Financial Feasibility of Harvesting Rainwater from Permeable Pavements: A Case Study in a City Square
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rainfall Data
2.2. The Square
2.3. Rainwater Harvesting System
2.4. Computer Simulations
3. Results and Discussion
3.1. Rainfall Analysis
3.2. Architectural and Landscape Square Design
3.3. Potential for Potable Water Savings
3.4. Financial Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WWAP. The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO: Paris, France, 2015; ISBN 978-92-3-100080-5. [Google Scholar]
- Kummu, M.; Guillaume, J.H.A.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The World’s Road to Water Scarcity: Shortage and Stress in the 20th Century and Pathways towards Sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghisi, E.; Montibeller, A.; Schmidt, R.W. Potential for Potable Water Savings by Using Rainwater: An Analysis over 62 Cities in Southern Brazil. Build. Environ. 2006, 41, 204–210. [Google Scholar] [CrossRef]
- ANA. Fatos e Tendências: Água; Agência Nacional de Águas: Brasília, Brazil, 2009. [Google Scholar]
- Ribeiro, L.G.G.; Rolim, N.D. Planeta Água de Quem e Para Quem: Uma Análise Da Água Doce Como Direito Fundamental e Sua Valoração Mercadológica. Direito Ambient. E Soc. 2017, 7, 7–33. [Google Scholar]
- Trevisol, N. Escassez de Água: Impactos e Soluções Diante Das Projeções de Crise Hídrica Em Santa Catarina. Available online: https://noticias.ufsc.br/2019/11/escassez-de-agua-impactos-e-solucoes-diante-das-projecoes-de-crise-hidrica-em-santa-catarina/ (accessed on 26 October 2022).
- Sant’ana, D.; Boeger, L.; Monteiro, L. Aproveitamento de Águas Pluviais e o Reúso de Águas Cinzas Em Edifícios Residenciais de Brasília–Parte 1: Reduções No Consumo de Água. Paranoá 2013, 10, 77–84. [Google Scholar] [CrossRef]
- Zaizen, M.; Urakawa, T.; Matsumoto, Y.; Takai, H. The Collection of Rainwater from Dome Stadiums in Japan. Urban Water 2000, 1, 355–359. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Galvão, M.T.S.; Aquino, T.A.C.A. A Certificação LEED Em Estádios Brasileiros: O Legado Da Copa Do Mundo 2014. In Proceedings of the Encontro Internacional Sobre Gestão Empresarial e Meio Ambiente–ENGEMA, São Paulo, Brazil, 1–3 December 2014; pp. 1–16. [Google Scholar]
- Robba, F.; Macedo, S.S. Praças Brasileiras; Imprensa Oficial do Estado de São Paulo: São Paulo, SP, Brazil, 2002. [Google Scholar]
- Gehl, J.; Gemzøe, J. Novos Espaços Urbanos; Editorial Gustava Gili: Barcelona, Spain, 2002. [Google Scholar]
- Goitia, F.C. Breve História Do Urbanismo; Editorial Presença.: Queluz de Baixo, Brazil, 2006. [Google Scholar]
- Lynch, K. A Boa Forma Da Cidade; Edições 70: Lisboa, Portugal, 1990. [Google Scholar]
- Cruz, V. Análise e Perspectivas Dos Espaços Públicos. In Revisão do Plano Director Municipal de Odivelas; Câmara Municipal de Odivelas: Odivelas, Portugal, 2003. [Google Scholar]
- Ribeiro, A.G. As Escalas Do Clima. Bol. Geogr. Teor. 1993, 23, 288–294. [Google Scholar]
- Rogers, R. Cidades Para Um Pequeno Planeta; Editorial Gustava Gili: Barcelona, Spain, 2001. [Google Scholar]
- Sachs, I. Caminhos Para o Desenvolvimento Sustentável; Garamond: Rio de Janeiro, RJ, Brazil, 2002. [Google Scholar]
- AQUA-HQE Certificação Internacional Da Construção de Alta Qualidade Ambiental. Available online: https://vanzolini.org.br/produto/aqua-hqe (accessed on 26 October 2022).
