Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Research Data
3. Methods
3.1. LULC Classified Maps
3.2. Change Detection Analysis
3.3. Selection of LULC Transitions
3.4. Selection of Variables
3.5. Transition Potential Modeling
3.6. LULC Change Prediction
4. Results and Discussions
4.1. LULC Distribution
4.2. LULC Change Analysis Using LCM
4.3. Driving Factors of LULC Change
4.4. Markov Chain Analysis
4.5. LULC Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Population Fund (UNFPA). 2013. Available online: http://www.unfpa.org/pds/urbanization.htm (accessed on 28 April 2020).
- Shi, Z.-H.; Chen, L.-D.; Hao, J.-P.; Wang, T.-W.; Cai, C.-F. The effects of land use change on environmental quality of the red soil hilly region, China: A case study in Xianning county. Environ. Monit. Assess. 2009, 150, 295–306. [Google Scholar] [CrossRef]
- Keshtkar, H.; Voigt, W. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model. Earth Syst. Environ. 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects, the 2009 Version; United Nations: New York, NY, USA, 2010. [Google Scholar]
- Trivedi, J.K.; Sareen, H.; Dhyani, M. Rapid urbanization—Its impact on mental health: A South Asian perspective. Indian J. Psychiatry 2008, 50, 161–165. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Ren, X.; Jiang, L.; Dalton, M. The effect of urbanization on energy use in India and China in the iPETS model. Energy Econ. 2012, 34, S339–S345. [Google Scholar] [CrossRef]
- Gill, J. The Effect of Urban Sprawl on Sydney’s Peri-Urban Agricultural Region. Society, Environmental Policy, and Sustainability. Master’s Thesis, University of New South Wales, Sydney, NSW, Australia, 2008. [Google Scholar]
- Rubiera-Morollón, F.; Garrido-Yserte, R. Recent literature about urban sprawl: A renewed relevance of the phenomenon from the perspective of environmental sustainability. Sustainability 2020, 12, 6551. [Google Scholar] [CrossRef]
- Richardson, H.W.; Chang-Hee, C.B. Urban sprawl in Western Europe and the United States; Ashgate: London, UK, 2004. [Google Scholar]
- Razin, E. Policies to control urban sprawl: Planning regulations or changes in the “rules of the game”. J. Urban Stud. 1998, 35, 321–340. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, X.; Liu, M. Detection of urban sprawl using a genetic algorithm-evolved artificial neural network classification in remote sensing: A case study in Jiading and Putuo districts of Shanghai, China. Int. J. Remote Sens. 2010, 31, 1485–1504. [Google Scholar] [CrossRef]
- Burchell, R.W.; Lowenstein, G.; Dolphin, W.R.; Galley, C.C.; Downs, A.; Seskin, S. The Benefits of Sprawl. Chapter 12A in the Costs of Sprawl Revisited; Transportation Research Board and National Research Council: Washington, DC, USA, 2000. [Google Scholar]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatiotemporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Weng, Y.C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–354. [Google Scholar] [CrossRef]
- UN-Habitat. State of the World’s Cities 2010/2011; Earthscan: London, UK, 2010. [Google Scholar]
- UN-Habitat. Urbanization and Development Emerging Futures World Cities Report; UN-Habitat: Nairobi, Kenya, 2016. [Google Scholar]
- Obiefuna, J.N.; Nwilo, P.C.; Atagbaza, A.O.; Okolie, C.J. Land cover dynamics associated with the spatial changes in the wetlands of Lagos/Lekki lagoon system of Lagos, Nigeria. J. Coast. Res. 2013, 29, 671–679. [Google Scholar]
- Shrestha, M.K.; York, A.M.; Boone, C.G.; Zhang, S. Land fragmentation due to rapid urbanization in the Phoenix metropolitan area: Analyzing the spatiotemporal patterns and drivers. Appl. Geogr. 2011, 32, 522–531. [Google Scholar] [CrossRef]
- Solon, J. Spatial context of urbanization: Landscape pattern and changes between 1950 and 1990 in the Warsaw metropolitan area, Poland. Landsc. Urban Plan. 2009, 93, 250–261. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects. 2018. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 16 July 2020).
