Relevancy of Nizatidine’s Release from Floating Tablets with Viscosity of Various Cellulose Ethers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Micromeritic Properties of Powder Blends
2.3. Preparation of Floating Tablets of Nizatidine
2.4. Physical Evaluation of Floating Tablets
2.5. Content Uniformity
2.6. In Vitro Buoyancy Studies
2.7. In Vitro Dissolution Studies
2.8. Drug Release Kinetics
3. Results and Discussion
3.1. Micromeritic Studies
3.2. Post-Compression Parameters
3.3. In Vitro Buoyancy Studies
3.4. In Vitro Dissolution Studies
3.5. Drug Release Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.; Wen, H.; Yang, F.; Yu, Y.; Gai, X.; Wang, H.; Li, P.; Pan, W.; Yang, X. Study of controlled-release floating tablets of dipyridamole using the dry-coated method. Drug Dev. Ind. Pharm. 2018, 44, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Tadros, M.I. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: Development, optimization and in vitro–in vivo evaluation in healthy human volunteers. Eur. J. Pharm. Biopharm. 2010, 74, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, S.; Kristl, J.; Vrečer, F.; Vodopivec, P.; Zorko, B. Optimisation of floating matrix tablets and evaluation of their gastric residence time. Int. J. Pharm. 2000, 195, 125–135. [Google Scholar] [CrossRef]
- Pawar, V.K.; Kansal, S.; Garg, G.; Awasthi, R.; Singodia, D.; Kulkarni, G.T. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems. Drug Deliv. 2011, 18, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Garg, T.; Kumar, A.; Rath, G.; Goyal, A.K. Gastroretentive drug delivery systems for therapeutic management of peptic ulcer. Crit. Rev. Ther. Drug Carrier. Syst. 2014, 31, 531–557. [Google Scholar] [CrossRef]
- Streubel, A.; Siepmann, J.; Bodmeier, R. Gastroretentive drug delivery systems. Expert Opin. Drug Deliv. 2006, 3, 217–233. [Google Scholar] [CrossRef]
- Chavanpatil, M.D.; Jain, P.; Chaudhari, S.; Shear, R.; Vavia, P.R. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int. J. Pharm. 2006, 316, 86–92. [Google Scholar] [CrossRef]
- Nayak, A.K.; Malakar, J.; Sen, K.K. Gastroretentive drug delivery technologies: Current approaches and future potential. J. Pharm. Educ. Res. 2010, 1, 1–10. [Google Scholar]
- Eisenächer, F.; Garbacz, G.; Mäder, K. Physiological relevant in vitro evaluation of polymer coats for gastroretentive floating tablets. Eur. J. Pharm. Biopharm. 2014, 88, 778–786. [Google Scholar] [CrossRef]
- Li, S.; Lin, S.; Daggy, B.P.; Mirchandani, H.L.; Chien, Y.W. Effect of hpmc and carbopol on the release and floating properties of gastric floating drug delivery system using factorial design. Int. J. Pharm. 2003, 253, 13–22. [Google Scholar] [CrossRef]
- Dureja, H.; Pandey, P.; Mittal, M. Gastroretentive delivery—Box-behnken-designed gastroretentive floating tablets of famotidine. Drug Dev. Deliv. 2015, 15, 247–256. [Google Scholar]
- Li, Q.; Guan, X.; Cui, M.; Zhu, Z.; Chen, K.; Wen, H.; Jia, D.; Hou, J.; Xu, W.; Yang, X.; et al. Preparation and investigation of novel gastro-floating tablets with 3d extrusion-based printing. Int. J. Pharm. 2018, 535, 325–332. [Google Scholar] [CrossRef]
- Sharma, B.G.; Khanna, K.; Kumar, N.; Nishad, D.K.; Basu, M.; Bhatnagar, A. Development and gamma scintigraphy evaluation of gastro retentive calcium ion-based oral formulation: An innovative approach for the management of gastro-esophageal reflux disease (gerd). Drug Dev. Ind. Pharm. 2017, 43, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; He, X.; Yang, X.L.; Du, W.J.; Cui, C.L.; Wang, L.; Wang, X.; Zhang, C.F.; Guo, C.R. The in vitro/vivo evaluation of prepared gastric floating tablets of berberine hydrochloride. AAPS PharmSciTech 2017, 18, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Ibrar, N. Development of Nizatidine Floating Tablets; University of Central Punjab: Lahore, Pakistan, 2017. [Google Scholar]