- Musz-Pomorska, A.; Widomski, M.K.; Gołebiowska, J. Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland. Sustainability 2020, 12, 4853. [Google Scholar] [CrossRef]
- Oviedo-Ocaña, E.R.; Dominguez, I.; Ward, S.; Rivera-Sanchez, M.L.; Zaraza-Peña, J.M. Financial Feasibility of End-User Designed Rainwater Harvesting and Greywater Reuse Systems for High Water Use Households. Environ. Sci. Pollut. Res. 2018, 25, 19200–19216. [Google Scholar] [CrossRef] [Green Version]
- Hammes, G.; Ghisi, E.; Padilha Thives, L. Water End-Uses and Rainwater Harvesting: A Case Study in Brazil. Urban Water J. 2020, 17, 177–183. [Google Scholar] [CrossRef]
- Kim, J.E.; Humphrey, D.; Hofman, J. Evaluation of Harvesting Urban Water Resources for Sustainable Water Management: Case Study in Filton Airfield, UK. J. Environ. Manag. 2022, 322, 116049. [Google Scholar] [CrossRef]
- Gomes, Y.R.M.; Jucá, M.V.Q.; Batista, L.F.D.R.; Ribeiro Neto, A.; dos Santos, S.M. Rainwater Harvesting Potential in Water Abundant and Scarce Regions in Northeast Brazil Using Remote Sensing. Sustain. Water Resour. Manag. 2021, 7, 60. [Google Scholar] [CrossRef]
- Antunes, L.; Thives, L.; Ghisi, E. Potential for Potable Water Savings in Buildings by Using Stormwater Harvested from Porous Pavements. Water 2016, 8, 110. [Google Scholar] [CrossRef]
- Vaz, I.C.M.; Ghisi, E.; Thives, L.P. Stormwater Harvested from Permeable Pavements as a Means to Save Potable Water in Buildings. Water 2021, 13, 1896. [Google Scholar] [CrossRef]
- Kim, D.; Song, S.K. The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases. Sustainability 2019, 11, 3917. [Google Scholar] [CrossRef] [Green Version]
- Rozos, E.; Makropoulos, C.; Maksimović, Č. Rethinking Urban Areas: An Example of an Integrated Blue-Green Approach. Water Sci. Technol. Water Supply 2013, 13, 1534–1542. [Google Scholar] [CrossRef]
- De Sousa, N.M.; Soares, W.D.A.; da Silva, S.R.; Nascimento, E.C. do Contribution of Public Squares to the Reduction of Urban Flooding Risk. Ambiente E Agua—Interdiscip. J. Appl. Sci. 2019, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- EPAGRI. Banco de Dados de Variáveis Ambientais de Santa Catarina; Epagri: Florianópolis, Brazil, 2020. [Google Scholar]
- PMF Geoprocessamento Corporativo. Available online: http://geo.pmf.sc.gov.br. (accessed on 26 October 2022).
- Costello, L.; Matheny, N.; Clark, J. A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California the Landscape Coefficient Method and WUCOLS III; University of California, Cooperative Extension California Department of Water Resources: Sacramento, CA, USA, 2000. [Google Scholar]
- Silva, C.F. da Estimativa Da Evapotranspiração Na Bacia Da Lagoa Da Conceição. Bachelor’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2014. [Google Scholar]
- Ghisi, E.; Belotto, T.; Thives, L. The Use of Permeable Interlocking Concrete Pavement to Filter Stormwater for Non-Potable Uses in Buildings. Water 2020, 12, 2045. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Sevigné-Itoiz, E.; Rojas-Gutierrez, L.A.; Barbassa, A.P.; Josa, A.; Rieradevall, J.; Gabarrell, X. Floods and Consequential Life Cycle Assessment: Integrating Flood Damage into the Environmental Assessment of Stormwater Best Management Practices. J. Clean Prod. 2017, 162, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Teston, A.; Piccinini Scolaro, T.; Kuntz Maykot, J.; Ghisi, E. Comprehensive Environmental Assessment of Rainwater Harvesting Systems: A Literature Review. Water 2022, 14, 2716. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Peng, H. A New Structure of Permeable Pavement for Mitigating Urban Heat Island. Sci. Total Environ. 2018, 634, 1119–1125. [Google Scholar] [CrossRef]
- Qin, Y. A Review on the Development of Cool Pavements to Mitigate Urban Heat Island Effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Martins Vaz, I.C.; Ghisi, E.; Thives, L.P. Life Cycle Energy Assessment and Economic Feasibility of Stormwater Harvested from Pervious Pavements. Water Res. 2020, 170, 115322. [Google Scholar] [CrossRef] [PubMed]
- Martins Vaz, I.C.; Antunes, L.N.; Ghisi, E.; Thives, L.P. Permeable Pavements as a Means to Save Water in Buildings: State of the Art in Brazil. Science 2021, 3, 36. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V.; le Marc, C. Effects of a Porous Pavement with Reservoir Structure on the Quality of Runoff Water and Soil. Sci. Total Environ. 1996, 189–190, 335–340. [Google Scholar] [CrossRef]