- United Nations Population Division. World Population Prospects: 2019 Revision. Population of Nigeria. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=NG (accessed on 20 August 2020).
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352); United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2014. [Google Scholar]
- Mabogunje, A.L. Urban Development in Nigeria; University of London Press: London, UK, 1968. [Google Scholar]
- Aniah, E.J. The role of secondary cities in regional economic development in Nigeria. J. Environ. Sci. 2001, 4, 112–119. [Google Scholar]
- Federal Government of Nigeria (FGN). Nigeria: Country Profile Implementation of Agenda 21: Review of Progress Made Since The United Nations Conference on Environment and Development, 1992 Information Provided by The Government of Nigeria to The United Nations Commission on Sustainable Development Fifth Session. In Proceedings of the United Nations Conference on Environment and Development, New York, NY, USA, 7–25 April 1997; FGN: Lagos, Nigeria, 1997. [Google Scholar]
- United States Library of Congress. Nigeria Urbanization Source; U.S. Library of Congress: Washington, DC, USA, 2013.
- United Nations. World Urbanization Prospects. 2017. Lagos Population Growth. Available online: http://worldpopulationreview.com/world-cities/lagos-population/ (accessed on 14 July 2020).
- Vaz, E. Managing urban coastal areas through landscape metrics: An assessment of Mumbai’s mangrove system. Ocean Coast. Manag. 2014, 98, 27–37. [Google Scholar] [CrossRef]
- Banzhaf, E.; Kabisch, S.; Knapp, S.; Rink, D.; Wolff, M.; Kindler, A. Integrated research on land-use changes in the face of urban transformations—An analytic framework for further studies. Land Use Policy 2017, 60, 403–407. [Google Scholar] [CrossRef]
- Vaz, E.; Arsanjani, J.J. Predicting urban growth of the Greater Toronto area—Coupling a Markov cellular automata with document meta-analysis. J. Environ. Inform. 2015, 25, 71–80. [Google Scholar] [CrossRef]
- Hachmann, S.; Arsanjani, J.J.; Vaz, E. Spatial data for slum upgrading: Volunteered Geographic Information and the role of citizen science. Habitat Int. 2018, 72, 18–26. [Google Scholar] [CrossRef]
- Hathout, S. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. J. Environ. Manag. 2002, 66, 229–238. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis, and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.; Lepers, E. Dynamics of land use and land cover changes in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Li, H.; Wang, R.; Paulussen, J.; He, Y.; Wang, M.; Wang, B.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Liu, X.; Ma, L.; Li, X.; Ai, B.; Li, S.; He, Z. Simulating urban growth by integrating landscape expansion index LEI and cellular automata. Int. J. Geogr. Inf. Sci. 2014, 28, 148–163. [Google Scholar] [CrossRef]
- Wu, F.; Webster, C.J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ. Plan. B Plan. Des. 1998, 25, 103–126. [Google Scholar] [CrossRef]
- Store, R.; Kangas, J. Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modeling. Landsc. Urban Plan. 2001, 55, 79–93. [Google Scholar] [CrossRef]
- Collins, M.G.; Steiner, F.R.; Rushman, M.J. Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environ. Manag. 2001, 28, 611–621. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Vaz, E.N.; Nijkamp, P.; Painho, M.; Caetano, M. A multi-scenario forecast of urban change: A study on urban growth in the Algarve. Landsc. Urban Plan. 2012, 104, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Al-Sharif, A.A.A.; Pradhan, B. A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto Int. 2015, 30, 858–881. [Google Scholar] [CrossRef]
- He, C.Y.; Okada, N.; Zhang, Q.F.; Shi, P.J.; Li, J.G. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc. Urban Plan. 2008, 86, 79–91. [Google Scholar] [CrossRef]
- White, R.; Engelen, G. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns. Environ. Plan. A 1993, 25, 1175–1199. [Google Scholar] [CrossRef] [Green Version]
- Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16, 795–818. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y. Simulating the impact of economic and environmental strategies on future urban growth scenarios in Ningbo, China. Sustainability 2016, 8, 1045. [Google Scholar] [CrossRef] [Green Version]
- Hyandye, C.; Martz, L.W. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int. J. Remote Sens. 2017, 38, 64–81. [Google Scholar] [CrossRef]
- Mondal, M.S.; Sharma, N.; Garg, P.K.; Kappas, M. Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. Egypt. J. Remote Sens. Space Sci. 2015, 19, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Zhilong, Z.; Xue, W.; Yili, Z.; Jungang, G. Assessment of changes in the value of ecosystem services in the Koshi River Basin, central high Himalayas based on land cover changes and the CA-Markov model. J. Resour. Ecol. 2017, 8, 67–76. [Google Scholar] [CrossRef]
- Paegelow, M.; Camacho Olmedo, M.T.; Mas, J.F.; Houet, T. Benchmarking of LULC modelling tools by various validation techniques and error analysis. Cybergeo Eur. J. Geogr. 2014. [Google Scholar] [CrossRef]
- Veldkamp, A.; Lambin, E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Awoniran, D.R.; Adewole, M.B.; Adegboyega, S.S.; Anifowose, Y. Assessment of environmental responses to land use/land cover dynamics in the lower Ogun River Basin, Southwestern Nigeria. Int. J. Sustain. Land Use Urban Plan. 2014, 1, 16–31. [Google Scholar] [CrossRef]
- Babalola, O.S.; Akinsanola, A.A. Change detection in land surface temperature and land use land cover over Lagos metropolis, Nigeria. J. Remote Sens. GIS 2016, 5, 3. [Google Scholar]
- Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Dekolo, S.O.; Nwokoro, I.I.C.; Oduwaye, O.A. Peri-Urban Land Use Change in the Lagos Megacity; International Post Graduate Research: Salford, UK, 2013. [Google Scholar]
- Jimoh, R.A.; Afonja, Y.O.; Atagbaza, A.O.; Nilanchal, P. Spatial modeling and mapping of the land use and land cover of Lagos Mainland Local Government, Lagos State, Nigeria using geospatial data. J. Stud. Manag. Plan. 2015, 1, 182–191. [Google Scholar]
- Ukor, C.D.; Ogbole, J.; Alaga, A.T. Analysis of land use land cover change in Ikeja, Lagos State Nigeria using remote sensing and GIS techniques. Int. J. Sci. Technol. 2016, 5, 462–472. [Google Scholar]
- Obiefuna, J.N.; Idris, S.; Uduma-Olugu, N. An assessment of the changes in the landscape of Ogudu-Oworonshoki development prone area of Lagos Metropolis, Nigeria. J. Sustain. Dev. 2011, 4, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.I.; Demicheli, L.; Lavalle, C.; Kasanko, M.; Mccormick, N. Modelling future urban scenarios in developing countries: An application case study in Lagos, Nigeria. Environ. Plan. B Plan. Des. 2004, 31, 65–84. [Google Scholar] [CrossRef] [Green Version]
- Global Literacy Project. n.d. Global Citizens Classroom. Available online: http://www.glpinc.org/Classroom%20Activities/Nigeria%20Articles/Nigeriahistory%20since%201960.htm (accessed on 10 March 2020).
- Regional Geographic Data of Nigeria. Lagos. 2010. Available online: http://nigeria.opendataforafrica.org/apps/atlas/Lagos (accessed on 6 March 2020).
- Balogun, Y.O.; Odumosu, O.J.; Ojo, O.A. (Eds.) Lagos in Maps; Punmark Publications: Lagos, Nigeria, 1999. [Google Scholar]
- Agbola, T.; Agunbiade, E.M. Urbanization, slum development and security of tenure: The challenges of meeting Millennium Development Goal 7. In Urban Population-Environment Dynamics in the Developing World: Case Studies and Lessons Learned; de Sherbiniin, A., Rahman, A., Barbieri, A., Fotso, J.C., Zhu, Y., Eds.; Committee for International Cooperation in National Research in Demography (CICRED): Paris, France, 2009. [Google Scholar]
- Department of Economic and Social Affairs/Population Division, United Nations. World Urbanization Prospects: The 2011 Revision; UN: New York, NY, USA, 2011. [Google Scholar]
- Filani, M.O. The Changing Face of Lagos: From Vision to Reform and Transformation. Cities Alliance, Brussels. 2012. Available online: http://www.citiesalliance.org/sites/citiesalliance.org/files/Lagos-reformreport-lowres.pdf (accessed on 10 March 2020).