- Jain, A.; Pandey, V.; Ganeshpurkar, A.; Dubey, N.; Bansal, D. Formulation and characterization of floating microballoons of nizatidine for effective treatment of gastric ulcers in murine model. Drug Deliv. 2015, 22, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Balata, G. Design and evaluation of gastroretentive floating tablet of nizatidine: A trial to improve its efficacy. Int. J. Pharm. Pharm. Sci. 2014, 6, 423–429. [Google Scholar]
- Madan, J.R.; Kamate, V.J.; Dua, K.; Awasthi, R. Improving the solubility of nevirapine using a hydrotropy and mixed hydrotropy based solid dispersion approach. Polim. Med. 2017, 47, 83–90. [Google Scholar]
- Jiménez-Castellanos, M.R.; Zia, H.; Rhodes, C.T. Design and testing in vitro of a bioadhesive and floating drug delivery system for oral application. Int. J. Pharm. 1994, 105, 65–70. [Google Scholar] [CrossRef]
- Giri, B.R.; Song, E.S.; Kwon, J.; Lee, J.-H.; Park, J.-B.; Kim, D.W. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics 2020, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Teaima, M.; Hamid, M.M.A.; Shoman, N.A.; Jasti, B.R.; El-Nabarawi, M.A. Promising swellable floating bupropion tablets: Formulation, in vitro/in vivo evaluation and comparative pharmacokinetic study in human volunteers. Drug Des. Dev. Ther. 2020, 14, 2741. [Google Scholar] [CrossRef]
- Qi, X.; Chen, H.; Rui, Y.; Yang, F.; Ma, N.; Wu, Z. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent. Int. J. Pharm. 2015, 489, 210–217. [Google Scholar] [CrossRef]
- Riley, G.; Mann, S.; Jesse, R. Angles of repose of cohesive powders. J. Powder Bulk Solids Technol. 1978, 2, 15–18. [Google Scholar]
- Thalberg, K.; Lindholm, D.; Axelsson, A. Comparison of different flowability tests for powders for inhalation. Powder Technol. 2004, 146, 206–213. [Google Scholar] [CrossRef]
- Hwang, K.-M.; Cho, C.-H.; Tung, N.-T.; Kim, J.-Y.; Rhee, Y.-S.; Park, E.-S. Release kinetics of highly porous floating tablets containing cilostazol. Eur. J. Pharm. Biopharm. 2017, 115, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Gambhire, M.N.; Ambade, K.W.; Kurmi, S.D.; Kadam, V.J.; Jadhav, K.R. Development and in vitro evaluation of an oral floating matrix tablet formulation of diltiazem hydrochloride. AAPS PharmSciTech 2007, 8, E166–E174. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeia. 27, the National Formulary 22; United States Pharmacopeial Convention, Inc.: Rockville, MD, USA, 2004; Volume 20852, p. 1539. [Google Scholar]
- Rajabi-Siahboomi, A.R.; Bowtell, R.W.; Mansfield, P.; Davies, M.C.; Melia, C.D. Structure and behavior in hydrophilic matrix sustained release dosage forms: 4. Studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharm. Res. 1996, 13, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Mulye, N.; Inamdar, K. Sustained Release Tablet Containing Hydrocolloid and Cellulose Ether. U.S. Patent 6,416,786, 9 July 2002. [Google Scholar]
- Lee, P.I.; Peppas, N.A. Prediction of polymer dissolution in swellable controlled-release systems. J. Control. Release 1987, 6, 207–215. [Google Scholar] [CrossRef]
- Sharma, M.; Kohli, S.; Dinda, A. In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer. Saudi Pharm. J. 2015, 23, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Alderman, D. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int. J. Pharm. Tech. Prod. Mfr. 1984, 5, 1–9. [Google Scholar]
- Ghori, M.U.; Conway, B.R. Hydrophilic matrices for oral control drug delivery. Am. J. Pharmacol. Sci. 2015, 3, 103–109. [Google Scholar]
- Daly, P.B.; Davis, S.S.; Keimerley, J.W. The effect of anionic surfactants on the release of chlorpheniramine from a polymer matrix tablet. Int. J. Pharm. 1984, 18, 201–205. [Google Scholar] [CrossRef]
- Nakano, M.; Ohmori, N.; Ogata, A.; Sugimoto, K.; Tobino, Y.; Iwaoku, R.; Juni, K. Sustained release of theophylline from hydroxypropylcellulose tablets. J. Pharm. Sci. 1983, 72, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Patra, S.; Pani, N.R. Optimization of hpmc and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr. Polym. 2014, 102, 360–368. [Google Scholar] [CrossRef]
