10, 214–234. [Google Scholar] [CrossRef]
- Pankratz, L. Symptom validity testing and symptom retraining: Procedures for the assessment and treatment of functional sensory deficits. J. Consult. Clin. Psychol. 1979, 47, 409. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N. The Test of Memory Malingering (TOMM): Normative data from cognitively intact and cognitively impaired individuals. Psychol. Assess. 1997, 9, 260. [Google Scholar] [CrossRef]
- Binder, L.M. Assessment of malingering after mild head trauma with the Portland Digit Recognition Test. J. Clin. Exp. Neuropsychol. 1993, 15, 170–182. [Google Scholar] [CrossRef]
- Slick, D.; Hopp, G.; Strauss, E.; Spellacy, F. Victoria Symptom Validity Test: Efficiency for detecting feigned memory impairment and relationship to neuropsychological tests and MMPI-2 validity scale. J. Clin. Exp. Psychophys. 1996, 6, 911–922. [Google Scholar] [CrossRef]
- Schroeder, R.W.; Peck, C.P.; Buddin, W.H., Jr.; Heinrichs, R.J.; Baade, L.E. The Coin-in-the-Hand Test and dementia: More evidence for a screening test for neurocognitive symptom exaggeration. Cogn. Behav. Neurol. 2012, 25, 139–143. [Google Scholar] [CrossRef]
- Boone, K.B.; Salazar, X.; Lu, P.; Warner-Chacon, K.; Razani, J. The Rey 15-item recognition trial: A technique to enhance sensitivity of the Rey 15-item memorization test. J. Clin. Exp. Neuropsychol. 2002, 24, 561–573. [Google Scholar] [CrossRef]
- Boone, K.B.; Lu, P.; Sherman, D.; Palmer, B.; Back, C.; Shamieh, E.; Warner-Chacon, K.; Berman, N.G. Validation of a New Technique to Detect Malingering of Cognitive Symptoms: The b Test. Arch. Clin. Neuropsych. 2000, 15, 227–241. [Google Scholar]
- Sartori, G.; Melis, G. Deception in court. J. Hist. Med. Med. Humanit. 2022, 34, 71–102. [Google Scholar]
- Smith, G.P.; Burger, G.K. Detection of Malingering: Validation of the Structured Inventory of Malingered Symptomatology (SIMS). Psychol. Inj. Law 1997, 5, 183–189. [Google Scholar]
- van Impelen, A.; Merckelbach, H.; Jelicic, M.; Merten, T. The Structured Inventory of Malingered Symptomatology (SIMS): A systematic review and meta-analysis. Clin. Neuropsychol. 2014, 28, 1336–1365. [Google Scholar] [CrossRef] [PubMed]
- Orrù, G.; Mazza, C.; Monaro, M.; Ferracuti, S.; Sartori, G.; Roma, P. The development of a short version of the SIMS using machine learning to detect feigning in forensic assessment. Psychol. Inj. Law 2021, 14, 46–57. [Google Scholar] [CrossRef]
- Butcher, J.N.; Dahlstrom, W.G.; Graham, J.R.; Tallagen, A.K.B. (Eds.) MMPI-2: Manual for Administration and Scoring; University of Minnesota Press: Minneapolis, MN, USA, 1989. [Google Scholar]
- Srour, C.; Py, J. The general theory of deception: A disruptive theory of lie production, prevention, and detection. Psychol. Rev. 2022. [Google Scholar] [CrossRef]
- Vrij, A.; Fisher, R.; Mann, S.; Leal, S. Detecting deception by manipulating cognitive load. Trends Cogn. Sci. 2006, 10, 141–142. [Google Scholar] [CrossRef]
- Monaro, M.; Gamberini, L.; Sartori, G. The detection of faked identity using unexpected questions and mouse dynamics. PLoS ONE 2017, 12, e0177851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrabee, G.J.; Berry, D.T.R. Diagnostic classification statistics and diagnostic validity of malingering assessment. In Assessment of Malingered Neuropsychological Deficits; Larrabee, G.J., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 14–26. [Google Scholar]
- Viglione, D.J.; Schaich, D.; Pizitz, T.; Landis, P. Reaction time patterns as a function of response in the detection of malingering. Arch. Clin. Neuropsychol. 1999, 4, 102–103. [Google Scholar] [CrossRef]
- Monaro, M.; Toncini, A.; Ferracuti, S.; Tessari, G.; Vaccaro, M.G.; De Fazio, P.; Pigato, G.; Meneghel, T.; Scarpazza, C.; Sartori, G. The Detection of Malingering: A New Tool to Identify Made-Up Depression. Front. Psychiatry 2018, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Cardaioli, M.; Cecconello, S.; Monaro, M.; Sartori, G.; Conti, M.; Orrù, G. Malingering Scraper: A Novel Framework to Reconstruct Honest Profiles from Malingerer Psychopathological Tests. In Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2021; Volume 4, pp. 433–440. [Google Scholar]
- Monaro, M.; Maldera, S.; Scarpazza, C.; Sartori, G.; Navrin, N. Detecting deception through facial expressions in a dataset of videotaped interviews: A comparison between human judges and machine learning models. Comput. Hum. Behav. 2018, 127, 107063. [Google Scholar] [CrossRef]
- Pace, G.; Orrù, G.; Monaro, M.; Gnoato, F.; Vitaliani, R.; Boone, K.B.; Gemignani, A.; Sartori, G. Malingering detection of cognitive impairment with the B test is boosted using machine learning. Front. Psychol. 2019, 10, 1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucco, G.M.; Sartori, G. Sensory and Cognitive Malingering: Studies and Tests. Sci 2023, 5, 27. https://doi.org/10.3390/sci5030027
Zucco GM, Sartori G. Sensory and Cognitive Malingering: Studies and Tests. Sci. 2023; 5(3):27. https://doi.org/10.3390/sci5030027
Chicago/Turabian StyleZucco, Gesualdo M., and Giuseppe Sartori. 2023. "Sensory and Cognitive Malingering: Studies and Tests" Sci 5, no. 3: 27. https://doi.org/10.3390/sci5030027