- Williams, L. Bradt Guide: Nigeria; Connecticut: The Globe Prequot Press Inc.: Guildford, CT, USA, 2008; Available online: http://books.google.com/books?id=fwuQ71ZbaOcC&pg=PA110#v=onepage&q&f=false (accessed on 10 September 2020).
- Ogunbiyi, T. Giving Lagos a Special Status. 2011. Vanguard Newspaper. Available online: http://www.vanguardngr.com/2011/08/giving-lagos-a-special-status/ (accessed on 8 March 2020).
- Okeke, F. Nigeria: FCC Condemns Nepotism. Daily Trust. 2012. Available online: http://allafrica.com/stories/201211160413.html (accessed on 25 March 2020).
- Nwafor, J.C. Physical environment, decision-making and land use development in metropolitan Lagos. GeoJournal 1986, 12, 433–442. [Google Scholar] [CrossRef]
- Akinsanmi, G. Lagos Emerges Africa’s Most Innovative City. This Day Live. 2012. Available online: http://www.thisdaylive.com/articles/lagos-emerges-africa-s-mostinnovative-city/128001/ (accessed on 25 March 2020).
- Thontteh, E.O.; Omirin, M.M. Land registration within the framework of land administration reform in Lagos State. Pac. Rim Prop. Res. J. 2015, 21, 161–177. [Google Scholar] [CrossRef]
- The Lands Bureau, Lagos State Land Bureau Handbook; The Lands Bureau, Governor’s Office Publication: Lagos, Nigeria, 2010.
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Arsanjani, J.J. Characterizing, monitoring, and simulating land cover dynamics using GlobeLand30: A case study from 2000 to 2030. J. Environ. Manag. 2018, 214, 66–75. [Google Scholar] [CrossRef]
- Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; Zhang, W.W.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Chang. 2018, 18, 247–259. [Google Scholar] [CrossRef]
- Zhang, L.; Pfoser, D. Using OpenStreetMap point-of-interest data to model urban change—A feasibility study. PLoS ONE 2019, 14, e0212606. [Google Scholar] [CrossRef]
- Fonte, C.C.; Patriarca, J.A.; Minghini, M.; Antoniou, V.; See, L.; Brovelli, M.A. Using OpenStreetMap to create land use and land cover maps: Development of an application. In Volunteered Geographic Information and the Future of Geospatial Data; Campelo, C.E.C., Bertolotto, M., Corcoran, P., Eds.; IGI Global: Hershey, PA, USA, 2017; pp. 113–137. [Google Scholar]
- Eastman, J.R. IDRISI Andes Guide to GIS and Image Processing; Clark University: Worcester, MA, USA, 2006. [Google Scholar]
- Eastman, J.R. IDRISI Selva Tutorial; Clark University: Worcester, MA, USA, 2012. [Google Scholar]
- Eastman, J.R. TerrSet Tutorial; Clark University: Worcester, MA, USA, 2020. [Google Scholar]
- Wahyudi, A.; Liu, Y. Cellular automata for urban growth modeling: A review on factors defining transition rules. Int. Rev. Spat. Plan. Sustain. Dev. 2016, 4, 60–75. [Google Scholar]
- Mitsuda, Y.; Ito, S. A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landsc. Ecol. Eng. 2010, 7, 117–125. [Google Scholar] [CrossRef]
- Geneletti, D. Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environ. Impact Assess. Rev. 2013, 40, 25–35. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI TerrSet Tutorial; Clark University: Worcester, MA, USA, 2015. [Google Scholar]
- Müller, K.; Steinmeier, C.; Kuchler, M. Urban growth along motorways in Switzerland. Landsc. Urban. Plan. 2010, 98, 3. [Google Scholar] [CrossRef]
- Reilly, M.K.; O’Mara, M.P.; Seto, K.C. From Bangalore to the Bay area: Comparing transportation and activity accessibility as drivers of urban growth. Landsc. Urban. Plan. 2009, 92, 24–33. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, H.; Liu, K.; Wu, Q. Research on the influence of site factors on the expansion of construction land in the Pearl River Delta, China: By using GIS and remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 366–373. [Google Scholar] [CrossRef]