- Shah, V.P.; Tsong, Y.; Sathe, P.; Liu, J.-P. In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharm. Res. 1998, 15, 889–896. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Shahzad, Y.; Saeed, S.; Ghori, M.U.; Mahmood, T.; Yousaf, A.M.; Jamshaid, M.; Sheikh, R.; Rizvi, S.A. Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges. Int. J. Biol. Macromol. 2018, 109, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.L. Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: A historical perspective. In Hydrophilic Matrix Tablets for Oral Controlled Release; Springer: New York, NY, USA, 2014; pp. 17–51. [Google Scholar]
- Mitchell, K.; Ford, J.L.; Armstrong, D.J.; Elliott, P.N.C.; Hogan, J.E.; Rostron, C. The influence of substitution type on the performance of methylcellulose and hydroxypropylmethycellulose in gels and matrices. Int. J. Pharm. 1993, 100, 143–154. [Google Scholar] [CrossRef]
Ingredients | Formulations | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
HPMC K4M | 26.67% | - | - | - |
HPMC E4M | - | 26.67% | - | - |
HPMC K15 | - | - | 26.67% | - |
HPMC K200M | - | - | - | 26.67% |
Carbopol 934P | 17.78% | 17.78% | 17.78% | 17.78% |
Sodium Bicarbonate | 11.11% | 11.11% | 11.11% | 11.11% |
Magnesium Stearate | 2.22% | 2.22% | 2.22% | 2.22% |
Lactose | 8.89% | 8.89% | 8.89% | 8.89% |
Nizatidine | 33.33% | 33.33% | 33.33% | 33.33% |
Formulation | Bulk Density (gm/cm3) | Tapped Density (gm/cm3) | Repose Angle (Φ) | Hausner’s Ratio | Carr’s Index (%) |
---|---|---|---|---|---|
F1 | 0.42 ± 0.02 | 0.47 ± 0.09 | 25.31 ± 1.27 | 1.11 ± 0.01 | 10.0 ± 0.5 |
F2 | 0.38 ± 0.01 | 0.44 ± 0.03 | 25.87 ± 1.33 | 1.15 ± 0.17 | 16.0 ± 0.8 |
F3 | 0.36 ± 0.00 | 0.41 ± 0.05 | 27.61 ± 2.85 | 1.14 ± 0.09 | 12.0 ± 0.6 |
F4 | 0.44 ± 0.03 | 0.50 ± 0.07 | 26.88 ± 0.98 | 1.13 ± 0.05 | 12.0 ± 0.4 |
Formulation | Hardness (kg/cm2) | Thickness (mm) | Friability (%) | Drug Content (%) | Weight Variation (%) | Floating Lag Time (s) | Total Floating Time (h) |
---|---|---|---|---|---|---|---|
F1 | 4.20 ± 0.20 | 4.12 ± 0.14 | 0.33 ± 0.01 | 96.8 ± 4.8 | 4.48 ± 0.22 | 18 ± 1 | 24.0 ± 1.2 |
F2 | 4.00 ± 0.09 | 4.53 ± 0.61 | 0.89 ± 0.06 | 97.6 ± 4.9 | 3.88 ± 0.19 | 22 ± 0 | 22.0 ± 1.1 |
F3 | 4.10 ± 0.05 | 4.51 ± 0.23 | 0.30 ± 0.00 | 98.5 ± 3.9 | 4.43 ± 0.25 | 27 ± 0 | 19.0 ± 0.9 |
F4 | 4.50 ± 0.33 | 4.20 ± 0.33 | 0.45 ± 0.05 | 100.0 ± 2.8 | 5.00 ± 0.31 | 37 ± 2 | 17.0 ± 0.9 |
Formulation | Zero-Order (R2) | First-Order (R2) | Higuchi (R2) | Korsmeyer and Peppas | |
---|---|---|---|---|---|
(R2) | n | ||||
F1 | 0.849 | 0.986 | 0.967 | 0.996 | 0.71 |
F2 | 0.868 | 0.972 | 0.934 | 0.990 | 0.97 |
F3 | 0.860 | 0.986 | 0.940 | 0.994 | 0.80 |
F4 | 0.949 | 0.986 | 0.918 | 0.988 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, Y.; Ibrar, N.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Rizvi, S.A.A. Relevancy of Nizatidine’s Release from Floating Tablets with Viscosity of Various Cellulose Ethers. Sci 2021, 3, 22. https://doi.org/10.3390/sci3020022
Shahzad Y, Ibrar N, Hussain T, Yousaf AM, Khan IU, Rizvi SAA. Relevancy of Nizatidine’s Release from Floating Tablets with Viscosity of Various Cellulose Ethers. Sci. 2021; 3(2):22. https://doi.org/10.3390/sci3020022
Chicago/Turabian StyleShahzad, Yasser, Namra Ibrar, Talib Hussain, Abid Mehmood Yousaf, Ikram Ullah Khan, and Syed A. A. Rizvi. 2021. "Relevancy of Nizatidine’s Release from Floating Tablets with Viscosity of Various Cellulose Ethers" Sci 3, no. 2: 22. https://doi.org/10.3390/sci3020022
APA StyleShahzad, Y., Ibrar, N., Hussain, T., Yousaf, A. M., Khan, I. U., & Rizvi, S. A. A. (2021). Relevancy of Nizatidine’s Release from Floating Tablets with Viscosity of Various Cellulose Ethers. Sci, 3(2), 22. https://doi.org/10.3390/sci3020022