- Roseen, R.M.; Wre, D.; Asce, M.; Ballestero, T.P.; Houle, J.J.; Briggs, J.F.; Houle, K.M. Water Quality and Hydrologic Performance of a Porous Asphalt Pavement as a Storm-Water Treatment Strategy in a Cold Climate. J. Environ. Eng. 2012, 138, 81–89. [Google Scholar] [CrossRef]
- Antunes, L.N.; Ghisi, E.; Severis, R.M. Environmental Assessment of a Permeable Pavement System Used to Harvest Stormwater for Non-Potable Water Uses in a Building. Sci. Total Environ. 2020, 746, 141087. [Google Scholar] [CrossRef]
- Chan, N.W.; Mapjabil, J.; Samat, N.; Leong Tan, M.; Ghani, A.A.; Zhang, F. Community Involvement in Urban Water Management: The N Park Resort Condominium Rainfall Harvesting and Water Saving Project in Penang, Malaysia. Populasi 2021, 29, 93–107. [Google Scholar] [CrossRef]
- Charalambous, K.; Bruggeman, A.; Giannakis, E.; Zoumides, C. Improving Public Participation Processes for the Floods Directive and Flood Awareness: Evidence from Cyprus. Water 2018, 10, 958. [Google Scholar] [CrossRef] [Green Version]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban Rainwater Harvesting Systems: Research, Implementation and Future Perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
Questions | Possible Answers |
---|---|
What do you think is essential in a public square? | (a) Benches (social life area); (b) pet area; (c) public vegetable garden; (d) lighting; (e) children’s playground; (f) sports court; (g) recreation area; (h) area for events; (i) skate lane; (j) snack bars; (k) shower; (l) public restrooms; (m) bike rack; (n) space for fairs. |
Do you think rainwater harvesting solutions are interesting? | Yes or No |
Do you know the technique of rainwater harvesting by using permeable pavements? | Yes or No |
Do you agree that sustainable examples coming from the city council would help to change the population’s thinking about the environment? | Yes or No |
Would you use a public vegetable garden? | Yes or No |
Would you seek to know more about solutions for rainwater harvesting when having contact with a square provided with such a system? | Yes or No |
Do you believe that a public square and the type of architectural design suggested would promote social well-being and better interaction between people? | Yes or No |
Do you believe that the implementation of the public square using the suggested architectural design would help even more in the real estate appreciation of the region? | Yes or No |
Do you have any questions, comments or suggestions? | Not applicable (open answer) |
Input Data | Value |
---|---|
Rainfall | Historical series |
Start date | 8 January 1996 |
First flush | 0 mm |
Catchment area | 1000 m2 |
Total water demand | 662 L/day |
Total demand replaced by rainwater | 100% |
Runoff coefficient | 78.1% |
Maximum capacity of the rainwater tank | 60,000 L |
Interval between rainwater tanks | 5000 L |
Parameter | Value |
---|---|
Water and sewage fees | Variable a |
Electricity tariff | 2.50/kWh |
Brazilian taxes | 9.25% |
Inflation | 0.72% |
Rates and service adjustment periods | 12 months |
Analysis period | 30 years |
Minimum attractive rate of return | 0.2% per month |
System installation month | January |
Construction costs | US$ b 7736 |
Rainwater tank cost | US$ b 1580 |
Pipes and drains cost | US$ b 910 |
Accessories cost | US$ b 11,142 |
Maintenance costs | US$ b 17.55/month |
Electricity cost | US$ b 2.35/month |
Parameter | Result |
---|---|
Net present value (NPV) | US$ 1654 |
Internal rate of return (IRR) | 0.47% month |
Discounted payback | 347 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, C.W.; Maykot, J.K.; Ghisi, E.; Thives, L.P. Financial Feasibility of Harvesting Rainwater from Permeable Pavements: A Case Study in a City Square. Sci 2023, 5, 1. https://doi.org/10.3390/sci5010001
Klein CW, Maykot JK, Ghisi E, Thives LP. Financial Feasibility of Harvesting Rainwater from Permeable Pavements: A Case Study in a City Square. Sci. 2023; 5(1):1. https://doi.org/10.3390/sci5010001
Chicago/Turabian StyleKlein, Caio Wolf, Jéssica Kuntz Maykot, Enedir Ghisi, and Liseane Padilha Thives. 2023. "Financial Feasibility of Harvesting Rainwater from Permeable Pavements: A Case Study in a City Square" Sci 5, no. 1: 1. https://doi.org/10.3390/sci5010001