- Luo, J.; Wei, Y. Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landsc. Urban. Plan. 2009, 91, 51–64. [Google Scholar] [CrossRef]
- Poelmans, L.; Rompaey, A.V. Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders—Brussels region. Landsc. Urban. Plan. 2009, 93, 10–19. [Google Scholar] [CrossRef]
- Engelen, G. Cellular Automata for Modelling Land Use Change as Driven by Socio-Economic, Environmental and Policy Factors; Research Institute for Knowledge System (RIKS): Maastricht, The Netherlands, 2006. [Google Scholar]
- Delden, H.V.; Stuczynski, T.; Ciaian, P.; Paracchini, M.L.; Hurkens, J.; Lopatka, A.; Shi, Y.-E.; Prieto, O.G.; Calvo, S.; Van Vliet, J.; et al. Integrated assessment of agricultural policies with dynamic land use change modelling. Ecol. Model. 2010, 221, 2153–2166. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition; Rumelhart, D.E., McClelland, J.L., Eds.; MIT Press: Cambridge, MA, USA, 1986; Volume 1, pp. 318–362. [Google Scholar]
- Artificial Intelligence Wiki. n.d. A Beginner’s Guide to Multilayer Perceptrons (MLP). Available online: https://skymind.ai/wiki/multilayer-perceptron (accessed on 26 March 2020).
- White, R.; Engelen, G. Cellular automata as the basis of integrated dynamic regional modelling. Environ. Plan. B 1997, 24, 235–246. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.Q.; Chen, R. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol. Model. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Parsa, V.A.; Yavari, A.; Nejadi, A. Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran biosphere reserve: Iran. Model. Earth Syst. Environ. 2016, 4, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Stein, A.; Gao, B.; Ge, Y. A review of spatial sampling. Spat. Stat. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Berto, F.; Tagliabue, J. Cellular Automata. The Stanford Encyclopedia of Philosophy Edward. Zalta, N., Ed.; 2017. Available online: https://plato.stanford.edu/archives/fall2017/entries/cellular-automata (accessed on 9 January 2020).
- Muller, M.R.; Middleton, J. A Markov model of land use change dynamics in the Niagara region, Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [Google Scholar]
- Surabuddin Mondal, M.; Sharma, N.; Kappas, M.; Garg, P.K. Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra river basin using geoinformatic techniques. Geocarto Int. 2013, 28, 632–656. [Google Scholar] [CrossRef]
- Adhikari, S.; Southworth, J. Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: A remote sensing approach. Remote Sens. 2012, 4, 3215–3243. [Google Scholar] [CrossRef] [Green Version]
- Lagos State Government Ministry of the Environment. Tree Planting. Available online: http://moelagos.gov.ng/events/ (accessed on 12 January 2020).
- Awoniran, D.R.; Adewole, M.B.; Salami, A.T. Wetland conversion and fragmentation pattern with its impacts on soil in the lower Ogun river basin. Ife Res. Publ. Geogr. 2011, 10, 125–133. [Google Scholar]
- Arsanjani, J.J. Characterizing and monitoring global landscapes using GlobeLand30 datasets: The first decade of the twenty-first century. Int. J. Digit. Earth 2019, 12, 642–660. [Google Scholar] [CrossRef]
- Wang, J.; Maduako, I.N. Spatio-temporal urban growth dynamics of Lagos metropolitan region of Nigeria based on hybrid methods for LULC modeling and prediction. Eur. J. Remote Sens. 2018, 51, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Federal Government of Nigeria (FGN). Report of the Presidential Committee on Redevelopment of Lagos Megacity Region; Federal Government of Nigeria: Lagos, Nigeria, 2006.
- Qasim, H.; Klaus, H.; Termansen, M.; Fleskens, L. Modeling land use change across elevation gradients in district swat, Pakistan. Reg. Environ. Chang. 2013, 13, 567–581. [Google Scholar] [CrossRef]
- Birhanu, L.; Hailu, B.T.; Bekele, T.; Demissew, S. Land use/land cover change along elevation and slope gradient in highlands of Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 16, 100260. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Birhane, E.; Ashfare, H.; Almaw, A.F.; Hishe, H.; Gebremedhin, A.M.; Hailemariam, G.; Negasi, S. Land use land cover changes along topographic gradients in Society and Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 13, 61–68. [Google Scholar]
- Atubi, A.O. An evaluation of transport infrastructure in Lagos State, Nigeria. J. Alt. Perspect. Soc. Sci. 2013, 5, 477–494. [Google Scholar]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Tijani, M.N.; Olaleye, A.O.; Olubanjo, O.O. Impact of urbanization on wetland degradation: A case study of Eleyele wetland, Ibadan, South West, Nigeria. In Proceedings of the Environmental Management Conference, Abeokuta, Nigeria, 12–15 September 2011; Federal University of Agriculture: Makurdi, Nigeria, 2011; Volume 2, pp. 308–324. [Google Scholar]
- Tope-Ajayi, O.O.; Adedeji, O.H.; Adeofun, C.O.; Awokola, S.O. Land use change assessment, prediction using remote sensing, and GIS aided Markov Chain modelling at Eleyele wetland area, Nigeria. J. Settl. Spat. Plan. 2016, 7, 51–63. [Google Scholar]
- Joorabian Shooshtari, S.H.; Hosseini, S.M.; Esmaili-Sari, A.; Gholamalifard, M. Monitoring land cover change, degradation, and restoration of the Hyrcanian forests in northern Iran (1977–2010). Int. J. Environ. Sci. 2012, 3, 1038–1056. [Google Scholar]
- Moghadam, H.S.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.; Zhong, H.; Xu, S.; Hu, X.; Wang, J.; Wu, J. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environ. Monit. Assess. 2011, 177, 609–621. [Google Scholar] [CrossRef] [PubMed]
Population (Millions) | Average Annual Rate of Change (Percentage) | |||||
---|---|---|---|---|---|---|
1970 | 1990 | 2011 | 2025 | 1970–1990 | 1990–2011 | 2011–2025 |
1.4. | 1.8 | 11.2 | 18.9 | 6.08 | 4.08 | 3.71 |
Data Type | Dataset | Resolution | Source |
---|---|---|---|
Land use | GlobeLand30 | 30 m multispectral | National Geomatics Centre of China |
Physical objects | OpenStreetMap | www.openstreetmap.org accessed on 28 April 2020 | |
Ancillary | SRTM 1 Digital Elevation Model (DEM) | 30 m | Earth Explorer |
Land Cover Code | Land Cover Type | Attributes of Land Type |
---|---|---|
10 | Cultivated land | Lands used for agriculture, horticulture, and gardens, including paddy fields, irrigated and dry farmland, vegetation, and fruit gardens, etc. |
20 | Forest | Lands covered with trees, with vegetation cover over 30%, including deciduous and coniferous forests, and sparse woodland with cover 10–30%, etc. |
30 | Grassland | Lands covered by natural grass with a cover over 10%. |
40 | Shrubland | Lands covered with shrubs with a cover over 30% including deciduous and evergreen shrubs and desert steppe with a cover over 10%, etc. |
50 | Wetland | Lands covered with wetland plants and water bodies including inland marsh, lake marsh, sea marsh, river floodplain wetland, forest/shrub wetland, peat bogs, mangrove, and salt marsh, etc. |
60 | Water bodies | Water bodies in the land area, including river, lake, reservoir, fish pond, etc. |
80 | Artificial surfaces | Lands altered by human activities, including all kinds of habitations, industrial and mining area, transportation facilities, and interior urban green zones and water bodies, etc. |
90 | Bare land | Lands with vegetation cover lower than 10% including desert, sandy fields, Gobi, bare rocks, saline and alkaline lands, etc. |
Year | 2000 | 2010 | ||
---|---|---|---|---|
LULC Class | Area (km2) | Area (%) | Area (km2) | Area (%) |
Cultivated land | 24.42 | 0.54 | 1.33 | 0.03 |
Forest | 2636.10 | 58.23 | 2954.44 | 65.32 |
Grassland | 236.61 | 5.23 | 41.52 | 0.92 |
Shrubland | 234.25 | 5.17 | 185.05 | 4.09 |
Wetland | 228.99 | 5.06 | 121.81 | 2.69 |
Water bodies | 438.97 | 9.70 | 423.06 | 9.35 |
Artificial surfaces | 723.72 | 15.99 | 796.16 | 17.60 |
Bare land | 4.28 | 0.09 | - | - |
Total | 4527.34 | 100.00 | 4523.37 | 100.00 |
Year | 2000–2010 Period | ||
---|---|---|---|
LULC Class | Losses | Gains | Net Changes |
Cultivated land | −24.21 | 1.12 | −23.09 |
Forest | −137.11 | 455.45 | 318.34 |
Grassland | −221.98 | 27.62 | −194.36 |
Shrubland | −194.80 | 146.25 | −48.55 |
Wetland | −134.56 | 27.43 | −107.14 |
Water bodies | −25.51 | 12.14 | −13.36 |
Artificial surfaces | −53.08 | 125.52 | 72.44 |
Bare land | −4.28 | 0.00 | −4.28 |
LULC Class | Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land |
---|---|---|---|---|---|---|---|---|
Cultivated land | 0.0002 | 0.8385 | 0.0092 | 0.0499 | 0.0071 | 0.0134 | 0.0817 | 0.0000 |
Forest | 0.0000 | 0.9203 | 0.0035 | 0.0311 | 0.0062 | 0.0017 | 0.0372 | 0.0000 |
Grassland | 0.0001 | 0.6917 | 0.0139 | 0.0618 | 0.0046 | 0.0037 | 0.2241 | 0.0000 |
Shrubland | 0.0001 | 0.7548 | 0.0122 | 0.0569 | 0.0087 | 0.0083 | 0.1590 | 0.0000 |
Wetland | 0.0003 | 0.7165 | 0.0106 | 0.0349 | 0.1734 | 0.0417 | 0.0227 | 0.0000 |
Water bodies | 0.0015 | 0.0498 | 0.0092 | 0.0062 | 0.0394 | 0.8875 | 0.0064 | 0.0000 |
Artificial surfaces | 0.0002 | 0.0964 | 0.0063 | 0.0292 | 0.0015 | 0.0028 | 0.8636 | 0.0000 |
Bare land | 0.0001 | 0.7873 | 0.0159 | 0.0675 | 0.0280 | 0.0077 | 0.0935 | 0.0000 |
LULC Classes | Predicted 2030 | |
---|---|---|
Area (km2) | Area (%) | |
Cultivated Land | 1.33 | 0.03 |
Forest | 3084.93 | 68.20 |
Grassland | 0.92 | 0.02 |
Shrubland | 110.42 | 2.44 |
Wetland | 34.54 | 0.76 |
Water Bodies | 423.06 | 9.35 |
Artificial Surfaces | 867.90 | 19.19 |
Total area | 4523.10 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onilude, O.O.; Vaz, E. Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Sci 2021, 3, 23. https://doi.org/10.3390/sci3020023
Onilude OO, Vaz E. Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Sci. 2021; 3(2):23. https://doi.org/10.3390/sci3020023
Chicago/Turabian StyleOnilude, Olalekan O., and Eric Vaz. 2021. "Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model" Sci 3, no. 2: 23. https://doi.org/10.3390/sci3020023
APA StyleOnilude, O. O., & Vaz, E. (2021). Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Sci, 3(2), 23. https://doi.org/10.3390/sci3020023